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Abstract

We analyze LSH Forest [BCG05]—a popular heuristic
for the nearest neighbor search—and show that a
careful yet simple modification of it outperforms
“vanilla” LSH algorithms. The end result is the first
instance of a simple, practical algorithm that provably
leverages data-dependent hashing to improve upon
data-oblivious LSH.

Here is the entire algorithm for the d-dimensional
Hamming space. The LSH Forest, for a given dataset,
applies a random permutation to all the d coordinates,
and builds a trie on the resulting strings. In our
modification, we further augment this trie: for each
node, we store a constant number of points close to
the mean of the corresponding subset of the dataset,
which are compared to any query point reaching that
node. The overall data structure is simply several
such tries sampled independently.

While the new algorithm does not quantitatively
improve upon the best data-dependent hashing algo-
rithms from [AR15] (which are known to be optimal),
it is significantly simpler, being based on a practical
heuristic, and is provably better than the best LSH
algorithm for the Hamming space [IM98, HIM12].

1 Introduction

Nearest Neighbor Search. In the Nearest
Neighbor Search problem (NNS), we are given a set
P of n points in a d-dimensional space, and the goal
is to build a data structure that, given a query point
q, reports any point from P within a given distance r
to the query q. The problem is of major importance
in several areas, including databases, data mining,
information retrieval, computer vision, computational
geometry, signal processing, etc.

Despite having efficient solutions for the low-
dimensional case [Cla88, Mei93], the high-dimensional
NNS suffers from the “curse of dimensionality” and
is believed to not admit efficient algorithms. For
this reason, theoretical research has focused on
the approximate variant of NNS, making significant
progress. In the (c, r)-approximate near neighbor

problem (ANN), the data structure may return any
data point whose distance from the query is at most
cr, for an approximation factor c > 1 (provided that
there exists a data point within distance r from the
query). Many algorithms for the problem are known:
e.g., see surveys [AI08, WSSJ14].

To address the approximate version, Indyk and
Motwani proposed the Locality-Sensitive Hashing
scheme (LSH), which has since proved to be influential
in theory and practice [HIM12]. In particular, LSH
hits the sweet spot of ANN data structures with
subquadratic space for constant approximation factor,
which turns out to be the most important regime from
the practical perspective. The main idea is to hash the
points such that the probability of collision is much
higher for points which are close to each other (at
distance ≤ r) than for those which are far apart (at
distance > cr). Given such hash functions, one can
retrieve near neighbors by hashing the query point and
retrieving elements stored in buckets containing that
point. If the probability of collision is at least p1 for
the close points and at most p2 for the far points, the
algorithm solves the (c, r)-ANN using n1+ρ extra space
and dnρ query time, where ρ = log(1/p1)/ log(1/p2)
[HIM12].

The performance of an LSH family is thus deter-
mined by the value of the exponent ρ, for which we
now know precise bounds. The original LSH paper
[IM98] obtained ρ = 1/c for the Hamming space. For
the Euclidean space, subsequent research yielded a
better exponent: ρ = 1/c2 + o(1) [DIIM04, AI06].
These bounds are tight for both Hamming and Eu-
clidean space, as shown by the lower bounds of
[MNP07, OWZ14], thus completing this line of re-
search.

Data-dependent hashing: theory and prac-
tice. Recent work showed that one can outperform
LSH-based algorithms by using data-dependent hash-
ing. Quantitatively speaking, the work of [AINR14,
AR15] developed algorithms with space overhead n1+ρ

and query time dnρ, where ρ = 1/(2c− 1) + o(1) for
the Hamming space and ρ = 1/(2c2 − 1) + o(1) for
the Euclidean space. Note that, for large c, this is



a quadratic improvement of the query time (with bet-
ter space) over best possible LSH algorithms; the new
bounds are known to be optimal for data-dependent
hashing [AR16, ALRW16]. In addition to the quan-
titative improvement, the new space partitions are
qualitatively different: they adapt to the geometry
of a given dataset, opening space for a new type of
algorithmic techniques for the ANN problem.

The idea of data-dependent hashing has become
quite popular in practice in recent years [WSSJ14,
WLKC15], though it is for the following subtly dif-
ferent reason: datasets that arise in practice are hy-
pothesized to not be “worst case”, and instead exhibit
some structure, such as low intrinsic dimension. Al-
gorithms used in practice try to exploit (implicitly or
explicitly) precisely this additional structure. Let us
remark that most of these algorithms do not have any
guarantees, on correctness or performance (but see
the related work section for some recent examples that
do). In fact, it has become an important challenge
to bridge this gap between theoretical and practical
algorithms (see, e.g., a National Research Council
report [Cou13, Section 5], or the survey [WLKC15,
Section 7]).

While data-dependent hashing algorithms come
close to bridging the gap—they are empirically better
in practice and are now proven to be better in
theory—yet, the gap persists: the theoretical and
practical algorithms are still remarkably different.
In particular, the data-dependent algorithms from
[AINR14, AR15] are quite far from the aforementioned
practical algorithms, or being practical at all. One
step towards practice was undertaken in [AIL+15],
who gave an efficient implementation of one of the
components of [AR15]. This component is however
data-independent : it is a better LSH scheme for
a dataset that is assumed to already have a nice
structure (loosely speaking, it looks like a random
set). In particular, the algorithm of [AIL+15] has
no data-dependent steps, and hence it remains an
open question to develop practical data-dependent
algorithms, with theoretical guarantees á la [AR15].

