
Hölder Homeomorphisms and Approximate Nearest Neighbors

Alexandr Andoni
Columbia University

andoni@cs.columbia.edu

Assaf Naor
Princeton University

naor@math.princeton.edu

Aleksandar Nikolov
University of Toronto

anikolov@cs.toronto.edu

Ilya Razenshteyn
Microsoft Research Redmond

ilyaraz@microsoft.com

Erik Waingarten
Columbia University

eaw@cs.columbia.edu

August 11, 2018

Abstract

We study bi-Hölder homeomorphisms between the unit spheres of finite-dimensional normed
spaces and use them to obtain better data structures for the high-dimensional Approximate Near
Neighbor search (ANN) in general normed spaces.

Our main structural result is a finite-dimensional quantitative version of the following theorem
of Daher (1993) and Kalton (unpublished). Every d-dimensional normed space X admits a small
perturbation Y such that there is a bi-Hölder homeomorphism with good parameters between
the unit spheres of Y and Z, where Z is a space that is close to `d

2. Furthermore, the bulk of
this article is devoted to obtaining an algorithm to compute the above homeomorphism in time
polynomial in d. Along the way, we show how to compute efficiently the norm of a given vector
in a space obtained by the complex interpolation between two normed spaces.

We demonstrate that, despite being much weaker than bi-Lipschitz embeddings, such homeo-
morphisms can be efficiently utilized for the ANN problem. Specifically, we give two new data
structures for ANN over a general d-dimensional normed space, which for the first time achieve
approximation do(1), thus improving upon the previous general bound O(

√
d) that is directly

implied by John’s theorem.

Contents

1 Introduction 1

1.1 Approximate near neighbors . 2

1.2 Algorithmic version of Theorem 1 . 4

1.3 The embedding approach: proof of Theorem 3 . 5

1.4 The spectral approach: proof of Theorem 4 . 6

1.4.1 Sparse cuts in embedded graphs . 6

1.4.2 Nonlinear Rayleigh quotient inequalities and Lemma 1.3 8

1.5 Related work . 9

1.6 Organization of the paper . 10

1.7 Acknowledgments . 10

2 Preliminaries 10

2.1 Computational model for general normed spaces . 10

2.2 The Poisson kernel for the strip S . 11

2.3 Harmonic and holomorphic functions on S . 12

2.4 Complexification . 12

2.5 Complex interpolation between normed spaces . 13

2.6 Uniform convexity . 14

2.7 The space F2(θ) . 14

3 Hölder homeomorphisms: an existential argument 16

4 Approximate Hölder homeomorphisms 18

4.1 Maps between thin shells . 19

4.1.1 Proof of Lemma 4.1 . 21

4.1.2 An auxiliary lemma . 24

4.2 Extension to the whole space . 25

4.3 Summary and necessary subroutines . 27

5 Computing approximate Hölder homeomorphisms 30

5.1 High-level overview . 30

5.2 Discretization of F . 32

5.3 Convex program for ApproxRep(x, θ, ε;W) . 37

5.4 Computing ApproxRep(x, θ, ε;W) with MEM(BW) . 40

5.4.1 Properties of the set P . 41

5.4.2 Optimizing over P . 43

5.5 Summary and instantiation for applications . 46

6 Nonlinear Rayleigh quotient inequalities 47

6.1 High-level overview . 47

6.2 Relating nonlinear Rayleigh quotients with Hölder homeomorphisms 49

6.3 A nonlinear Rayleigh quotient inequality for general norms 53

7 ANN via nonlinear Rayleigh quotient inequalities 55

7.1 Efficient partitions of normed spaces . 56

7.2 From Theorem 12 to ANN data structures . 58

8 ANN via the embedding approach 59

8.1 High-level overview . 59

8.2 Proof of Theorem 14 . 61

1 Introduction

Fix d ∈ N. Below, the unit ball and unit sphere of a (complex1) normed space X = (Cd, ‖ · ‖X)
are denoted BX = {x ∈ Cd : ‖x‖X 6 1} and SX = {x ∈ Cd : ‖x‖X = 1}, respectively. The main
geometric contribution of the present work is the following statement, as well as a (quite intricate)
derivation of its algorithmic counterpart. Beyond its intrinsic interest, we will demonstrate the
utility of this result by showing how it leads to major progress on the Approximate Nearest Neighbor
Search problem (ANN).

Theorem 1 (Existence of a Hölder homeomorphism between spheres of perturbed spaces). Let
X = (Cd, ‖ · ‖X) be a normed space and fix α,β,γ ∈ (0, 1

2]. Suppose that the inradius and outradius
of BX are r > 0 and R > 0, respectively, i.e., rB`d2 ⊆ BX ⊆ RB`d2

. Then there are normed spaces
Y = (Cd, ‖ · ‖Y) and Z = (Cd, ‖ · ‖Z), and a bijection ϕ : SY → SZ , with the following properties.

1. r2α+β(1−2α)BY ⊆ BX ⊆ R2α+β(1−2α)BY .

2. rγ(1−2α)B`d2
⊆ BZ ⊆ Rγ(1−2α)B`d2

.

3. ‖ϕ(y1)− ϕ(y2)‖Z . 1√
βγ
‖y1 − y2‖αY for all y1, y2 ∈ SY .

4. ‖ϕ−1(z1)− ϕ−1(z2)‖Y . 1√
βγ
‖z1 − z2‖αZ for all z1, z2 ∈ SZ .

In the applications of Theorem 1 obtained in this paper, the parameters α,β,γ are chosen to
be small, in which case the first two assertions of Theorem 1 mean that Y and Z are relatively
small perturbations of X and `d2, respectively. The last two assertions of Theorem 1 state that the
mapping ϕ is a homeomorphism between the unit spheres of these perturbed spaces with quite good
continuity properties. There is tension between the smallness of α,β,γ (thus, the extent to which
the initial geometries of X and `d2 were deformed) and the quality of the continuity of ϕ and ϕ−1;
the parameters will eventually be set to appropriately balance these competing features.

Theorem 1 is a finite-dimensional quantitative refinement in the spirit of [Nao17] of the work of Da-
her [Dah93] which is itself an extension of a landmark contribution of Odell and Schlumprecht [OS94]
(in unpublished work, Kalton independently obtained the result of [Dah93]; see [BL00, page 216] or
the MathSciNet review of [Dah93]). Our proof of Theorem 1 is an adaptation of the proof of the
corresponding qualitative infinite-dimensional result that appears in [BL00, Chapter 9], i.e., our
contribution towards Theorem 1 is mainly the idea that such a formulation should hold true via an
application of known insights (and that it is useful, as we shall soon see). However, this is only the
conceptual starting point of the present investigation, because Theorem 1 is merely an existential
statement which is insufficient for the ensuing algorithmic application. Making Theorem 1 algorith-
mic raises a number of challenges whose resolution is interesting in its own right; this constitutes
the bulk of the present work and an overview of what it entails appears later in Subsection 1.2.

The mapping ϕ of Theorem 1 has several drawbacks in comparison to more traditional bi-Lipschitz
embeddings that are used ubiquitously for algorithmic purposes. These drawbacks include the fact

1It is convenient and most natural to carry out the ensuing geometric and analytic considerations for normed spaces
over the complex scalars C, but all of their applications that we obtain here hold also for normed spaces over the real
scalars R through a standard complexification procedure which is recalled in Section 2.4 below.

1

that one first deforms the initial space X of interest to obtain a new space Y , that ϕ is defined
only on the sphere of Y rather than on all of Y , and that ϕ : SY → SZ and ϕ−1 : SZ → SY are
Hölder continuous rather than Lipschitz. In addition, ϕ takes values in a normed space Z which is a
perturbation of `d2, so the image of the embedding does not have the “vanilla” Euclidean structure.
We will later see how to overcome all of these drawbacks, and demonstrate that to a certain extent
the “curse of dimensionality” is not present for the Approximate Nearest Neighbor Search problem
in arbitrary normed spaces.

1.1 Approximate near neighbors

Given c > 1 and r > 0, the c-Approximate Near Neighbor Search (c-ANN) problem is defined as
follows. Given an n-point dataset P ⊆ X lying in a metric space (X, dX), we want to preprocess P
to answer approximate near neighbor queries quickly. Namely, given a query point q ∈ X such that
there is a data point p ∈ P with dX(q, p) 6 r, the algorithm should return a data point p̃ ∈ X with
dX(q, p̃) 6 cr. We refer to c as the approximation and r as the distance scale; both parameters are
known during the preprocessing. The main quantities to optimize are: the time it takes to build the
data structure for a given set of points (preprocessing time); the space the data structure occupies,
and the time it takes to answer a query (query time). In addition to being an indispensable tool for
data analysis, ANN data structures have spawned two decades of influential theoretical developments
(see, e.g., the surveys [AI17, AIR18] and the thesis [Raz17] for an overview).

