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Abstract

We prove a tight lower bound for the exponent p for data-dependent Locality-
Sensitive Hashing schemes, recently used to design efficient solutions for the c-approximate
nearest neighbor search. In particular, our lower bound matches the bound of p <
2;1 +o(1) for the ¢; space, obtained via the recent algorithm from [Andoni-Razenshteyn,
STOC’15].

In recent years it emerged that data-dependent hashing is strictly superior to the
classical Locality-Sensitive Hashing, when the hash function is data-independent. In
the latter setting, the best exponent has been already known: for the ¢ space, the
tight bound is p = 1/¢, with the upper bound from [Indyk-Motwani, STOC’98] and the
matching lower bound from [O’Donnell-Wu-Zhou, ITCS’11].

We prove that, even if the hashing is data-dependent, it must hold that p >
52 — o(1). To prove the result, we need to formalize the exact notion of data-
dependent hashing that also captures the complexity of the hash functions (in addition
to their collision properties). Without restricting such complexity, we would allow for
obviously infeasible solutions such as the Voronoi diagram of a dataset. To preclude
such solutions, we assume that collision probabilities are sufficiently high, as well as
that the hash functions have a low description complexity. Both conditions are satisfied
by all the known algorithmic results.

*Work done in part while the author was at the Simons Institute for the Theory of Computing, Berkeley
University.



1 Introduction

We study lower bounds for the high-dimensional nearest neighbor search problem, which is a
problem of major importance in several areas, such as databases, data mining, information
retrieval, computer vision, computational geometry, signal processing, etc. This problem
suffers from the “curse of dimensionality” phenomenon: either space or query time are
exponential in the dimension d. To escape this curse, researchers proposed approximation
algorithms for the problem. In the (c,r)-approximate near neighbor problem, the data
structure may return any data point whose distance from the query is at most cr, for
an approximation factor ¢ > 1 (provided that there exists a data point within distance r
from the query). Many approximation algorithms are known for this problem: e.g., see
surveys [Sam06l [AI08, [And09, WSSJ14].

An influential algorithmic technique for the approximate near neighbor search (ANN) is
the Locality Sensitive Hashing (LSH) [IM98, [HPIM12]. The main idea is to hash the points
so that the probability of collision is much higher for points that are close to each other
(at distance < r) than for those which are far apart (at distance > ¢r). Given such hash
functions, one can retrieve near neighbors by hashing the query point and retrieving elements
stored in buckets containing that point. If the probability of collision is at least p; for the
close points and at most ps for the far points, the algorithm solves the (¢, r)-ANN using
essentially O(n'*™/p,) extra space and O(dn”/p;) query time, where p = % [HPIM12].
The value of the exponent p thus determines the “quality” of the LSH families used.

Consequently, a lot of work focused on understanding the best possible value p for
LSH, including the sequence of upper bounds [IM98, [DIIM04, [AT06] and lower bounds
IMNPOT, OWZI1]. Overall, they established the precise bounds for the best value of p: for ¢,
the tight bound is p = % + o(1). In general, for ¢,, where 1 < p < 2, the tight bound is
p==to(l).

Surprisingly, it turns out there exist more efficient ANN data structures, which step
outside the LSH framework. Specifically, [AINR14,[AR15] design algorithms using the concept
of data-dependent hashing, which is a randomized hash family that itself adapts to the actual
given dataset. In particular, the result of [ARI5] obtains an exponent p = 55— + o(1) for
the ¢, space, thus improving upon the best possible LSH exponent essentially by a factor of 2
for both ¢; and /5 spaces.

Our result. Here we prove that the exponent p = 55— from [AR15] is essentially optimal

even for data-dependent hashing, and cannot be improved upon. Stating the precise theorem
requires introducing the precise model for the lower bound, which we accomplish below. For
now, we state our main theorem informally:

Theorem 1.1 (Main, informal). Any data-dependent hashing scheme for {1 that achieves
probabilities py and ps must satisfy

1

p= ﬁ—o(l),

as long as py, po are sufficiently high, and the description complexity of the hash functions is
sufficiently small.



An immediate consequence is that p > 267}_1 —o(1) for all ¢, with 1 <p <2, using the
embedding from [LLR9S].

1.1 Lower Bound Model

To state the precise theorem, we need to describe formally what is data-dependent hashing.
First, we state the definition of (data-independent) LSH, as well as define LSH sensitive for a
fixed dataset P.