One immediate barrier for making [AR15,
AINR14] more practical is the fact that these algo-
rithms use a certain decomposition procedure that
partitions a worst case dataset into several subsets
which are pseudo-random. This procedure is precisely
the data-dependent component of the algorithm. This
decomposition is not particularly efficient, and gener-
ously contributes to the no(1) factors in the bounds
for space and query time. Making such reductions for
finite subsets of Rd more efficient would be of inde-
pendent interest—in particular, for problems where
we know algorithms with better performance for the

pseudo-random datasets than the worst-case datasets
(e.g., [Val15, KKK16, KKKÓ16, ACW16]).

1.1 Our results In this paper we show new, simple
data-dependent algorithms that are provably better
than data-oblivious LSH algorithms, even for worst
case instances. While the algorithms do not improve
the bounds of [AR15] quantitatively (in fact they are
worse), the main advantage is simplicity and relation
to algorithms used in practice.

Our improved algorithm is based on LSH Forest,
a heuristic introduced in [BCG05] and now popular
in practice (see, e.g., [Ber13]). It can be applied as
a black box to any LSH hash family, but we will
need it instantiated to the Bit Sampling LSH of
[IM98, HIM12] for the Hamming space. We show
that while using LSH Forest directly does not lead to
improved algorithms, a simple modification of it does!

Before describing our main algorithm, let us
briefly recall the Bit Sampling LSH algorithm
from [IM98, HIM12]. We hash an n-point dataset
P ⊆ {0, 1}d using a hash function h(x) = xI , where
xI is a restriction of the point x ∈ {0, 1}d on a set of
indeces I ⊆ [d]. The set I is chosen to be a random
subset of [d] of fixed, carefully chosen size. Given
a query q ∈ {0, 1}d, we retrieve all the data points
p ∈ P such that h(p) = h(x) and check them all until
we find a point within distance cr from q. In order to
boost the probability of success to constant, we repeat
the above construction nρ times, where ρ = 1

c . It is
not hard to construct an example, where we must take
ρ to be at least 1

c − o(1) and, moreover, this bound is
tight for any data-independent LSH for the Hamming
distance [OWZ14].

It will be convenient to assume that there is
exactly one data point—the near neighbor—within
distance cr from the query (and, thus, the data
structure must recover the near neighbor). This
assumption is adequate for practice: for many real-
world datasets there are not too many data points
that are not much further from the query than the
near neighbor. At the same time, later we will show
a modification of our algorithm that can handle the
general case of (c, r)-ANN.

Our new, improved algorithm is based on the
LSH Forest algorithm, which proceeds as follows when
instantiated to the Bit Sampling LSH. We choose a
random permutation of the coordinates π : [d]→ [d]
and apply it to each vector x ∈ P . Then we build
a trie on the permuted vectors.1 For a given query

1This can be also seen as applying kd-tree on P with for a
random order of the coordinates, stopping the splitting until

we have exactly one point.



q, we descent down the trie until we reach precisely
one leaf and compare against the point stored in that
leaf. As before, we boost the probability of success by
building nρ such tries (hence the name of “forest”).

While the above algorithm still requires ρ ≥ 1/c in
the worst case, here is how we modify it to bypass the
1/c bound. For a constant parameter k = O(1), and
for every tree node v, we choose a fixed set of k pivots
Tv. Then, when answering a query, while descending
down the tree, we check against all the pivots Tv of
every node v we visit on the way to the leaf. Overall,
we compare the query point with at most dk data
points. The following theorem summarizes the main
result of this paper assuming that there is only the
near neighbor within distance cr from the query.

Theorem 1.1. (informal) For every k ≥ 1, there
exists a procedure of choosing k pivots in each node of
the tree of LSH Forest, such that, in order to get a data
structure for (c, r)-ANN for the Hamming distance
with constant probability of success, it is enough to
sample O(nρ) tries, where:

ρ ≤ 1

ln 4
· 1

c
·
(

1 +O

(
1

k

))
+O

(
1

c2

)
.

Choosing k to be large enough, the exponent is
ρ = 0.73/c + O(1/c2). The resulting query time is
O(nρd2k) and space is O(n1+ρk + nd).

To get rid of the assumption, we need to augment
the set of pivots further. Namely, in addition to k
carefully chosen pivots, we need to include Θ(log n)
uniformly random pivots. If we do this, Theorem 1.1
will hold for the original (c, r)-ANN with a logarithmic
loss in space and query time.