The best-studied metrics in the context of ANN are the `d1 (Hamming/Manhattan) and the `d2
(Euclidean) distances on Rd. Both `d1 and `d2 are very common in applications and admit effi-
cient algorithms based on randomized space partitions; in particular, Locality-Sensitive Hashing
(LSH) [IM98, AI06] and its data-dependent counterparts [AINR14, AR15, ALRW17]. Hashing-based
algorithms for ANN over `d1 and `d2 have now been the subject of a long line of work, leading to a
comprehensive understanding of the respective time–space trade-offs.

Beyond `d1 and `d2, our understanding of the ANN problem is much more limited. For example, if
a metric of interest is given by a norm on Rd or Cd, then the best known general approximation
bound for the ANN problem is c .

√
d if we require space to be polynomial in n and d and query

time to be sublinear in n and polynomial in d. This follows from John’s theorem [Joh48], which
states that any d-dimensional norm can be approximated by `d2 within a factor of

√
d, combined

with any ANN data structure for `d2 which has constant approximation.

The recent work of the authors [ANN+18] made the first progress on ANN for arbitrary normed spaces
beyond the use of John’s theorem. The approximation has been improved from

√
d to log d, however

the data structure is only implementable in the cell-probe model of computation [Yao81, Mil99].
Recall that in the cell-probe model, data structures are only charged for the number of cells used
(space), and the number of cells probed during a query procedure; however, the time of the query
procedure may be unbounded. We now state the main result of [ANN+18] formally:

Theorem 2 ([ANN+18]). Let 0 < ε < 1 and X = (Cd, ‖ · ‖X) be a d-dimensional normed space.
There exists a randomized data structure for c-ANN over X with the following guarantees:

• The approximation is c . log d
ε2 ;

2

• The query procedure probes nε · dO(1) words in memory, where each word has O(logn) bits2;

• The space used by the data structure is n1+ε · dO(1).

The work [ANN+18] was able to make the data structure of Theorem 2 time-efficient for two special
cases, `p and Schatten-p spaces3, however the pressing question of getting a time-efficient ANN data
structure for a general normed space with approximation o(

√
d) was left open. In this paper, we

answer this question by showing two new ANN data structures, which rely heavily on (an algorithmic
counterpart of) Theorem 1. The two data structures (to be presented below as Theorem 3 and
Theorem 4) use the Hölder homeomorphism in two different ways: Theorem 3 proceeds by the
“embedding” approach, and Theorem 4 proceeds by the “spectral” approach.

Theorem 3. Suppose that X = (Cd, ‖ · ‖X) is a d-dimensional normed space. Then there exists a
randomized data structure for c-ANN over X with the following guarantees:

• The approximation is c 6 exp
(
O
(
(log d)

2
3 (log log d)

1
3
))

;

• The query procedure takes dO(1) · (logn)O(1) time;

• The space used by the data structure is nO(1) · dO(1);

• The preprocessing time is nO(1) · dO(1).

Both the preprocessing and query procedures access the norm through an oracle, which, given a vector
x ∈ Cd, computes ‖x‖X .

Theorem 3 is the first ANN data structure with approximation do(1) that works for an arbitrary
norm, but its virtue is not only its great generality: there are concrete norms of interest, such as
the operator norm on d-by-d matrices, or more generally Schatten-p spaces when p� 1, for which
it yields the first data structure of this type. The proof of Theorem 3 is achieved by substituting
our (yet to be stated) algorithmic version of Theorem 1 into an appropriate adaptation of the ANN
framework of [NR06, BG18] (see Section 1.3).

If one is allowed to drop the requirement that the preprocessing time is polynomial, then we have
the following result that yields both improved approximation, and space that is now near-linear
in n. This is achieved by substituting our algorithmic version of Theorem 1 into the framework
of [ANN+18], which relies on nonlinear spectral gaps. We will sketch later in the introduction
(Section 1.4) why this requires us to sacrifice the polynomial preprocessing time.

Theorem 4. Let 0 < ε < 1 and X = (Cd, ‖ · ‖X) be a d-dimensional normed space. Then there
exists a randomized data structure for c-ANN over X with the following guarantees:

• The approximation is c 6 exp
(
O
(√

log d ·max
{√

log log d, log(1/ε)√
log log d

}))
;

2We assume that all the coordinates of the dataset and query points as well as r can be stored in O(log n) bits.
3For the case of Schatten-p spaces, the space and time of the data structure of [ANN+18] had dependence dO(p),

which is undesirable for p� 1.

3

• The query procedure takes nε · dO(1) time;

• The space used by the data structure is n1+ε · dO(1);

• The preprocessing time is nO(1) · dO(d).

Both the preprocessing and query procedures access the norm through an oracle, which, given a vector
x ∈ Cd, computes ‖x‖X .

The new bounds on the approximation c cannot possibly be obtained by designing a (linear) low-
distortion bi-Lipschitz embedding of X into `1, `2, or any fixed (universal) dO(1)-dimensional normed
space, even if the embedding is randomized; see [ANN+17] for a formalization and proof of this
statement.

1.2 Algorithmic version of Theorem 1

For algorithmic applications, we would like to compute the mapping ϕ from Theorem 1 efficiently at
any given input point in Cd. The main ingredient in the construction of F is the notion of complex
interpolation between normed spaces, which was introduced in [Cal64]. For two d-dimensional
normed spaces U and V , complex interpolation provides a one-parameter family of d-dimensional
normed spaces [U, V]θ indexed by θ ∈ [0, 1], such that [U, V]0 = U , [U, V]1 = V and [U, V]θ depends,
in a certain sense, smoothly on θ. In particular, we need to compute the norm of a vector in [U, V]θ
given suitable oracles for the norm computation in U and V . This is a non-trivial task since the
norm in [U, V]θ is defined as the minimum of a certain functional on an infinite-dimensional space
of holomorphic functions. We show how to properly “discretize” this optimization problem using
harmonic and complex analysis, and ultimately solve it using convex programming (more specifically,
the “robust” ellipsoid method [LSV17]). We expect that the resulting algorithmic version of complex
interpolation will have further applications.

More specifically, for x ∈ Cd the interpolated norm ‖x‖[U,V]θ is defined as follows. First, we consider
the space F of functions F : S→ Cd, where S = {z ∈ C | 0 6 Re z 6 1} is a strip on the complex
plane, such that:

• F is bounded and continuous;

• F is holomorphic on the interior of S.

The norm ‖F‖F in the space F is defined as follows:

‖F‖F = max
{

sup
Re z=0

‖F (z)‖U , sup
Re z=1

‖F (z)‖V
}
.

Finally, for x ∈ Cd, we define:
‖x‖[U,V]θ = inf

F∈F:
F (θ)=x

‖F‖F. (1)

4

A priori, it is not clear how to solve (1), since the space F is infinite-dimensional. However, we are
able to show that one can search for an approximately optimal F ∈ F of the following form:

F (z) = eεz
2 ·

∑
|k|6M

vke
kz
L ,

for a fixed ε > 0, M and L, and variables are vk ∈ Cd. This turns (1) into a finite-dimensional
convex program, which we might hope to solve. However, in order for the optimization procedure to
be efficient, one needs to upper bound M and the magnitudes of vk. This can be done by taking an
approximately optimal (in terms of (1)) function F , smoothing it by convolving with an appropriate
Gaussian, and finally considering its Fourier expansion, whose convergence we can control using
the classical Fejér’s theorem [Kat04]. To bound the magnitudes of vk, we need a statement similar
to the Paley–Wiener theorem [Kat04]. Finally, to address the issue that the norm in F is defined
as a supremum over the infinite set (the boundary of the strip S), we show how to discretize and
truncate the boundary so that the maximum over the discretization is not too far from the true
supremum. This is again possible due to the bounds on the magnitudes of ε, vk and M we are able
to show.

1.3 The embedding approach: proof of Theorem 3

The first application Theorem 1 to ANN for general normed spaces (Theorem 3) follows the
“embedding” approach. Suppose we want to design an efficient data structure for ANN over a
metric space (W0, dW0), and we have an efficient data structure for ANN over another metric space
(W1, dW1). Then, if we have an embedding W0 →W1 at our disposal, a data structure for (W0, dW0)
could be obtained by applying the embedding and employing the known data structure for (W1, dW1).
The approximation guarantee one obtains depend on how well the embedding preserves the geometry
of W0.