Definition 1.2 (Locality-Sensitive Hashing). We say that a hash family H over {0,1}? is
(11,79, p1, p2)-sensitive, if for every u,v € {0,1}¢ one has:

o if ||lu—wvl| <, then hP%[h(u) = h(v)] > pi;
o if |u—vls>ry, then Pr[h(u) = h(v)] < pa.

We now refine the notion of data-independent LSH, where we require the distribution to
work only for a particular dataset P.

Definition 1.3 (LSH for a dataset P). A hash family H over {0, 1}% is said to be (r1, 9, p1, p2)-
sensitive for a dataset P C {0,1}4, if:

o for every v € {0,1} and every u € P with ||u —v||; <7y one has

hf:;ﬂ[h(u) = h(v)] > p1;

. hEg{ [h(u) = h(v) and ||u —v||; > ro] < po.
u,u~P

Note that the second definition is less stringent than the first one: in fact, if all the points
in a dataset are at distance more than r from each other, then an LSH family H is also LSH
for P, but not necessarily vice versa! Furthermore, in the second definition, we require the
pa property (2nd property) to be only on average (in contrast to every point as in the first
definition). This aspect means that, while Definition is certainly necessary for an ANN
data structure, it is not obviously sufficient. Indeed, the algorithm from [ARI5] requires
proving additional properties of their partitioning scheme, and in particular analyzes triples
of points. Since here we focus on lower bound, this aspect will not be important.

We are now ready to introduce data-dependent hashing.

Data-dependent hashing. Intuitively, a data-dependent hashing scheme is one where we
can pick the family H as a function of P, and thus be sensitive for P. An obvious solution
would hence be to choose H to consist of a single hash function A which is just the Voronoi
diagram of the dataset P: it will be (r, cr, 1,0)-sensitive for P and hence p = 0. However this
does not yield a good ANN solution since evaluating such a hash function on a query point ¢
is as hard as the original ANN question!

Hence, ideally, our lower bound model would require that the hash function is compu-
tationally efficient to evaluate. We do not know how to formulate such a condition which



would not make the question as hard as circuit lower bounds or high cell-probe lower bounds,
which would be well beyond the scope of this paper.

Instead, we introduce two conditions on the hash functions, which serve as a proxy for
the computational complexity of the hash function. The formal statement of the main
theorem (Theorem will require these two technical conditions. We note that both of
these conditions are satisfied by all data-dependent (or data-independent) hashing schemes
that are currently known; we will discuss these conditions further below.

Theorem 1.4 (Main theorem, full). Fiz the approzimation ¢ > 1 to be a constant. Suppose
the dataset P lives in the Hamming space {0,1}¢, where the dataset size n = |P| is such that
n < 243 and n = w(1). There exist distance thresholds r and (c — o(1))r with the following
property.

Let p1,pa > 0 be collision probabilities from the definition of LSH. Also, let T > 1 be the
number of distinct hash functions h. Assume the following two conditions hold:

L4 n—o(l) S b1, P2 S 1/27

1-Q(1)

o T <27

A scheme is data-dependent if there exist T hash functions {h; }1<i<r over {0,1}4 such that
for every n-point dataset P there exists a distribution Hp over h;’s such that the corresponding
hash family is (r, (c — o(1))r, p1, p2)-sensitive for P. For any such data-dependent scheme it
must hold that

_ log1/p > 1

p_logl/pg “2%—-1

o(1).

We describe the two conditions next. We note that without either of the two conditions,
Theorem [I.4] is simply not true.

Bounds on probability p; and p;. The query time of an ANN solution based on a
hashing scheme achieving probabilities py, pe is O(n”/p;). Hence it is common to assume
that p; is not too small; e.g., the LSH lower bounds in [MNP07, (OWZ11]. Indeed, if we were
to allow p; and ps to be arbitrary small, then we can again construct (data-independent)
LSH that achieves p = 0, though it would be unusable for ANN algorithms. In particular,
one can partition the space by carving out balls of diameter ¢r — o(1), which ensures p; > 0
and ps = 0. However p; becomes exponentially small in d, and so does the query time as well
then [T

We leave unanswered the following question: what happens if we allow p; and p, to be as
small as n=® for a fixed constant v > 07 (See [OWZ11] for a further discussion about this
regime.)