Discussion of the theorem statement. Our
resulting bound of, essentially, ρ ≈ 1

ln 4·c corresponds
to the bound that follows from using the Bit Sampling
LSH of [IM98, HIM12] on a random dataset in
{0, 1}d. Hence the algorithm can be seen as a worst-
case–to–random-case reduction in the case of Bit
Sampling LSH. While there exist space partitions that
are better than Bit Sampling on a random dataset
[AINR14, AR15, AIL+15], they are less efficient, and,
in particular require a larger number of parts, requiring
a tree with a large branching factor. This seems
required at least in some cases: in particular, for the
Euclidean space, [AIL+15] prove that, for any space
partition where ρ differs from the optimal exponent
by ε, the number of parts must be exponential in
1/ε. We conjecture a similar phenomenon happens
for the Hamming case; indeed, in all the known
constructions, we need at least 106 parts to improve
upon the Bit Sampling for random instances, for

c = 2. Furthermore, in all known space partitions,
the decoding time is proportional to the number of
parts, and hence it is a very important consideration
in practice.

Discussion of the algorithm. We note that
LSH Forest by itself is already a data-dependent
algorithm, in that it auto-tunes to the dataset. In
contrast to Bit Sampling that uses a fixed number
of (random) coordinates, LSH Forest uses a variable
number of coordinates, which may differ from one part
of the tree to the other. Informally speaking, local
granularity of a partition depends on the local density
of a region being partitioned, which is beneficial for
irregular datasets. Nonetheless, despite the vanilla
LSH Forest working well in practice, one can still
construct a bad example, where one has to sample
n

1
c−o(1) trees. In particular, in the worst case LSH

Forest by itself does not offer any advantage over the
regular Bit Sampling. It is precisely the carefully
selected pivots that allow LSH Forest to achieve the
improved bound.

We note that our algorithm can also be seen as the
LSH Forest essentially instantiated to the min-hash
scheme [Bro97, BGMZ97], another very popular (data-
independent) hash function for the Hamming space,
used extensively in practice. In particular, the min-
hash function h chooses a random permutation π and,
on point x ∈ {0, 1}d, outputs the smallest coordinate
i in π where xi = 1. The resulting space partition
corresponds to a caterpillar tree with the permutation
π. Hence, if we concatenate a few minhashes, and
simplify the tree, we obtain precisely the above LSH
Forest. Again, pivots are essential to obtain improved
bounds.

We also comment on the use of randomness in the
tree. In the later sections, we use LSH Forest where
different parts of the trie use independent randomness:
i.e., in each node we choose a new random coordinate
to split the dataset by, and recurse in each of the
two parts corresponding to the dataset conditioned
on the value in that coordinate. This does not affect
the analysis (due to the linearity of expectation) ,
but is more general and likely amenable to further
improvements.

A final remark regarding the analysis of our
algorithm is that this is the first time when the analysis
of random space partitions is with respect to the entire
dataset. This is in contrast to the standard analysis
of LSH [HIM12], data-dependent hashing [AR15], or
the analysis of [DS13], where the analysis of collision
probability is with respect to two or three points. In
this paper, we perform a global analysis, which turns
out to be, technically, the most involved part of the
paper.



1.2 Related work As previously mentioned, data-
dependent hashing is an ubiquitous idea in practice,
albeit with few, if any guarantees on correctness or
performance. To list just a few examples, these
include PCA-trees [Spr91, McN01, VKS09] and its
variants (called randomized kd-tree) [SH08, ML09],
spectral hashing [WTF08], semantic hashing [SH09],
and WTA hashing [YSRL11], and many more. We
point an interested reader to the surveys of [WSSJ14,
WLKC15].

There have also been efforts to obtain algorithms
that are both data-dependent (in a practical way)
and have theoretical guarantees. Most such examples
include the algorithms that assume some additional
structure in the dataset: such as some notion of low
intrinsic dimension [KR02, CNBM01, KL04, BKL06,
IN07, Cla06, DF08], or low dimensional data-set with
high-dimensional noise [AAKK14]. Most relevant to
us is the work of [DS13], which, while mostly focusing
on the low intrinsic dimensional datasets, give a
generic bound for the worst-case datasets as well. The
bound of [DS13] however depends on the dataset in a
non-obvious way, and it is not clear whether it obtains
bounds that are better than (data-independent) LSH.

2 Preliminaries

As is the case with most ANN algorithm, we use
random partition of a metric space. For a point x
and a partition R, we denote R(x) the part of R the
point x lies in.

Definition 2.1. The (c, r)-Approximate Near
Neighbor problem (ANN) is to construct a data
structure over an n-point dataset P ⊂ X lying in
a metric space X supporting the following queries:
given any fixed query point q ∈ X, if there exists
p∗ ∈ P with dX(q, p∗) ≤ r, then report some p′ ∈ X
such that dX(q, p′) ≤ cr, with probability at least 0.9.

It will be convenient to introduce the following
simplification of Definition 2.1.

Definition 2.2. The (c, r)-Gap Approximate Near
Neighbor problem is to construct a data structure
over an n-point dataset P ⊂ X lying in a metric space
X supporting the following queries: given any fixed
query point q ∈ X with the promise that there is a
data point p∗ ∈ P with dX(q, p∗) ≤ r and other data
points are further than cr from the query q, the goal
is to find p∗ with probability at least 0.9.

Definition 2.3. ([IM98, HIM12]) We call a ran-
dom partition R of a metric space X an (r1, r2, p1, p2)-
sensitive LSH partition, if for every x1, x2 ∈ X with
dX(x1, x2) ≤ r1, we have PrR[R(x1) = R(x2)] ≥ p1,

while for every x1, x2 ∈ X with dX(x1, x2) > r2, we
have PrR[R(x1) = R(x2)] ≤ p2.