The key to Theorem 3 is to use Theorem 1 as an embedding of Y into Z. Recall that Y = (Cd, ‖ · ‖Y)
and Z = (Cd, ‖ · ‖Z) are small perturbations of the spaces X = (Cd, ‖ · ‖X) and `d2, respectively. At
a high level, an ANN data structure for `d2 gives a data structure for Z, a data structure for Z gives
a data structure for Y via the embedding, and a data structure for Y gives a data structure for X.
The initial step in this chain (giving efficient ANN data structures for `d2) is accomplished by any of
the efficient data structures known for `d2, specifically, we use the data structure of [IM98, KOR00].

One caveat to the plan set forth above is that Theorem 1 gives an embedding only for the unit
sphere of Y . It can be extended to the whole space, but the resulting map distorts large distances
prohibitively. This challenge already comes up in [NR06, BG18] in the context of designing ANN
data structures for `p spaces, where instead of Theorem 1, the Mazur map [Maz29] was used. We
may resolve the issue of large distances in the same way as [NR06, BG18]: in particular, [BG18]
gives a clean reduction from the general ANN problem to a special case, when all the points lie in a
small ball. Our final approximation guarantee in Theorem 3 is the result of balancing the parameters
α,β and γ in Theorem 1.

5

1.4 The spectral approach: proof of Theorem 4

We now sketch the proof of Theorem 4. For this we use the framework based on nonlinear spectral
gaps developed in [ANN+18]. In a sentence, the outline of the proof is in the spirit of what has been
done in [ANN+18] for the Schatten-p norm, while using Theorem 1 instead of the estimates on the
noncommutative Mazur map from [Ric15].

The proof of Theorem 4 consists of a few steps. The data structure for a normed space X relies on a
randomized space partition of X, which by duality is equivalent to the existence of sparse cuts in
graphs embedded into X. The latter follows from a nonlinear Rayleigh quotient inequality, which
refines the nonlinear spectral gap inequality used to prove Theorem 2. Finally, we show how to
obtain the desired nonlinear Rayleigh inequality using the map from Theorem 1.

Let us now explain why in Theorem 4 we do not obtain efficient preprocessing. The main obstacle is
the exponential in d size of graphs embedded in X, in which we would like to find sparse cuts. Another
issue is that the argument for the existence of sparse cuts proceeds using a fixed-point argument
similar to the Brouwer’s fixed point theorem, and it is unclear how to make it algorithmically
efficient.

Now let us describe the proof of Theorem 4 in a greater detail.

1.4.1 Sparse cuts in embedded graphs

We first recall the outline of the proof of Theorem 2. The starting point is a space partitioning
statement, which readily follows from the work [Nao17]. Recall that for a k-regular graph G = (V,E)
the conductance of a cut (S, S) is defined as:

E(S, S)
k ·min{|S|, |S|}

.

Lemma 1.1 ([Nao17]). Let 0 < ε < 1. Suppose that X = (Cd, ‖ · ‖X) is a d-dimensional normed
space. Let G = (V,E) be a regular undirected graph with n vertices. Suppose that f : V → X is an
arbitrary map such that for every edge {u, v} ∈ E one has ‖f(u)− f(v)‖X 6 1. Then,

• Either there exists a ball4 of radius R . log d
ε2 , which contains Ω(n) images of the vertices V

under f ;

• Or there exists a cut in G with conductance at most ε.

Equipped with Lemma 1.1, the proof of Theorem 2 proceeds in two steps:

• First, we use a version of the minimax theorem to convert Lemma 1.1 to the following
randomized partitioning procedure, which can be seen as a version of data-dependent hashing
(in spirit of [AINR14, AR15, ALRW17]).

Lemma 1.2 ([ANN+18]). Let 0 < ε < 1. Suppose that X = (Cd, ‖ · ‖X) is a d-dimensional
normed space. Let P ⊆ X be a dataset of n points. Then:

4In the metric induced by the norm ‖ · ‖X .

6

– Either there exists a ball of radius R . log d
ε2 , which contains Ω(n) points from P ;

– Or there exists a distribution D over “reasonable” sets (see below for a clarification of
what “reasonable” means here) A ⊆ X such that:

∗ PrA∼D
[
Ω(n) 6 |A ∩ P | 6 (1− Ω(1)) · n

]
= 1;

∗ For every x1, x2 ∈ X with 0 < ‖x1 − x2‖X 6 1, one has:

PrA∼D
[∣∣A ∩ {x1, x2}

∣∣ = 1
]
< ε.

• Then, we apply Lemma 1.2 recursively to build a desired O
(

log d
ε2

)
-ANN data structure, which

concludes the proof of Theorem 2. This step is by now standard and is similar to what was
done in [Ind01, AR15, ALRW17].

Let us now explain why Theorem 2 requires the cell-probe model. In the resulting data structure,
a query point is tested against a sequence of cuts guaranteed by Lemma 1.1. Thus, it is crucial
to be able to check efficiently, which side of the cut a given vertex of the graph G belongs to.
However, the main issue is that Lemma 1.1 gives us no control on the promised sparse cut in G. In
particular, a cut does not have to be induced by a geometrically nice subset of the ambient space
Cd. This is a serious problem, since in the proof of Lemma 1.2 we invoke Lemma 1.1 for graphs of
size exponential in d, so we cannot afford to store the resulting sparse cuts explicitly. Nevertheless,
there is a way to store cuts from the support of D in space poly(d) (this is exactly what we mean
by “reasonable” in the statement of Lemma 1.2), but the argument for this is quite delicate: we
need to perform the minimax argument in a careful way using the (nested) Multiplicative Weights
Update algorithm [AHK12]. This yields Theorem 2, but the query procedure is grossly inefficient in
terms of time, since in order to test a point against a cut, one has to spend time exponential in d to
re-compute the cut from its succinct description.

Thus, in order to prove Theorem 4, we need a version of Lemma 1.1 which gives a sparse cut that
we are able to not only store efficiently, but also to test against in time poly(d). We accomplish this
by showing the following lemma.

Lemma 1.3. Suppose that X = (Cd, ‖ · ‖X) is a d-dimensional normed space. There exists a map
Φ: Cd → Cd, which one can compute efficiently for a given input point, such that the following holds.
Suppose that 0 < ε < 1 and let G = (V,E) be a regular undirected graph with n vertices. Suppose
that f : V → X is an arbitrary map such that for every edge {u, v} ∈ E one has ‖f(u)− f(v)‖X 6 1.
Then,

• either there exists a ball of radius R = exp
(
Õε
(√

log d
))
, which contains Ω(n) images of the

vertices V under f ;

• Or there exists a vector w = w(G, f) ∈ Cd, an index i = i(G, f) ∈ [d], and a threshold
τ = τ(G, f) ∈ R such that at least one of the cuts {v ∈ V | Re Φ(f(v) − w)i 6 τ} or
{v ∈ V | Im Φ(f(v)− w)i 6 τ} in G has conductance at most ε.

Now we can store a cut by simply storing w, i, τ and whether we test real or imaginary part, and,
moreover, one can test, on which side of the cut a given point lies, since the map Φ is efficiently

7

computable (and depends only on the norm). To prove Lemma 1.3, we use Theorem 1 crucially.
Namely, the map Φ in Lemma 1.3 is a radial extension of the map ϕ from Theorem 1.

Let us remark that for R .
√
d/ε, the analog of Lemma 1.3 holds with cuts induced by the sets

{v ∈ V | Re(Tf(v))i 6 τ} and {v ∈ V | Im(Tf(v))i 6 τ}, where T : Cd → Cd is a fixed linear
map. This is an easy corollary of Cheeger’s inequality and John’s theorem. The cuts guaranteed by
Lemma 1.3 are more complicated (yet we can work with them efficiently), but this complication
allows us to get a much better bound of R = exp

(
Õε
(√

log d
))
.

1.4.2 Nonlinear Rayleigh quotient inequalities and Lemma 1.3

Let A = (aij) be a non-negative symmetric n×nmatrix with
∑n
i,j=1 aij = 1. Denote ρA(i) =

∑n
j=1 aij .

For a metric space (X, dX), q > 0 and x = (x1, x2, . . . , xn) ∈ Xn, where not all xi’s are the same,
we define the nonlinear Rayleigh quotient R(x, A, dqX) as follows:

R(x, A, dqX) =
∑n
i,j=1 aij · dX(xi, xj)q∑n

i,j=1 ρ(i)ρ(j) · dX(xi, xj)q
.