Description complexity of hash functions. As mentioned before, without constraining
the hash function complexity, there’s a perfect data-dependent hash function for a dataset P—
the Voronoi diagram of P—but we cannot evaluate such a hash function efficiently. To

'We note that, in the case when d = O(logn), such solution may actually become useful for ANN as
exponential in d is merely polynomial in n.



preclude such cases, we assume that the hash function has small description complexity:
the number of bits to describe the hash function is n'~%(®). Note that such a description
complexity would allow a “sampled Voronoi diagram”, where we sample, say, n’Y points and
build a Voronoi diagram of these points. Our theorem proves that, in this sampled case, our
lower bound on p already applies.

There are two further reasons this condition is a reasonable one. First, all the ANN
algorithms [IM98| [DITMO04], [AT06), [AINR 14, [AR15] use hash functions with description com-
plexity only n°"). For example, to see how [AR15] fits our lower bound model, see Appendix
[A] Second, in all the data-dependent hashing schemes ([AINRI4, [ART5]), as well as the
optimal data-independent {5 scheme [AIO6], the evaluation time of the hash function is in
fact comparable with the description complexity.

In fact, a similar assumption was already used in a related setting: namely, to prove a
lower bound for ANN under the /., norm [ACPO0S8]. This lower bound applies to decision
trees, where it was assumed that each node of the tree has n°") description complexity.

1.2 Techniques and Related Work

There are two components to our lower bound, i.e., Theorem

The first component is a lower bound for data-independent LSH for a random dataset. We
show that in this case, we must have p > ﬁ — o(1). This is in contrast to the lower bound
of [OWZ11], who achieve a higher lower bound but for the case when the (far) points are
correlated. Our lower bound is closer in spirit to [MNPO7], who also consider the case when
the far points are random uncorrelated. In fact, this component is a strengthening of the
lower bound from [MNPQT7], and is based crucially on a Fourier-analytic inequality proved
there.

We mention that, in [Dubl10], Dubiner has also considered the setting of a random dataset
for a related problem—finding the closest pair in a given dataset P. Dubiner sets up a certain
related “bucketing” model, in which he conjectures the lower bound, which would imply

ap> % lower bound for data-independent LSH for a random set. Dubiner verifies the

-1
conjecture computationally and claims it is proved in a different manuscript.ﬂ

We also point out that, for the ¢, case, the optimal data-independent lower bound
p > 52— — o(1) follows from a recent work [AIKT15]. In fact, it shows almost exact trade-off

log(1/p1)
log(1/p2)
there are really tailored to the Euclidean case (in particular, a powerful isoperimetric inequality

of Feige and Schechtman is used [FS02]) and it is unclear how to extend it to ¢y, as well as,
more generally, to £, for 1 < p < 2.

Our second component focuses on the data-dependent aspect of the lower bound. In
particular, we prove that if there exists a data-dependent hashing scheme for a random
dataset with a better p, then in fact there is also a data-independent such hashing scheme.
To accomplish this, we consider the “empirical” average p; and p, for a random dataset, and
prove it is close to the average p; and ps, for which we can deduce a lower bound from the
first component.

between p; and ps (not only the lower bound on p =

). Unfortunately, the techniques

2This manuscript does not appear to be available at the moment of writing of the present paper.



In terms of related work, we also must mention the related work of [PTWOS, [PTW10],
who prove cell-probe lower bounds for the same problem of ANN. In particular, their work
utilizes the lower bound of [MNPQT7] as well. Their results are however incomparable to our
results: while their results are unconditional, our model allows us to prove a much higher
lower bound, in particular matching the best algorithms.

2 Data-independent Lower Bound

In this section we prove the first component of Theorem [[.4l Overall we show a lower bound
of p > ﬁ + o(1) for data-independent hash families for random datasets. Our proof is
a strengthening of [MNPQT7]. The final statement appears as Corollary . In the second
component, we will use a somewhat stronger statement, Lemma .

For u € {0,1}% and non-negative integer k define a random variable W (u) distributed
over {0,1}? to be the resulting point of the standard random walk of length k that starts
in u (at each step we flip a random coordinate).

We build on the following inequality from [MNPQT7] that is proved using Fourier analysis
on {0,1}4.

Lemma 2.1 ([MNPQ7]). For every hash function h: {0,1}* — Z and every odd positive
integer k one has:

exp(2k/d)—1
Pr [h(u)=h < P h(u) = h(u)]er@E /o1
wobr W) =R < | Fr h() = h(u)
v~ Wi (u)

The above inequality can be thought of as a lower bound on p already. In particular,
the left-hand-side quantity is probability of collision of a point and a point generated via
a random walk of length k from it. The right-hand side corresponds to collision of random
independent points, which are usually at distance d/2. One already obtain a lower bound on
p by considering k = d/2ec.