Theorem 2.1. ([IM98, HIM12]) Suppose that R is
a (r, cr, p1, p2)-sensitive LSH partition of a metric
space X. We assume that 0 < p1, p2 < 1 and denote
ρ = log(1/p1)/ log(1/p2). Then, there exists a data
structure for (c, r)-ANN over a dataset P ⊂ X that
consists of at most n points such that:

• The query procedure requires O(nρ/p1 · log1/p2 n)
point locations in partitions sampled according
to R and O(nρ/p1) distance computations and
other operations;

• The data structure uses at most O(n1+ρ/p1)
words of space, in addition to the space needed
to store the dataset P and to the space needed to
store O(log1/p2 n) partitions sampled according
to R.

The failure probability of the data structure is at
most 0.1.

In particular, the original LSH paper used the
following Bit Sampling partition.

Definition 2.4. For a Hamming space {0, 1}d the
Bit Sampling LSH partition [IM98, HIM12] is as
follows: one first chooses a random coordinate i ∈ [d],
and the partition is {x | xi = 0} ∪ {x | xi = 1}.
It is easy to show that for every r and c it is
(r, cr, 1− r/d, 1− cr/d)-sensitive. In particular,

ρ =
log(1/p1)

log(1/p2)
=

log
(
1− r

d

)−1
log
(
1− cr

d

)−1 ≤ 1

c
.

For the Bit Sampling LSH, the worst-case expo-
nent of ρ = 1/c occurs when r � d. On the other

hand, for r = d/2c, one obtains ρ = log 1/2
log 1−1/2c ≈

1
ln 4 ·

1
c +O(1/c2) when c→∞. This case of r = d/2c

corresponds to the canonical random instance in the
Hamming space: where the dataset is i.i.d. random in
{0, 1}d and the query point is planted within distance
d/2c from a random dataset point.

3 Generic LSH Forest with pivots

In this section we describe a generic construction and
analysis of LSH Forest. This can be seen as a different
way to use random partitions than the classical one,
as in Theorem 2.1. We instantiate the general LSH
Forest algorithm in later sections. LSH Forest was
first introduced in [BCG05] as a heuristic.

LSH Forest consists of several decision trees. Each
tree is built and queried using Algorithm 1, which



works as follows. In the root of the tree, we start
with the entire dataset S = P ⊂ X. We sample
a random partition R of X and group the points
from S according to the parts of R. We recurse on
each non-empty group and add the resulting trees as
children of the root node. We stop as soon as a current
subset S ⊂ P becomes of size 1. In each node v we
store the pivot set, denoted Tv, the random partition
sampled while building v, denoted by Rv, and the
list of children. During the query stage, we descend
down the tree, where at each node v, we follow the
child that captures the query q in the partition Rv.
We also compute the distance to the points p ∈ Tv for
each traversed node v. One such tree succeed with a
relatively low probability, and hence we build several
independent trees by calling BuildTree(P ), thus
boosting this probability to 0.9. During the query
stage, we query every tree.

Algorithm 1 Generic LSH Forest with pivots

function BuildTree(S) . S is a subset of the
dataset

create a node v with associated set S
compute pivots ∅ 6= Tv ⊆ S, store them in v
if |S| = 1 then

return v
sample a partition Rv and store it in v
for U ∈ Rv do

if |S ∩ U | 6= 0 then
add BuildTree(S ∩ U) as a child of v

return v
function QueryTree(v, q) . v is a tree node, q
is a query point

if ∃ p ∈ Tv within distance cr from q then
return p

if there is a child v′ of v associated with Rv(q)
then

return QueryTree(v′, q)
else

return ⊥

To analyze LSH Forest, we need to understand
two quantities: how many trees do we need to get
probability of success 0.9, say, and how deep the built
trees are. The latter is quite easy, while the former
is much more delicate and is the main focus of this
paper.

Lemma 3.1. For a dataset P of size n, let q ∈ X be
a query point, and p∗ ∈ P be a near neighbor of q
(that is, dX(q, p∗) ≤ r). Let 0 < ρ ≤ 1 be the smallest
real number such that, for every subset S ⊆ P where
p∗ ∈ S, the following holds:

• either q is within distance cr from one of the
pivots BuildTree computes for S,

• or one has

PrR[R(q) = R(p∗)]×

× ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
≥ 1.

(3.1)

Then the tree from Algorithm 1 returns a point
within distance cr for a query q with probability at
least n−ρ. Hence, if one samples O(nρ) trees, the
entire data structure solves (c, r)-ANN for q with
probability at least 0.9.

Proof. Consider any tree node we encounter answering
the query q for which p∗ ∈ S. We would like to prove
that the probability of success in this case is at least
|S|−ρ, which, when applied to the root of the tree,
gives the desired claim.

If the first bullet point from the lemma statement
holds, the desired probability is equal to one. Similarly,
if |S| = 1, the probability is also one, since the set of
pivots is non-empty, and, by the assumption, p∗ ∈ S.
Otherwise, let us use the induction on the size of S.