Let G be a regular undirected graph with n vertices, and denote by A its normalized adjacency
matrix. On the one hand, Cheeger’s inequality [Che69] states that if for some x ∈ (Cd)n, one has

R(x, A, ‖ · ‖2
`d2

) 6 ε2

10 , (2)

then there exists a cut in G with conductance at most ε. Moreover, up to the dependence on ε,
the condition (2) for some x is necessary to have a sparse cut. One the other hand, suppose that
X = (Cd, ‖ · ‖) is a normed space, and f : V → X is a map such that for every edge (u, v) ∈ E one
has ‖f(u)− f(v)‖X 6 1. If there is no ball of radius D, which contains Ω(n) images of the vertices
V under f , then the definition of nonlinear Rayleigh quotient directly implies that:

R(x, A, ‖ · ‖2X) . 1
D2 ,

where xv = f(v). Thus, in order to prove Lemma 1.1 or Lemma 1.3, we need statements that relate
nonlinear Rayleigh quotients with respect to the Euclidean geometry and the geometry given by X,
a normed space of interest.

In light of the above discussion, Lemma 1.1 readily follows from the following inequality proved
in [Nao17]:

Theorem 5 ([Nao17], reformulation).

inf
y∈(Cd)n

R(y, A, ‖ · ‖2
`d2

) . (log d) · inf
x∈(Cd)n

R(x, A, ‖ · ‖2X)
1
2 . (3)

The standard proof of Cheeger’s inequality shows that if R(y, A, ‖ · ‖2
`d2

) is small, then there exists
a sparse cut induced by a coordinate cut of y. More formally, there exist i ∈ [d] and τ ∈ C such

8

that one of the cuts {v ∈ V | Re(yv)i 6 τ} or {v ∈ V | Im(yv)i 6 τ} is sparse. However, Theorem 5
gives no control over y; in particular, a priori it does not have to be related to x at all. This is
exactly the reason why in Lemma 1.1 we cannot guarantee that the desired sparse cut is induced by
a geometrically nice subset of Cd.

In this work, we prove a refinement of Theorem 5, which implies Lemma 1.3 similarly to the above
argument.

Theorem 6. For every x = (x1, x2, . . . , xn) ∈ (Cd)n such that not all xi’s are equal, there exists
w = w(x, A) ∈ Cd such that:

R(Φw(x), A, ‖ · ‖2
`d2

) . log2 d · R(x, A, ‖ · ‖2X)
Ω
(√

log log d
log d

)
,

where:
Φw(x1, x2, . . . , xn) = (Φ(x1 − w),Φ(x2 − w), . . . ,Φ(xn − w)),

and Φ is a radial extension of the map ϕ from Theorem 1.

The proof of Theorem 6 is a combination of two ingredients. The first is an argument of Matoušek
from [Mat96]. In [Mat96], a nonlinear Rayleigh quotient inequality for `p norms was proved, but we
show that the argument in fact is much more versatile. In particular, coupled with Theorem 1, it
implies Theorem 6. The vector w = w(x, A) ∈ Cd in Theorem 6 is such that:∑

i

ρ(i)Φ(xi − w) = 0. (4)

And here comes the second ingredient. In the argument from [Mat96], the counterpart of (4) easily
follows from the intermediate value theorem, since ‖ · ‖p`p is additive over the coordinates. However,
finding w such that (4) holds is more delicate. For this we use tools from algebraic topology (related
to the Brouwer’s fixed point theorem).

1.5 Related work

Most efficient ANN data structures in high-dimensional spaces beyond `1 and `2 have proceeded via
the embedding approach. The typical target spaces are `1 and `2, since these admit very efficient
ANN algorithms [IM98, KOR00, AI06, AINR14, AR15, ALRW17]. Another common target space is
`d∞ which can be handled with O(log log d)-approximation using the algorithm in [Ind01]. A growing
body of work has added to the list of “tractable” spaces by designing low-distortion embeddings.
These include the `p-direct sums [Ind02, Ind04, AIK09, And09], the Ulam metric [AIK09], the
Earth-Mover’s distance (EMD) [Cha02, IT03], the edit distance [OR07], the Frechét distance [Ind02],
and symmetric normed spaces [ANN+17].

Another class of metric spaces studied assume low intrinsic dimension, and efficient ANN algorithms
in this setting are known for any metric space [Cla99, KR02, KL04, BKL06]. The dimensionality of
these spaces is assumed to be d = o(logn), so efficient algorithms may depend exponentially on d. In
this paper, we deal with the high-dimensional regime (when ω(logn) 6 d 6 no(1)), the dependence
on d must be polynomial.

9

1.6 Organization of the paper

We present the necessary background to our results in Section 2. We formulate the Hölder homeomor-
phism from Theorem 1 in Section 3. In Section 4, we define the approximate Hölder homeomorphism
used in the applications to ANN. We assume two algorithms in Section 4 which we give in Section 5.
After that, the next three sections (Sections 6, 7, and 8) give the applications of the approximate
Hölder homeomorphism from Section 4 to ANN. Specifically, Section 6 and Section 7 give the proof
of Theorem 4, and Section 8 gives the proof of Theorem 3.

Readers eager for the applications of Theorem 1 to ANN may find a summary of the properties of
the approximate Hölder homeomorphism in Section 4.3 and proceed to Section 7 and Section 8 for
the ANN algorithms.

1.7 Acknowledgments

We thank Sébastien Bubeck, Yin Tat Lee and Yuval Peres for useful discussions.

2 Preliminaries

Given two quantities a, b > 0, the notation a . b and b & a means a 6 Cb for some universal
constant C > 0. In this work we use some tools from complex analysis. Denote S = {z ∈ C | 0 <
Re z < 1} ⊆ C the unit open strip on the complex plane, let ∂S = {z ∈ C | Re z ∈ {0, 1}} be its
boundary, and, finally, let S = S ∪ ∂S be the corresponding closed strip. Given a normed space
X defined over a (real or complex) vector space V , the subset BX ⊆ V is the unit ball of X, i.e.,
BX = {x ∈ V : ‖x‖X 6 1}. For a measure space (Ω,µ) and a Banach space X we denote Lp(Ω,µ, X)
the Banach space of measurable functions f : Ω→ X such that∫

Ω
‖f‖pX dµ < +∞;

we define the norm to be:
‖f‖pLp(Ω,µ,X) =

∫
Ω
‖f‖pX dµ.

Sometimes, we omit Ω in the notation if it is clear from the context (or unimportant).

2.1 Computational model for general normed spaces

Throughout this work, we deal with computational aspects of ANN defined over general normed
spaces, in particular X = (Rd, ‖ · ‖X). We work with the standard computational models for convex
sets over Rd. In particular, we may assume the following about X:

• There exists an oracle which, given x ∈ Rd, computes ‖x‖X ;

• The unit ball of X satisfies BX ⊆ B2 ⊆ dBX for d = poly(d).

10

The second assumption is essentially without loss of generality. Indeed, if one assumes BX is contained
within the unit Euclidean ball and contains a small Euclidean ball of radius r = exp(−poly(d)), then,
by the reductions of [GLS12], we may design a separation oracle for BX , and as noted in Section 1.1
of [KLS97], this means we can transform BX to be in a position such that the second assumptions
holds.

2.2 The Poisson kernel for the strip S

For w ∈ S and z ∈ ∂S, the Poisson kernel P (w, z) for S is defined as follows:

P (w, z) =

1
2 ·

sinπu
coshπ(τ−v)−cosπu , w = u+ iv and z = iτ,

1
2 ·

sinπu
coshπ(τ−v)+cosπu , w = u+ iv and z = 1 + iτ.

(5)

For every w ∈ S, and every z ∈ ∂S, one has P (w, z) > 0. In addition, for every w ∈ S,∫
∂S

P (w, z) dz = 1,

which allows us to denote µw the measure on ∂S with the density P (w, ·). We refer the reader
to [Wid61] for further properties of the kernel P (·, ·).

For θ1, θ2 ∈ (0, 1), we let

Λ(θ1, θ2) def=
√(1

θ1
+ 1

1− θ1

)(1
θ2

+ 1
1− θ2

)
, (6)

Claim 2.1. For any z ∈ ∂S and θ1, θ2 ∈ (0, 1),
P (θ1, z)
P (θ2, z)

. Λ(θ1, θ2)2.