To strengthen the lower bound of [MNPQOT7], we analyze carefully the distance between
the endpoints of a random walk in the hypercube. In particular the next (somewhat folklore)
lemmas show that this distance is somewhat smaller than the (trivial) upper bound of k.
Denote X}, the distance ||Wy(u) — u|;. Note that the distribution of X} does not depend on
a particular starting point u.

Lemma 2.2. For every k one has
d 2\ *
EXy==-(1—-(1--= .
Xl =3 ( ( d) )
Proof. We have that

EXp | Xpo1=t]=Pr[Xp=t—1]-(t—=1)+Pr[Xp =t +1]- (t +1)

:Z-(t—1)+(1—2>-(t+1):<1—(21>-t+1.



Thus,

B[X,] = (1 _ 3) CE[Xp ] + 1.

Since E[X] = 0, we obtain that

- (-2

=0

N |
/N
[S—
|
R
—_
|
ISHE
——

ES)
~_

.

O

We can now prove that the value of X, indeed concentrates well around the expectation,
using concentration inequalities.

Lemma 2.3. For every k and every t > 0 one has
Pr [ Xy > B[Xy] +t- VE| <e /1

Proof. For t > 1 define Y; to be the index of the coordinate that got flipped at time ¢.
Obviously, we have that X}, is a (deterministic) function of Y7, ...Y%. Furthermore, changing

one Y; changes X, by at most 2. Hence we can apply the McDiarmid’s inequality to

Theorem 2.4 (McDiarmid’s inequality). Let Y7,...Y) be independent random variables and
X = f(\Y1,...Yy) such that changing variable Y; only changes the value by at most ¢;. Then
we have that

2

i=1Ci

Pr[X > E[X] +¢] < exp (-f) .

Hence we obtain that

2
Pr (X, > E[X}] +¢] <exp (—Z}{) :

Substituting e = ¢ - vk, we get the result. O

Note that choosing k ~ £-In - will mean that distance Xj, = ||Wj,(u) —ul|; is now around
d/2c, i.e., we can actually use random walks longer than the ones considered in [MNP07].
Indeed, from Lemma and Lemma [2.3one can immediately conclude the following corollary.

Corollary 2.5. Let ¢ > 1 be a fixzed constant. Suppose that v = v(d) > 0 is such that
v=o0(1) as d — oo. Then, there exists a = a(d) such that

a(d) =< -In—— —o0.,(1)

that satisfies the following:

d
Pr [Xa.d > | <277
2c




We are now ready to prove the main lemma of this section, which will be used in the later
section on data-dependent hashing. We need to introduce two more definitions. We define
“average p;” as:

((e,d,a,h) .= Pr [h(u) = h(v)
u~{0,1}¢
UNWa.d(’lL)

d
_ <
o= olls < 26]

for ¢ > 1, positive integer d, o > 0 and a hash function h: {0,1}¢ — Z. Similarly, we define
the “average p,” as

n(d,B.h) = Pr [h(u) — h), u— o]y > @ - 5) -d}

u,v~{0,1}4
for positive integer d, 3 > 0 and a hash function h: {0,1}¢ — Z.

Lemma 2.6. Let ¢ > 1 be a fized constant. Suppose that v = v(d) > 0 is such that v = o(1)
as d — oo. Then, there exist a = a(d), = (d) and p = p(d) such that:

1 c

o = 5 lnc—il —OCW(l),
B:O'y(l)?
1
- 0. (1
P=5.q 0cy(1)

as d — oo such that, for every d and every hash function h: {0,1}¢ — Z, one has
¢(e,d,a,h) <n(d, B, h)P 2774,

Proof. We use Lemma [2.5( to choose o = 1 - In =55 + 0,,(1) such that o - d is an odd integer
and

d 2-7d
Pr|X,q> — 1
' l Y 1)
We can choose = 0,(1) so that
P ! d <2 2
e i< (5=0) 4 < = @
(This follows from the standard Chernoff-type bounds.)
Now we apply Lemma [2.1] and get
P h(u) =h < P h(u) = h(v)]”, 3
Pr [ =B < Pr[ha) = ho) )
v~Wy.q(u)
where (20) 1 )
exp(2a) —
= = — 0c~(1).
exp(2a)+1  2c—1
Finally, we combine , and , and get the desired inequality. O
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The following corollary shows how the above lemma implies a lower bound on data-
independent LSH.