We have:

Pr[success] = PrR[success for S ∩R(q)]

≥ PrR[success for S ∩R(q),R(q) = R(p∗)]

= PrR[R(q) = R(p∗)]·
· PrR[success for S ∩R(q) | R(q) = R(p∗)]

≥ PrR[R(q) = R(p∗)]·
· ER[|S ∩R(q)|−ρ | R(q) = R(p∗)]

= PrR[R(q) = R(p∗)]·

· ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
·

· |S|−ρ

≥ |S|−ρ,

where the fourth step is by the induction assumption
(since we condition on p∗ ∈ S ∩ R(q)) and the last
step is by the lemma assumption. Technically, if
S∩R(q) = S, then we can not quite use the induction
assumption, but nevertheless, the required bound
follows from the immediate claim “If for 0 < p < 1
one has x = px+ y, then x ≥ z iff pz + y ≥ z”.

Note that one tree requires O(nk) space: there are
at most O(n) nodes in the tree and each stores at most
k + 1 nodes. The query time depends on the height
of tree: for a maximum height h, the query time per
tree is O(h · dk). We note that, in our applications,
the height will be easy to bound.



4 LSH Forest and the Bit Sampling LSH

In this section we present our main algorithm claimed
informally in Theorem 1.1. The algorithm is an
instantiation of Algorithm 1 for the Hamming space.
In particular, we use the Bit Sampling LSH from
Definition 2.4 as the random partition R as well as
a certain procedure for computing pivots, described
below.

The formal statement of our main theorem is the
following:

Theorem 4.1. Fix r ∈ N, k ∈ N ≥ 2, and c > 2.
Then for given P ⊆ {0, 1}d of size n, the LSH Forest
with k pivots solves (c, r)-ANN with the following
guarantees:

• The space is O(n1+ρd+ nd);

• The worst-case query time is O(nρ · d2);

• where

ρ =
1

ln 4
· 1

c
·
(

1 +O

(
1

k

))
+O

(
1

c2

)
.

We first show how to prove Theorem 4.1 for
the case of (c, r)-Gap ANN (see Definition 2.2). In
this case, it is enough to simply choose k pivots as
described below. To handle the general case of (c, r)-
ANN, we add Θ(log n) uniformly random pivots to
the existing set of pivots. It is not hard to show that
if there are Ω(n) data points closer than cr to the
query, then at least one them will end up in a random
subset with very high probability, and, in that case,
we are done. Otherwise, there are o(n) data points
within distance cr, and the analysis for the Gap ANN
goes through: namely, the close points do not affect
the quantity (3.1) too much. From now on, we focus
on solving the (c, r)-Gap ANN problem.

4.1 Construction The algorithm for choosing k
pivots is very simple: see Algorithm 2 for the pseudo-
code. In words, for a subset S ⊆ P of the dataset, we
sort all the points according to the distance from the
mean of S, then we add first k points in this order
which are sufficiently diverse, namely, we require them
to be pairwise

(
(c− 1)r

)
-separated.

4.1.1 Intuition Let us provide some intuition why
this procedure helps.

As Lemma 3.1 states, we need to find the smallest
ρ such that

PrR[R(q) = R(p∗)]·

· ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
≥ 1.

The first term is easy: PrR[R(q) = R(p∗)] ≥ 1 − r
d

(remember that R is the Bit Sampling LSH). For
the sake of this discussion, let us ignore the effect of
conditioning on the event “R(q) = R(p∗)” (as we will
see later, the effect is provably small provided that c
is large enough). Thus, we need to understand the
following quantity:

ER

[(
|S ∩R(q)|
|S|

)−ρ]
.

For i ∈ [d], we denote wi the fraction of points
p ∈ S for which pi 6= qi. Then,

ER

[(
|S ∩R(q)|
|S|

)−ρ]
= Ei∈[d]

[
(1− wi)−ρ

]
.

Thus, we need to find the smallest ρ for which(
1− r

d

)
Ei∈[d]

[
(1− wi)−ρ

]
≥ 1.

A näıve argument using Jensen’s inequality gives:(
1− r

d

)
Ei∈[d]

[
(1− wi)−ρ

]
≥
(

1− r

d

)
Ei∈[d]

[
1− wi

]−ρ
&
(

1− r

d

)(
1− cr

d

)−ρ
,

where the second step follows from the fact that
all except one points from S are at distance more
than cr from the query point q. This merely allows
us to set ρ ≈ 1

c , so we have not obtained any
improvement compared to the classical application of
the Bit Sampling LSH using Theorem 2.1.

Is the above simple analysis tight? The applica-
tion of Jensen’s inequality is (almost) tight if all wi’s
are (almost) the same (around cr

d ). This is indeed
possible, moreover this is precisely a hard example
from [OWZ14]. That is exactly where pivots come
to the rescue! By using the fact that the distance
from q to all the pivots computed by Algorithm 2 is
more than cr, we are able to show that wi can not be
almost the same, and thus the application of Jensen
can be sharpened.