Proof. First, consider the case z = iτ when τ ∈ R. Then by the first case of (5),
P (θ1, iτ)
P (θ2, iτ) = sin(πθ1)

cosh(πτ)− cos(πθ1) ·
cosh(πτ)− cos(πθ2)

sin(πθ2)

. θ1

(1
θ2

+ 1
1− θ2

)
· cosh(πτ)− cos(πθ2)

cosh(πτ)− cos(πθ1)

. θ1

(1
θ2

+ 1
1− θ2

)
·
(

1 + 1
θ2

1

)
,

where in the first line, we use the fact that sin(πθ) ≈ θ when θ ≈ 0 and sin(πθ) ≈ 1− θ when θ ≈ 1,
and in the second line, we use the fact that cosh(πτ) > 1, and the fact that 1− cos(πθ) & 1

θ2 . By
the second case of (5), when z = 1 + iτ for τ ∈ R,

P (θ1, 1 + iτ)
P (θ2, 1 + iτ) = sin(πθ1)

cosh(πτ) + cos(πθ1) ·
cosh(πτ) + cosh(πθ2)

sin(πθ2)

. (1− θ1)
(1
θ2

+ 1
1− θ2

)
·
(

1 + 1
(1− θ1)2

)
,

where we now use the fact that 1 + cos(πθ) & 1
(1−θ)2 .

11

2.3 Harmonic and holomorphic functions on S

Lemma 2.2 ([Wid61]). Let f : S→ R be a continuous function which is harmonic (as a function
of two real variables) in S. Moreover, suppose that the integral∫

∂S

|f(z)| dµw(z)

if finite for j = 0, 1 and some w ∈ S. Then for every w ∈ S, one has:

f(w) =
∫
∂S

f(z) dµw(z).

Corollary 2.3. Let f : S → Cd be a continuous function which is holomorphic in S. Moreover,
suppose that ∫

∂S

∥∥f(z)
∥∥ dµw(z) <∞

for some w ∈ S. Then for every w ∈ S, one has:

f(w) =
∫
∂S

f(z) dµw(z).

Proof. This follows from Lemma 2.2 and the fact that the real and the imaginary part of a holomorphic
function are harmonic.

2.4 Complexification

Let X = (Rd, ‖ · ‖X) be a normed space over the vector space Rd. The complexification of X,
denoted by XC, is a normed space over Cd defined as follows. Elements of XC are formal sums
u + iv for u, v ∈ X. Given u + iv, w + iy ∈ XC, addition of (u + iv) + (w + iy) is given by
(u+ iv) + (w+ iy) = (u+w) + i(v+ y). Given u+ iv ∈ XC and α = p+ iq ∈ C, scalar multiplication
α(u+ iv) is given by, α(u+ iv) = (pu− qv) + i(pv + qu). Finally, the norm on XC is defined as:

‖u+ iv‖2XC = 1
π

2π∫
0

‖u cosϕ− v sinϕ‖2X dϕ. (7)

The space XC = (Cd, ‖ · ‖XC) defined above is indeed a complex normed space and, moreover, X
embeds into XC isometrically via the map u 7→ u+ i · 0. In addition, consider the d-dimensional
space (`d2)C = (Cd, ‖ · ‖(`d2)C) given by the complexification of the space `d2 = (Rd, ‖ · ‖2). We note
that:

‖u+ iv‖2(`d2)C = 1
π

∫ 2π

0
‖u cosϕ− v sinϕ‖22dϕ = 1

π

∫ 2π

0

d∑
i=1

(ui cosϕ− vi sinϕ)2dϕ = ‖u‖22 + ‖v‖22,

which implies that (`d2)C is isometric to `2d2 = (R2d, ‖ · ‖2), where we consider splitting the real
and imaginary parts of each coordinate, and interpreting these as real numbers. We note that by
a simple calculation, if W0 = (Rd, ‖ · ‖W0) and W1 = (Rd, ‖ · ‖W1) are real normed spaces with
BW0 ⊆ BW1 ⊆ d ·BW0 , then BW0C

⊆ BW1C
⊆ d ·BW0C

.

12

2.5 Complex interpolation between normed spaces

Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) be two d-dimensional complex normed spaces. We
will now define a family of spaces [W0,W1]θ = (Cd, ‖ · ‖[W0,W1]θ) for 0 6 θ 6 1 that, in a sense we
will make precise later, interpolate between W0 and W1. This definition appeared for the first time
in [Cal64], see also the book [BL76]. Let us first define an auxiliary (infinite-dimensional) normed
space F as the space of bounded continuous functions f : S → Cd, which are holomorphic in S.
The norm on F is defined as follows:

‖f‖F = max
{

sup
Re(z)=0

‖f(z)‖W0 , sup
Re(z)=1

‖f(z)‖W1

}
.

Now we can define the interpolation norm ‖ · ‖[W0,W1]θ on Cd as follows:

‖x‖[W0,W1]θ = inf
f∈F:
f(θ)=x

‖f‖F. (8)

The fact that ‖x‖[W0,W1]θ is a norm is straightforward to check modulo the property “‖x‖[W0,W1]θ = 0
implies x = 0”. The latter is a consequence of the Hadamard three-lines theorem [SS03].

Fact 2.4. For every θ ∈ [0, 1], [W0,W1]θ = [W1,W0]1−θ.

Fact 2.5 (Reiteration theorem). For every 0 6 θ1 6 θ2 6 1 and 0 6 θ3 6 1, one has:[
[W0,W1]θ1 , [W0,W1]θ2

]
θ3

= [W0,W1](1−θ3)θ1+θ3θ2 .

Below is arguably the most useful statement about complex interpolation.

Fact 2.6 ([Cal64, BL76]). Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) be d-dimensional complex
normed spaces, and let U0 = (Cd′ , ‖ · ‖U0) and U1 = (Cd′ , ‖ · ‖U1) be a couple of d′-dimensional ones.
Suppose that T : Cd → Cd′ be a linear map. Then, for every 0 6 θ 6 1, one has:

‖T‖[W0,W1]θ→[U0,U1]θ 6 ‖T‖1−θW0→U0
· ‖T‖θW1→U1 .

Corollary 2.7. Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) be complex normed spaces such that
for some d1, d2 > 1 and every x ∈ Cd, the following holds:

1
d1
· ‖x‖W1 6 ‖x‖W0 6 d2 · ‖x‖W1 . (9)

Then, for every 0 6 θ 6 1 and every x ∈ Cd, one has:
1
dθ1
· ‖x‖[W0,W1]θ 6 ‖x‖W0 6 dθ2 · ‖x‖[W0,W1]θ and 1

d1−θ
1
· ‖x‖W1 6 ‖x‖[W0,W1]θ 6 d1−θ

2 · ‖x‖W1 .

Proof. This follows from Fact 2.6 applied to the identity map.

Fact 2.8 ([Cal64, BL76]). Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) be complex normed spaces,
and let W0

∗ = (Cd, ‖ · ‖W0∗) and W1
∗ = (Cd, ‖ · ‖W1∗) be the dual spaces, respectively. For any

θ ∈ [0, 1], the dual space to [W0,W1]θ, given by [W0,W1]∗θ = (Cd, ‖ · ‖[W0,W1]∗
θ
) is isometric to the

space [W0
∗,W1

∗]θ.

13

2.6 Uniform convexity

Let W = (Cd, ‖ · ‖W) be a complex normed space. We give necessary definitions related to the notion
of uniform convexity. For a thorough overview, see [BCL94].

Definition 2.9. For 2 6 p 6 ∞, the space W has modulus of convexity of power type p iff there
exists K > 1 such that for every x, y ∈W :

(
‖x‖pW + 1

Kp
‖y‖pW

)1/p
6

(
‖x+ y‖pW + ‖x− y‖pW

2

)1/p

.

Definition 2.10. The infimum of such K is called the p-convexity constant of W and is denoted by
Kp(W).

Claim 2.11. One always has K∞(W) = 1, and for a Hilbert space, one has: K2(`d2) = 1.

Claim 2.12. One has Kp(W0 ⊕2 W1) . max{Kp(W),Kp(W1)} for every p > 2.

Proof. The claim follows from W0⊕2W1 being isomorphic to W0⊕pW1 and the fact that Kp(W0⊕p
W1) 6 max{Kp(W),Kp(W1)}.

Lemma 2.13 ([Nao12]). One has Kp(L2(µ,W)) . Kp(W) for every p > 2.

The following lemma shows how the p-convexity constant interacts with complex interpolation.

Lemma 2.14 ([Nao17]). For every 2 6 p1, p2 6∞ and every 0 6 θ 6 1, one has:

K p1p2
θp1+(1−θ)p2

(
[W0,W1]θ

)
6 Kp1(W0)1−θKp2(W1)θ.

2.7 The space F2(θ)

Now we define another space related to F. This definition appears in [Cal64], see also [BL00]. First,
for 0 < θ < 1, let us consider the normed space G(θ) of continuous functions f : S→ Cd, which are
holomorphic in S, and ∫

∂S

∥∥f(z)
∥∥2
dµθ(z) <∞.