Corollary 2.7. For every ¢ > 1 and v = y(d) > 0 such that v = o(1) there ezists § = 5(d) >
0 with f = 0,(1) such that if H is a data-independent (d/(2¢c), (1/2 — B)d, p1, p2)-sensitive
family, then

_1

pr<pp T g o,
Proof. We observe that for every a, 5 > 0:
® D S hr];EH [<(67 d? a, h>]7
> .
® Dy~ hf]??{ [n(da 67 h)]
Now we apply Lemma together with the following application of Jensen’s inequality:

B [1(d, 5, )] < E [n(d. 5, n))

since 0 < p < 1. O

3 Data-Dependent Hashing

We now prove the second component of the main Theorem proof. In particular we show
that a very good data-dependent hashing scheme would refute Lemma from the previous
section.

3.1 Empirical Probabilities of Collision

For a particular dataset P, we will be interested in empirical probabilities p,,ps — i.e., the
equivalents of ¢,y for a given set P — defined as follows. Let 0 < d(d) < 1/3 be some
function. Let P be a random set of points from {0, 1}¢ of size 29(¥?. The empirical versions
of ¢ and n with respect to P are:

((¢,d,a,h, P):= Pr lum:hwnm—MhS;]
UNI%/&-d(u) ¢

n(d,B,h,P) = Pr

u,v~P

mm:hwmm—vm>(;—@.4.

We now what to prove that, for a random dataset P, the empirical (, u are close to the
true averages. For this we will need the following auxiliary lemma.

Lemma 3.1. Let M be an n x n symmetric matriz with entries from [0;1] and average ¢.
Let M' be a principal n® x n° submatriz of M sampled uniformly with replacement. Then,
for every 6 > 0, the probability that the mazimum of the average over M' and 6 does not lie
in [1/2;2] - max{e, 0} is at most n® - 27°)



Proof. We need the following version of Bernstein’s inequality.

Lemma 3.2. Suppose that Xy,..., X, are i.i.d. random variables that are distributed over
[0;1]. Suppose that E[X;] = €. Then, for every 0 < < 1, one has

[max{ le,e} {} max{e, 6}

We just apply Lemma and take union bound over the rows of M’. H

The following two lemmas are immediate corollaries of Lemma and Lemma
respectively.

Lemma 3.3. For every ¢ > 1, a > 0, positive integer d, § > 0 and a hash function
h:{0,1}¢ — Z, one has

25(d) d)

I?Dr [max{g(c, d,a, h, P),0} € [1/2;2] - max{((c,d, a, h), 8}} > 1290

Lemma 3.4. For every 3 > 0, positive integer d, 0 > 0 and a hash function h: {0,1}* — 7,
one has

Pr [max{7j(d, 5, h, P),0} € [1/2;2] - max{n(d, 3, h),0}] = 1 - 27" 9-9(022).

3.2 Proof of Theorem [1.4

We are finally ready to complete the prove of the main result, Theorem [T.4]

Let us first assume that p;,ps = o(1) and then show how to handle the general case.
Suppose that |P| = 2%,

Let {hi, ha,...,hy} be a set of hash functions. Fix v = v(d) > 0 such that v = o(1) and
277% < py, ps. Then, by Lemma , there is &« = a(d) and 8 = (d) = 0,(1) such that for
every 1 <:<T

Cleyd, o, hy) < (d, B, hy) Tt oo o7, (4)

Let us choose 6 > 0 such that
T. 2(5-d < 29~26'd

and 0 < py,ps. If we can not do it, then T > 22077 — on' "™ " ontradicting theorem

hypothesis.
Then, from Lemma and Lemma we get that, with high probability over the choice
of P, one has for every 1 < i < T

° max{f(c, d,a, h;), 0} € [1/2;2] - max{{(c,d, o, h;),0};

e max{7(d, 3, h;),0} € [1/2;2] - max{n(d, 5, h;),0}.