For example, consider the case of k = 1 pivot.
W.l.o.g. we can assume that p∗ = 0d. If p∗ was a pivot,
we would be done, so w.l.o.g. we can assume that the
pivot is p̃ 6= p∗. Since ‖p̃ − p∗‖1 > (c − 1)r ≈ cr (q
is at least cr apart from p̃), we can assume w.l.o.g.
that p̃ = 1cr0d−cr. Now comes the crucial insight:
since p̃ is closer to the mean of S than p∗, we have
that, at least on the first cr coordinates, weights wi
must be at least 1/2 on average, which is much larger
than the average cr

d . This allows us to claim that the
`1-mass of wi’s is somewhat concentrated on the first



cr coordinates, and hence the application of Jensen
can be significantly improved.

Introducing more pivots allows us to obtain even
better concentration of the weights wi. More precisely,
for k pivots we can get as many as

(
2 − O(1/k)

)
cr

bits of substantial average weight. Thus, if k is large,
almost all the `1-mass of wi’s is concentrated on ≈ 2cr
coordinates, which corresponds to a random instance,
for which the Bit Sampling LSH yields ρ ≈ 0.73

c .
We obtain an increased number of large weights by
noticing that we have k pivots which are at distance
≈ cr from each other, thus there must be a large
number of coordinates where at least one pivot is
equal to one.

Algorithm 2 Computing pivots for the Hamming
space

function ComputePivots(v, k) . v is a tree
node, k is the desired number of pivots

S ← data points corresponding to v
Tv ← ∅
pc ← the mean of S
for p ∈ S in the order of increasing `1 distance

from pc do
if the `1-distance between p to Tv is at least

(c− 1)r then
Tv ← Tv ∪ {p}
if |Tv| = k then

return Tv
return Tv

4.2 Analysis To prove Theorem 4.1, we will use
the lemma for the generic LSH Forest, Lemma 3.1. Let
us fix some query q and assume that p∗ ∈ P is its near
neighbor (‖q − p∗‖1 ≤ r). We need to establish (3.1)
assuming that q is far from all the pivots.

Let us first show the following combinatorial
lemmas which will be useful later.

Lemma 4.1. Fix s, n ≥ 1, k ≥ 2 and small ε > 0.
For i ∈ [n], let ai ∈ [1, k] and xi ∈ [0, 1]. Suppose we
have that:

•
∑
i aixi ≥

1
2

∑
i ai (1− ε), and

•
∑
ai(k − ai) ≥ k(k−1)·s

2 .

Then we have that:∏
i

(1− xi) ≤ exp
(
s · (1− 1/k) · (1− ln(4))

−
∑
i

xi +O(εs)
)
.

Proof appears in Appendix A

Lemma 4.2. Let x ∈ [0, 1]d, s ∈ N, and let U be a
family of k subsets of coordinates [d] such that:

• For each U ∈ U , |U | ≥ s

• For each U ∈ U one has
∑
i∈U xi ≥

|U |
2 ·(

1−O( 1
c )
)

• For every distinct U1, U2 ∈ U one has |U14U2| ≥
s.

•
∑
i∈[d] xi ≥ s.

Then:∏
i

(1− xi) ≤ exp

(
−s · ln(4)k + 1

k + 1
+O(s/c)

)
.

Proof. For i ∈ [d], let ai ∈ {0, 1, .., k} denote the
number of subsets in U containing coordinate i. The
above constraints imply that:

•
∑
i ai ≥ ks.

•
∑
i aixi ≥

1
2

∑
i ai ·

(
1−O( 1

c )
)
,

•
∑
i ai(k − ai) ≥

k(k−1)s
2 .

The last constraint follows from the double
counting for the sum

∑
U,U ′∈U
U 6=U ′

|U 4 U ′|, which is,

on the one hand, is at least
(
k
2

)
s by the statement

of the lemma, and, on the other hand is equal to∑
i ai(k − ai), which follows from the decomposition

of the sum over coordinates.

Summing up the first and last constraints gives:∑
i

ai(k + 1− ai) ≥
k(k + 1)s

2
.

Let S =
⋃
U∈U

U . We decompose objective function

as follows:∏
i∈[d]

(1− xi) =
∏
i∈S

(1− xi) ·
∏

i∈[d]\S

(1− xi)

We now invoke Lemma 4.1 over the first part:

∏
i∈S

(1− xi) ≤ exp
(
s · (1− 1/(k + 1)) · (1− ln(4))

−
∑
i∈S

xi +O(s/c)
)
.



The second part can be simplified to:

∏
i∈[d]\S

(1− xi) ≤
∏

i∈[d]\S

e−xi ≤ exp

(∑
i∈S

(xi)− s

)
.

The last inequality follows the condition that∑
i∈[d] xi ≥ s. Finally, we multiply the 2 parts

together and get:

∏
i∈[d]

(1− xi) ≤ exp (s · (1− 1/(k + 1)) · (1− ln(4))

− s+ O(s/c))

≤ exp

(
−s ·

(
ln(4) · (1− 1

k + 1
) +

1

k + 1

)
+O(s/c)

)
= exp

(
−s · ln(4)k + 1

k + 1
+O(s/c)

)
as needed.