The norm ‖f‖G(θ) is defined as follows:

‖f‖2G(θ) =
∫

Re(z)=0

∥∥f(z)
∥∥2
W0

dµθ(z) +
∫

Re(z)=1

∥∥f(z)
∥∥2
W1

dµθ(z). (10)

Clearly, F ⊆ G(θ). One may naturally view G(θ) as a (not closed) subspace of L2({z | Re(z) =
0},µθ,W0) ⊕2 L2({z | Re(z) = 1},µθ,W1). Now we can define the space F2(θ) as the closure of
G(θ) (in particular, G(θ) is dense in F2(θ)). An element of F2(θ) can be identified with a function
f : S→ Cd defined almost everywhere on ∂S and defined everywhere on S such that:

14

• f restricted on {z | Re(z) = 0} belongs to L2({z | Re(z) = 0},µθ,W0);

• f restricted on {z | Re(z) = 1} belongs to L2({z | Re(z) = 1},µθ,W1);

• f is holomorphic in S;

In this representation, the norm is defined similar to (10):

‖f‖2F(θ) =
∫

Re(z)=0

∥∥f(z)
∥∥2
W0

dµθ(z) +
∫

Re(z)=1

∥∥f(z)
∥∥2
W1

dµθ(z).

Fact 2.15. For every f ∈ F2(θ) and w ∈ S, one has:

f(w) =
∫
∂S
f(z) dµw(z).

Proof. This identity is true for G(θ) by Corollary 2.3. Hence it holds for F2(θ), since every element
of F2(θ) is a limit of a sequence of elements of G(θ), which converges pointwise in S and in L2 in
∂S.

The following gives an alternative definition of an interpolated norm, which should be compared
with the original definition (8).

Fact 2.16 ([BL00]). For every x ∈ Cd, one has:

‖x‖[W0,W1]θ = inf
f∈F2(θ):
f(θ)=x

‖f‖F2(θ). (11)

Claim 2.17. For every p > 2, one has:

Kp(F2(θ)) . max{Kp(W0),Kp(W1)}.

Proof. One has:

Kp(F2(θ)) 6 Kp

(
L2({z | Re(z) = 0},µθ,W0)⊕2 L2({z | Re(z) = 1},µθ,W1)

)
. max

{
Kp

(
L2({z | Re(z) = 0},µθ,W0)

)
,Kp

(
L2({z | Re(z) = 1},µθ,W1)

)}
. max{Kp(W0),Kp(W1)},

where the first step is due to F2(θ) being a subspace of L2({z | Re(z) = 0},µθ,W0)⊕2L2({z | Re(z) =
1},µθ,W1), the second step is due to Claim 2.12, and the third step is due to Lemma 2.13.

Lemma 2.18. For 0 < θ1, θ2 < 1, the spaces F2(θ1) and F2(θ2) are isomorphic via the identity
map. More specifically, for every f ∈ F2(θ1) one has:

‖f‖F2(θ2) 6 Λ(θ1, θ2) · ‖f‖F2(θ1);

and, similarly, for every f ∈ F2(θ2), one has:

‖f‖F2(θ1) 6 Λ(θ1, θ2) · ‖f‖F2(θ2).

Proof. This easily follows from the definition of F2(θ) and Claim 2.1.

15

3 Hölder homeomorphisms: an existential argument

In this section we show the proof of Theorem 1 making the exposition of the result from [Dah93]
in [BL00] quantitative. We make the construction of the map algorithmic in Section 4 and Section 5.
Let X = (Cd, ‖ · ‖X) be a normed space of interest. For a real normed space, one can consider its
complexification, which contains the real version isometrically.

Let us first assume that Kp(X) < ∞ for some 2 6 p < ∞. We start with taking a closer look at
Fact 2.16. Suppose that we interpolate between X and `d2 and moreover for some 0 < r < R one has:

rB`d2
⊆ BX ⊆ RB`d2 .

Let F2(θ) be defined with respect to X and `d2.

Fact 3.1 ([BL00]). For every x ∈ Cd, in the optimization problem

inf
F∈F2(θ):
F (θ)=x

‖F‖F2(θ)

the minimum is attained on an element of F2(θ). Moreover, the minimizer is unique, and we denote
it by F ∗θx ∈ F2(θ).

Below statement shows that minimizers F ∗θx have very special structure.

Fact 3.2 ([BL00]). Fix x ∈ Cd and 0 < θ < 1 and consider F ∗θx ∈ F2(θ). Then,

• For z ∈ C such that Re z = 0, ‖F ∗θx(z)‖X = ‖x‖[X,`d2]θ almost everywhere;

• For z ∈ C such that Re z = 1, ‖F ∗θx(z)‖`d2 = ‖x‖[X,`d2]θ almost everywhere;

• For every 0 < θ̃ < 1, ‖F ∗θx(θ̃)‖[X,`d2]̃
θ

= ‖x‖[X,`d2]θ.

Below lemma is the core of the overall argument.

Lemma 3.3 (a quantitative version of a statement from [BL00]). For every 0 < θ < 1 and every
x1, x2 ∈ S[X,`d2]θ, one has: ∥∥∥F ∗θx1 − F

∗
θx2

∥∥∥
F2(θ)

. Kp(X) · ‖x1 − x2‖1/p[X,`d2]θ
.

Proof. By Claim 2.17, one has:

Kp(F2(θ)) . max{Kp(X),Kp(`d2)} . Kp(X),

where the second step follows from Kp(`d2) . 1. Second, suppose that for x1, x2 ∈ S[X,`d2]θ , one has
‖x1 − x2‖[X,`d2]θ = ε > 0. Then,∥∥∥F ∗θx1 + F ∗θx2

∥∥∥
F2(θ)

> ‖x1 + x2‖[X,`d2]θ > 2− ε, (12)

16

where the first step follows from Fact 2.16, and the second step follows from x1 and x2 being unit
and the triangle inequality. Now by the definition of Kp(F2(θ)) (Definition 2.9) and the fact that
the minimizers are unit, we have:

∥∥∥F ∗θx1 + F ∗θx2

∥∥∥p
F2(θ)

+

∥∥∥F ∗θx1
− F ∗θx2

∥∥∥p
F2(θ)

Kp(F2(θ))p 6
‖2F ∗θx1

‖p
F2(θ) + ‖2F ∗θx2

‖p
F2(θ)

2 = 2p. (13)

Combining (12) and (13), we get:∥∥∥F ∗θx1 − F
∗
θx2

∥∥∥p
F2(θ)

6 Kp(F2(θ))p · (2p − (2− ε)p) 6 p2p−1 ·Kp(F2(θ))p · ε.

Finally, we get:∥∥∥F ∗θx1 − F
∗
θx2

∥∥∥
F2(θ)

. Kp(F2(θ)) · ε1/p . Kp(X) · ε1/p = Kp(X) · ‖x1 − x2‖1/p[X,`d2]θ

as desired.

Fix 0 < θ1, θ2 < 1. Define the map Uθ1θ2 : S[X,`d2]θ1
→ S[X,`d2]θ2

as follows:

x 7→ F ∗θ1x(θ2).

The map is well-defined, since by Fact 3.2, for every x with ‖x‖[X,`d2]θ1
, one has ‖F ∗θ1,x

(θ2)‖[X,`d2]θ2
= 1.

One also has: U−1
θ1,θ2

= Uθ2,θ1 , since, again by Fact 3.2, for every x ∈ Cd, one has:

F ∗θ2F ∗θ1x
(θ2) = F ∗θ1x.

In particular, Uθ1,θ2 is a bijection between the unit spheres of [X, `d2]θ1 and [X, `d2]θ2 .

Lemma 3.4 (a quantitative version of the statement from [BL00]). For x1, x2 ∈ S[X,`d2]θ1
, one has:

‖Uθ1θ2(x1)− Uθ1θ2(x2)‖[X,`d2]θ2
. Λ(θ1, θ2) ·Kp(X) · ‖x1 − x2‖1/p[X,`d2]θ1

.

Proof. One has:

‖Uθ1θ2(x1)− Uθ1θ2(x2)‖[X,`d2]θ2
= ‖F ∗θ1x1(θ2)− F ∗θ1x2(θ2)‖[X,`d2]θ2

6 ‖F ∗θ1x1 − F
∗
θ1x2‖F2(θ2)

6 Λ(θ1, θ2) · ‖F ∗θ1x1 − F
∗
θ1x2‖F2(θ1)

. Λ(θ1, θ2) ·Kp(X) · ‖x1 − x2‖1/p[X,`d2]θ1
,

where the first step is by the definition of Uθ1θ2 , the second step is due to Fact 2.16, the third step is
due to Lemma 2.18, and the last step is due to Lemma 3.3.