Suppose these conditions hold and assume there exist a distribution D over [T] such that
the corresponding hash family is (d/2¢, (1/2 — 5(d))d, p1, p2)-sensitive for P. Then,

D1 S 'PD[E(C’ d7 «, hZ)] S .Pp[maX{G(cv dv «, hl)’ 0}] S 2. .Pp[maX{C(Q d7 «, hl)a 0}]
<2 Z-NEDK(C’ d,a,hi)]+6. (5)

Similarly,

po 2 B [A(d,5 ) 2 B fmax{i(d, 6,100} = 0 2 - E [max{n(d, 5, i), 0}] 0

i~D
1
Averaging and applying Jensen’s inequality, we have
E [C(e,d o hy)] < B [n(d, 8, hy)] 7170 42770 (7)

Thus, substituting and @ into

-0 1, _
P < (2p+ )70 2,
which proves the theorem, since § < py, p2, and 2774 < py, py, and py, ps = o(1).

Now let us deal with the case pi, ps = Q(1). This can be reduced to the case p1, p2 = o(1)
by choosing a slowly-growing super constant k£ and replacing the set of T' functions with the
set of T tuples of length k. This replaces p; and p, with p¥ and p4, respectively. In the same

time, we choose k so that T* is still gn' W, Then, we just apply the above proof.
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A Upper bounds are in the model

In this section, we show how the data-dependent hash family from [AR15] fits into the model
of the lower bound from Section [L1l

Let us briefly recall the hash family construction from [ARI5|. For simplicity, assume that
all points and queries lie on a sphere of radius R > cr. First, consider a data-independent hash
family from [AINRI4, [AR15], called Spherical LSH. It gives a good exponent p < 55—+ o(1)

for distance thresholds r vs v/2R (the latter corresponds to a typical distance between a
pair of points from the sphere). The main challenge that arises is how to handle distance
thresholds r vs ¢r, where the latter may be much smaller than v/2R. Here comes the main
insight of [AR15].

We would like to process the dataset so that the distance between a typical pair of
data points is around V2R, so to apply Spherical LSH. To accomplish this, we remove all
the clusters of radius (v/2 — €)R that contain lots of points (think of ¢ > 0 being barely
sub-constant). We will treat these clusters separately, and will focus on the remainder of
the pointset for now. So for the remainder of the pointset, we just apply the Spherical LSH
to it. This scheme turns out to satisfy the definition of the data-dependent hash family for
the remaining points and for distance thresholds r vs. ¢r; in particular, the hash function is
sensitive for the remaining set only! The intuition is that, for any potential query point, there
is only a small number of data points within distance (v/2 — )R — otherwise, they would
have formed yet another cluster, which we would have removed — and the larger distances
are handled well by the Spherical LSH. Thus, for a typical pair of data points, Spherical LSH
is sensitive for P (see Definition [1.3]).

How does [AR15] deal with the clusters? The main observation is that one can enclose
such a cluster in a ball of radius (1 — (¢?)) R, which intuitively makes our problem a little bit
simpler (after we reduce the radius enough times, the problem becomes trivial). To answer
a query, we query every cluster, as well as one part of the remainder (partitioned by the
Spherical LSH). This can be shown to work overall, in particular, we can control the overall
branching and depth of the recursion (see [AR15] for the details).

For both the clusters, as well as the parts obtained from the Spherical LSH, the algorithm
recurses on the obtained point subsets. The overall partitioning scheme from [AR15] can
be seen as a tree, where the root corresponds to the whole dataset, and every node either
corresponds to a cluster or to an application of the Spherical LSH. Once nuisance is that, in
different parts of the tree the Spherical LSH partitioning obtains different py, p> (depending
on R). Nonetheless, each time it holds that p; > pj for p < 55— + o(1). Hence, a node
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terminates as a leaf once its accumulated p, (product of ps’s of “Spherical LSH” nodes along
the path from the root) drops below 1/n.

We now want to argue that the above algorithm can be recast in the framework of
data-dependent hashing as per Definition [I.3] We consider a subtree of the overall tree that
contains the root and is defined as follows. Fix a parameter [ = n=°(") (it is essentially the
target py of the partition). We perform DFS of the tree and cut the tree at any “Spherical
LSH” node where the cumulative ps drops below [. This subtree gives a partial partition
of the dataset P as follows: for “Spherical LSH” nodes we just apply the corresponding
partition, and for cluster nodes we “carve” them in the random order. It turns out that if we
choose | = n=°W) carefully, the partition will satisfy Definition and the preconditions of
Theorem . In particular, the description complexity of the resulting hash function is n°™M).

Let us emphasize that, while Definition [1.3] is certainly necessary for an ANN data
structure based on data-dependent hashing, it is not sufficient. In fact, [AR15] prove
additional properties of the above partitioning scheme, essentially because the “py property”
is on average one (thus, we end up having to understand this partitioning scheme treats
triples of points).
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