We use the above lemmas to calculate the proba-
bility of success for each hash function as follows:

Lemma 4.3. Let P ⊂ {0, 1}d be a set of n points,
q ∈ {0, 1}d be a selected point and p∗ be the near
neighbor. The probability to find p ∈ P such that
‖p − q‖1 ≤ cr in a tree is at least n−ρ, where
ρ ≤ 1

ln(4)·(c−2) · (1 + 2
7k+5 ) +O( 1

c2 ).

Proof. As we have shown earlier in Lemma 3.1, all we
need to prove is that for any S ⊆ P with p∗ ∈ S such
that q is further than cr from all the pivots, one has:

PrR[R(q) = R(p∗)]·

·ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
≥ 1.

For i ∈ [d], let wi denote the fraction of p ∈ S for
which pi 6= p∗i , and let pc denote the mean of S. Since
we partition using the Bit Sampling LSH, it is easy
to see that:

|S ∩Ri(p∗)|
|S|

= 1− wi,

where Ri is the partition corresponding to splitting
the space according to the bit i.

If there exists a close enough pivot point, we
are done. Otherwise, there exists a set of k points
{p1, .., pk} ⊆ S s.t. :

• For each i ∈ [k]: ‖pi − pc‖1 ≤ ‖p∗ − pc‖1;

• For every distinct i, j ∈ [k]: ‖pi−pj‖1 ≥ (c−1)r.

For each i ∈ [k], let Ui ⊆ [d] denote the set
of coordinates in which pi differ from p∗. Since
the distance of both p∗, pi and pc are equal on all
coordinates outside Ui, and since for each j ∈ Ui,
p∗j − pcj = wj and pij − pcj = 1 − wj , then the first
constraint gives:

• For each Ui:
∑
j∈Ui

wj ≥
∑
j∈Ui

1 − wj ⇒∑
j∈Ui

wj ≥ |Ui|/2;

The second constraint gives:

• For every distinct Ui, Uj : |Ui 4 Uj | ≥ (c− 1)r.

While the above conditions are enough to invoke
Lemma 4.2, we need to condition on the fact that q and
p∗ collide. Let D ⊆ [d] denote the set of coordinates
for which p∗i = qi, we deduce similar properties when
restricted to the set D:

• For each Ui: |Ui∩D| ≥ (c−1)r since ‖pi−q‖1 ≥
cr;

• For each Ui:
∑
j∈Ui∩D wj ≥

|Ui∩D|−r
2 = |Ui∩D|

2 ·(
1−O( 1

c )
)

since ‖p∗ − q‖1 ≤ r and hence
|Ui \D| ≤ r;

• For every distinct Ui, Uj : |(Ui 4 Uj) ∩ D| ≥
(c− 1)r − r = (c− 2)r.

We can finally apply Lemma 4.2 with vector
~x = ~w over bits in set D and s = (c− 2)r, obtaining
that:

∏
i∈D

(1− wi) ≤ exp

(
−(c− 2)r · ln(4)k + 1

k + 1
+O(r)

)
Since we are sampling uniformly then:

ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]

= ER

[(
|S ∩R(p∗)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
= Ei∈D

[
(1− wi)−ρ

]
≥

(∏
i∈D

(1− wi)−ρ
)1/|D|

=

(∏
i∈D

(1− wi)

)−ρ/|D|

≥ exp

(
(c− 2)r · ρ · (ln(4)k + 1)

|D| · (k + 1)
−O(

ρ · r
|D|

)

)



where the third step is by the AM–GM inequality.
Thus we can set:

ρ = k+1
(ln(4)k+1)·(c−2) +O( 1

c2 ) <

1
ln(4)·(c−2) · (1 + 2

7k+5 ) +O( 1
c2 )

(as 1/ ln(4) > 5/7). For which we obtain:

ER

[(
|S ∩R(q)|
|S|

)−ρ ∣∣∣∣∣R(q) = R(p∗)

]
≥ er/|D|.

The probability that p∗ and q collide is:

PrR[R(q) = R(p∗)] ≥ |D|
|D|+ r

≥ e−r/|D|.

We have thus established that (3.1).

We are now ready to complete the proof to our
main theorem:

Proof. [Proof of Theorem 4.1] The proof follows
immediately from Lemma 4.3. In particular, we
prepare O(nρ) trees using the generic LSH Forest
algorithm, Algorithm 1 with the pivot set, of size k,
chosen as in Algorithm 2.
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A Proof of Lemma 4.1

We prove the following lemma.

Lemma A.1. Fix s, n ≥ 1, k ≥ 2 and small ε > 0.
For i ∈ [n], let ai ∈ [1, k] and xi ∈ [0, 1]. Suppose we
have that:

•
∑
i aixi ≥

1
2

∑
i ai (1− ε), and



•
∑
ai(k − ai) ≥ k(k−1)·s

2 .

Then we have that:

∏
i

(1−xi) ≤ exp

(
s(1− 1

k )(1− ln 4)−
∑
i

xi +O(εs)

)
.

Proof. First we make a change of variables: yi =
1− xi ∈ [0, 1], t = 1+ε

2 and fi = ai/k ∈ [1/k, 1].
Now our problem can be reformulated as maxi-

mizing F (y) =
∏
i∈[n] (yi · exp(1− yi)), subject to the

following constraints:

•
∑
i fi(yi − t) ≤ 0;

•
∑
fi(1− fi) ≥ (1−1/k)·s

2 .