The below theorem summarizes the above discussion.

17

Theorem 7. Let X = (Cd, ‖ · ‖X) be a complex normed space such that Kp(X) < ∞ for some
2 6 p <∞ and for some 0 < r < R, one has: rB`d2 ⊆ BX ⊆ RB`d2 . Fix 0 < β,γ 6 1/2. Then there
exist two spaces Y = (Cd, ‖ · ‖Y) and Z = (Cd, ‖ · ‖Z) and a bijection ϕ : SY → SZ such that:

• One has: rβBY ⊆ BX ⊆ RβBY ;

• One has: rγB`d2 ⊆ BZ ⊆ R
γB`d2

;

• for every y1, y2 ∈ SY , one has: ‖ϕ(y1)− ϕ(y2)‖Z . Kp(X)√
βγ
· ‖y1 − y2‖1/pY ;

• for every z1, z2 ∈ SZ , one has: ‖ϕ−1(z1)− ϕ−1(z2)‖Y . Kp(X)√
βγ
· ‖z1 − z2‖1/pZ .

Proof. We set Y and Z to be [X, `d2]β and [X, `d2]1−γ, respectively. Finally, set ϕ to be Uβ,1−γ. Then,
the first two inequalities follow from Corollary 2.7. The third inequality follows from Lemma 3.4
combined with the estimate Λ(β,γ) . 1√

βγ
. The fourth inequality is shown similar to the third

taking into account that ϕ−1 = U1−γ,β.

Now let us turn to the case when X is not necessarily p-convex.

Theorem 8 (Theorem 1, restated). Let X = (Cd, ‖ · ‖X) be a complex normed space such that for
some 0 < r < R, one has: rB`d2 ⊆ BX ⊆ RB`d2 . Fix 0 < α,β,γ 6 1/2. Then there exist two spaces
Y = (Cd, ‖ · ‖Y) and Z = (Cd, ‖ · ‖Z) and a bijection ϕ : SY → SZ such that:

• One has: r2α+β(1−2α)BY ⊆ BX ⊆ R2α+β(1−2α)BY ;

• One has: rγ(1−2α)B`d2
⊆ BZ ⊆ Rγ(1−2α)B`d2

;

• for every y1, y2 ∈ SY , one has: ‖ϕ(y1)− ϕ(y2)‖Z . 1√
βγ
· ‖y1 − y2‖αY ;

• for every z1, z2 ∈ SZ , one has: ‖ϕ−1(z1)− ϕ−1(z2)‖Y . 1√
βγ
· ‖z1 − z2‖αZ .

Proof. Denote A = [X, `d2]2α. By Lemma 2.14, one has K1/α(A) 6 1. Let us now apply Theorem 7 to
A, which yields two spaces Y = [A, `d2]β and Z = [A, `d2]γ. By Fact 2.5, one has: Y = [X, `d2]2α+β(1−2α)
and Z = [X, `d2]2α+(1−γ)(1−2α), which together with Corollary 2.7 yields the first two items. The
third and fourth items follow from Theorem 7 applied to A.

4 Approximate Hölder homeomorphisms

In this section, we give an approximate version of the exact map given in Section 3. Recall that
we have a complex normed space X = (Cd, ‖ · ‖X) and the Hilbert space H = (`d2)C satisfying
BX ⊆ BH ⊆ d ·BX for d = poly(d). For a parameters α,β ∈ (0, 1) (which we set later), we define
the complex normed spaces

A = [X,H]α Y = [A,H]β and Z = [A,H]1−β.

18

We will consider an approximate homeomorphism Φ: Y → Z in order to make the embedding of
Theorem 8 in Section 3 algorithmic, and extend it to the whole space (rather than just between
unit spheres). In particular, the relaxed conditions will allow us to give a polynomial time (in d)
algorithm which can compute this embedding.

In order to see (one of the reasons) we need an approximate guarantee, consider the task of computing
the norm of a vector in Y = [A,H]β. By definition, ‖x‖Y is the result of an optimization over a
subset of F (i.e., a subset over holomorphic functions defined on S). In order to optimize over this
subset algorithmically, we will optimize over a particular discretization of F to obtain a (1 + ε)-
approximation to ‖x‖Y for a parameter ε > 0 which we will chose to be small enough. We leave
the specific details of the algorithm computing the interpolations to Section 5, but we now show
how an approximation algorithm for computing interpolations will yield an approximate Hölder
homeomorphism.

The argument proceeds by first designing a map between thin shells (done in Subsection 4.1),
and the extending this map to the whole space (done in Subsection 4.2). In Subsection 4.3, we
summarize the discussion of this section and state the necessary properties of the approximate
Hölder homeomorphism used in subsequent sections.

4.1 Maps between thin shells

This argument is the constructive version of Theorem 8 in Section 3. We will write the map with
respect to a very small parameter ε > 0 which will dictate the approximation guarantee. We note
that since K∞(X) 6 1 and K2(H) = 1, so by Lemma 2.14, the space A = (Cd, ‖ · ‖A) is uniformly
convex normed space with p-convexity constant K = Kp(A) 6 1 for p = 1

α > 1. We also note
that BA ⊆ BH ⊆ dBA. For a parameter β ∈ (0, 1), we will build a map ϕ = ϕε : Y → Z where
Y = [A,H]β and Z = [A,H]1−β where 0 6 ε . β2

p3 .

We first specify a map ϕε : Sh(Y, ε)→ Sh
(
Z,O(ε1/3

β2/3)
)
, where for a normed space X over Cd, the

set Sh(X, ε) specifies a thin shell around the unit sphere of X:

Sh(X, ε) = {x ∈ Cd : 1− ε 6 ‖x‖X 6 1 + ε}.

Looking ahead, the algorithm for computing ϕε in Section 5 will run in time polynomial with d and
1
ε . For our desired application to ANN, we encourage the reader to think of the setting of parameters
as β ≈ 1

log d and p ≈
√

log d
log log d . Therefore, while we specify the required restrictions on the parameter

settings, we think of these restrictions as easy to attain due to the flexibility in setting ε to be the
inverse of a sufficiently high degree polynomial in d.

The map ϕε is defined as the concatenation of three maps:

ϕε : Sh(Y, ε) Fε−→F2(β) I−→F2(1− β) E−→ Sh
(
Z,O(ε1/3

β2/3))
)
,

(see Subsection 2.7 for the formal definition of F2(β)) where:

1. The map Fε : Sh(Y, ε) → F2(β) is promised to output for each x ∈ Sh(Y, ε), a function
f : S→ Cd ∈ F2(β) satisfying:

19

• ‖f(β)− x‖Y 6 ε, and
• max {supt∈R ‖f(it)‖A, supt∈R ‖f(1 + it)‖H} 6 1 + ε.

2. The map I : F2(β)→ F2(1− β) is the identity map which interprets f ∈ F2(1− β).

3. The map E : F2(1− β)→ Z is the evaluation map, which on input f : S→ Cd ∈ F2(1− β),
outputs f(1− β) ∈ Z.5

Specifically, the map Fε : Sh(Y, ε)→ F2(β) is defined as the output of the algorithm from Section 5,
and our arguments in will only use the properties of Fε listed above. The goal of this subsection is
to prove the following lemma.

Lemma 4.1. The map ϕε : Sh(Y, ε) → Sh
(
Z, 200ε1/3

β2/3

)
satisfies the following two inequalities for

every x, y ∈ Sh(Y, ε):

‖ϕε(x)− ϕε(y)‖Z .
1
β
· (‖x− y‖Y + 5ε)1/p , (14)

‖x− y‖Y − 2ε . 1
β
·
(
‖ϕε(x)− ϕε(y)‖Z + 1000ε1/3

β2/3

)1/p

. (15)

Before proving Lemma 4.1 (which we give in Subsection 4.1.1), we give the following claim, which
bounds the p-convexity constants for F2(β) and F2(1− β).
Claim 4.2. The spaces F2(β) and F2(1 − β) are uniformly convex, with p-convexity constants
Kp(F2(β)),Kp(F2(1− β)) 6 20.

Proof. Let W be the normed space over Cd × Cd given by:

‖(x, y)‖W = (‖x‖pA + ‖y‖pH)1/p
.

Note that F2(β) is isometric to a subspace of L2(µβ,W). The isometric embedding proceeds as
follows: for any f : S→ Cd ∈ F2(β), we let g : ∂S→ Cd × Cd ∈ L2(µβ,W) given by

g(z) =
{

(f(z), 0) Re(z) = 0
(0, f(z)) Re(z) = 1 .