Note that, there is an optimum solution where
both are in fact equalities. In particular, to see this
for the second part, note that for i such that yi < t,
we can assume fi > 1/2 (otherwise take fi := 1− fi)
and increase fi. Similarly, for yi > t, we can assume
fi < 1/2 and we decrease it further.

We now analyze the Lagrangian of the logarithm
of F . In particular for Lagrangian multipliers λ, η ∈ <,
taking the derivatives with respect to yi gives us that
for all i:

(A.1) 1/yi − 1 = ηfi,

and with respect fi, for all i:

(A.2) 0 = λ(1− 2fi) + η(yi − t).

Plugging-in one equation into the other, we get
an equation which is polynomial of degree 2 in yi
(or, alternatively in fi), and coefficients that depend
on the Lagrange multipliers λ, η. Hence, the optimal
solution can have only at most 2 distinct values for
(yi, fi). Let these values be (y1, f1) and (y2, f2).

Assume w.l.o.g y1 ≤ y2, and suppose there are
α1s(1 − 1/k) pairs (y1, f1) and α2s(1 − 1/k) pairs
(y2, f2), for α1, α2 ≥ 0. Then, the first equation
becomes:

(A.3) α1f1(t− y1) = α2f2(y2 − t)

The second equation becomes α1s(1−1/k)·f1(1−
f1) + α2s(1 − 1/k) · f2(1 − f2) = (1−1/k)s

2 , which
simplifies to:

(A.4) α1f1(1− f1) + α2 · f2(1− f2) = 1
2 ,

The objective logF can be rewritten as maximiz-
ing:

[α1(ln(y1) + 1− y1) + α2(ln(y2) + 1− y2)] (1− 1/k)s

It is enough to maximize G = α1(ln(y1) + 1 −
y1) + α2(ln(y2) + 1 − y2), subject to the above
constraints.

Consider the Langrangian LG of G, its derivative
with respect to each αi gives:

∂LG
∂αi

= ln(yi) + 1− yi − ηfi(yi − t)− λfi(1− fi)

Note that from Eqn. (A.1) and (A.2) (which hold
true when considering LG as well):

ηfi = 1/yi − 1

λfi =
ηfi(yi − t)
(2fi − 1)

=
(1/yi − 1)(yi − t)

(2fi − 1)

Therefore, we have:

∂LG
∂αi

= ln(yi) + 1− yi − ( 1
yi
− 1)(yi − t)−

( 1
yi
− 1)(yi − t)(1− fi)

(2fi − 1)

= ln(yi) + 1− yi +

(
fi − 1

2fi − 1
− 1

)
(1/yi − 1)(yi − t)

= ln(yi) + 1− yi −
fi(1/yi − 1)(yi − t)

2fi − 1

= ln(yi) + 1− yi +
λ

η2
(y−1i − 1)2

The last step follows from exchanging variables
according to Eqn. (A.1) and (A.2).
At the optimum of G, for each αi, either ∂LG

∂αi
= 0 or

αi cannot be decreased or increased which can only
happen at the boundaries, i.e., where either y1 = 0
or t, y2 = 1 or t (otherwise we can always perturb yi
and increase/decrease αi).
One can observe that ∂LG

∂αi
= 0 where yi = 1. We

can further analyze ∂LG

∂αi
by taking a second derivative

with respect to yi:

∂2LG
∂αi∂yi

= y−1i − 1− 2λη−2y−2(y−1 − 1)

= (1− 2λη−2y−2)(y−1 − 1)

Since there can be at most 1 assignment of

0 < yi < 1 for which ∂2LG

∂αi∂yi
= 0, and since ∂LG

∂αi
is

monotonic elsewhere in the range and equals 0 where
yi = 1, then there can be at most 1 assignment of
0 < yi < 1 for which ∂LG

∂αi
= 0, which means that any

optimal solution we cannot have distinct y1, y2 which
both lie in the interior, and therefore we must have at



least of the following: y1 = 0, y1 = t, y2 = 1 or y2 = t.

Now, let us analyze the above cases separately:

• If y1 = 0, the function is at minimum.

• If either yi = t, then according to Eqn. (A.3) the
other yj must also be t (or otherwise fj = 0 for
which in optimum αj = 0).

• If y2 = 1, then according to Eqn. (A.1): 1 =
ηf2 + 1 and therefore f2 = 0, and according to
Eqn. (A.3): y1 = t (and since f2 = 0, α2 is
irrelevant).

In either of the last 2 scenarios, it is enough to
optimize:

F (α) = (tαe(1−t)α)(1−1/k)s = exp (α · s · (1− 1/k) · (1− t− ln(1/t)))

subject to:

• αf(1− f) = 1
2 .

The above is optimized at f = 1/2;α = 2, and
hence the optimal value of F is:

F ∗ = exp (s · (1− 1/k) · 2(1− t− ln(1/t)))

Therefore, the required inequality holds:

∏
i

(1−xi) ≤ exp

(
s · (1− 1/k) · (1− ln(4))−

∑
i

xi +O(εs)

)
.