Thus, we may use Corollary 6.4 in [MN13] to conclude

Kp(F2(β)) 6 Kp(L2(µβ,W)) 6
(10p
p− 1

)1−1/p
Kp(W) 6

(10p
p− 1

)1−1/p
6 20,

where the third inequality follows from the fact that Kp(W) 6 1 if Kp(A) 6 1 and Kp(H) 6 1, and
the last inequality follows from the fact p > 1. Similarly, F2(1 − β) is isometric to a subspace of
L2(µ1−β,W), giving the same bound on the p-convexity constant.

We will think of ϕε becoming closer to the Hölder homeomorphism from Theorem 8 mapping
unit spheres as ε → 0. In fact, we may consider the case when ε = 0; while the definition of
F0 : S(Y)→ F2(β) can no longer be the output of the algorithm of Section 5, we let F0 denote the
value of the exact optimization over F. Using F0 to specify the map ϕ0 : S(Y)→ S(Z) recovers the
map from Theorem 8.

5We will show that 1− 200ε1/3

β2/3 6 ‖f(1− β)‖Z 6 1 + ε.

20

4.1.1 Proof of Lemma 4.1

We first focus on showing (14). The proof will follow from combining a sequence of claims, which we
will combine to obtain the string of inequalities in (18). After that, we turn our attention to (15).

The following two claims follow from the definition of the complex interpolations Y = [A,H]β and
Z = [A,H]1−β, as well as the fact that complex interpolation may be defined as an optimization in
F or F2(β) (see Subsection 2.5 and Subsection 2.7, specifically, Fact 2.16).

Claim 4.3. Let x, y ∈ Cd.

• If fx, fy ∈ F2(β) satisfy fx(β) = x and fy(β) = y, then ‖x− y‖Y 6 ‖fx − fy‖F2(β).

• If fx, fy ∈ F2(1−β) satisfy fx(1−β) = x and fy(1−β) = y, then ‖x−y‖Z 6 ‖fx−fy‖F2(1−β).

Proof. The claim follows from the definitions of complex interpolation, as well as Fact 2.16. We
have that fx − fy ∈ F2(β) satisfies (fx − fy)(β) = x− y, therefore, ‖x− y‖Y 6 ‖fx − fy‖F2(β). The
same observation occurs for Z and F2(1− β).

Claim 4.4. For any f in F2(1−β) and F2(β), ‖f‖F2(1−β) .
1
β‖f‖F2(β) and ‖f‖F2(β) .

1
β‖f‖F2(1−β).

Proof. This follows from Lemma 2.18 and the fact that Λ(β, 1− β) . 1
β .

Claim 4.5. For ε < 1
4p , let x, y ∈ Sh(Y, ε) and fx, fy ∈ Sh(F, ε) where ‖fx(β)−x‖Y , ‖fy(β)−y‖Y 6

ε. Then, ‖fx − fy‖pF2(β) 6 60pp · (‖x− y‖Y + 5ε).

Proof. By Claim 4.2 and the definition of the p-convexity constant Kp(F2(β)),

‖fx − fy‖pF2(β)
20p 6

‖2fx‖pF2(β) + ‖2fy‖pF2(β)
2 − ‖fx + fy‖pF2(β)

(4.3)
6
‖2fx‖pF2(β) + ‖2fy‖pF2(β)

2 − ‖fx(β) + fy(β)‖pY

6
‖2fx‖pF2(β) + ‖2fy‖pF2(β)

2 − (‖fx(β)‖Y + ‖fy(β)‖Y − ‖fx(β)− fy(β)‖Y)p (16)

where the third inequality follows from the fact that ‖fx(β) + fy(β)‖Y + ‖fx(β) − fy(β)‖Y >
‖fx(β)‖Y + ‖fy(β)‖Y by applying the triangle inequality twice. We write:

Γ = 2p−1
(
‖fx‖pF2(β) + ‖fy‖pF2(β)

)
γ = (‖fx(β)‖Y + ‖fy(β)‖Y)p

Γ .

We note that Γ 6 3p, since fx, fy ∈ Sh(F, ε) and ‖fx(β) − x‖Y , ‖fy(β) − y‖Y 6 ε so fx, fy ∈
Sh(F2(β), ε). Additionally, fx(β), fy(β) ∈ Sh(Y, 2ε) since x, y ∈ Sh(Y, ε) and ‖fx(β)− x‖Y 6 ε and
‖fy(β)− y‖Y 6 ε by the definition of Fε; hence,

γ >
2p(1− 2ε)p

2p−1(2(1 + ε)p) > (1− 3ε)p > 1− 3εp (17)

21

by Bernoulli’s inequality since 3ε 6 1, and γ > 0 since 3εp 6 1. Thus, combining (16) with the
bound Γ 6 3p and (17) we have

‖fx − fy‖pF2(β)
20p 6 Γ

(
1− γ

(
1− ‖fx(β)− fy(β)‖Y
‖fx(β)‖Y + ‖fy(β)‖Y

)p)

6 3p
(

1− (1− 3εp)
(

1− p · ‖fx(β)− fy(β)‖Y
‖fx(β)‖Y + ‖fy(β)‖Y

))
,

where again we used Bernoulli’s inequality. Thus, we have:

‖fx − fy‖pF2(β)
20p 6 3p

(
p · ‖fx(β)− fy(β)‖Y
‖fx(β)‖Y + ‖fy(β)‖Y

+ 3εp
)

By the triangle inequality, ‖fx(β)− fy(β)‖Y 6 ‖x− y‖Y + 2ε. Therefore,

‖fx − fy‖pF2(β)
20p 6 3p

(
p · ‖x− y‖Y
‖fx(β)‖Y + ‖fy(β)‖Y

+ 5εp
)

6 60pp (‖x− y‖Y + 5ε) ,

since ‖fx(β)‖Y + ‖fy(β)‖Y > 2− 4ε > 1 since ε < 1
4 .

Proof of (14) in Lemma 4.1. Combining Claims 4.3, 4.4, and 4.5, we have that for any x, y ∈
Sh(Y, ε),

‖ϕ(x)− ϕ(y)‖Z
(4.3)
6 ‖fx − fy‖F2(1−β)

(4.4)
.

1
β
· ‖fx − fy‖F2(β)

(4.5)
.

1
β
· (60p · p)1/p (‖x− y‖Y + 5ε)1/p .

1
β
· (‖x− y‖Y + 5ε)1/p . (18)

We now turn our attention to (15) from Lemma 4.1. We follow a similar approach as above, and
apply Claims 4.3 and 4.4 to say:

‖x− y‖Y 6 ‖fx(β)− fy(β)‖Y + 2ε
(4.3)
6 ‖fx − fy‖F2(β) + 2ε

(4.4)
.

1
β
· ‖fx − fy‖F2(1−β) + 2ε, (19)

where in the first inequality, we used the triangle inequality and fact that ‖fx(β) − x‖Y 6 ε and
‖fy(β)−y‖Y 6 ε. It remains to deduce an analogous statement to Claim 4.5 for the spaces F2(1−β)
and Z. In order to do so, we first show the following claim, which shows that the map ϕ has
co-domain in Sh(Z, 200ε1/3

β2/3).

Claim 4.6. Let x ∈ Sh(Y, ε) and fx = Fε(x). Then,

1− 200ε1/3

β2/3 6 ‖fx(1− β)‖Z 6 1 + ε.

22

Proof. In order to show the upper bound, note that

‖fx(1− β)‖Z 6 max
{

sup
t∈R
‖fx(it)‖A, sup

t∈R
‖fx(1 + it)‖H

}
6 1 + ε,

where the last inequality follows from the properties of Fε. For the lower bound, let A∗ and H∗
denote the dual spaces of A and H, respectively, and let Y ∗ = [A∗, H∗]β and Z∗ = [A∗, H∗]1−β,
where we denote F# and F2(β)# as the analogous spaces to F and F2(β) for the interpolation Y ∗,
respectively. We note that Y ∗ is the dual space to Y and Z∗ the dual space to Z.

Recall that z = fx(β) ∈ Sh(Y, 2ε) by the properties of Fε, so let z∗ ∈ S(Y ∗) be the corresponding dual
certificate, where |〈z, z∗〉| > 1− 2ε. Let g : S→ Cd ∈ F# satisfy g(β) = z∗ and ‖g‖F# = 1 (which
exists since z∗ ∈ S(Y ∗)). We note that for any t ∈ R, we have ‖g(it)‖A∗ 6 1 and ‖g(1 + it)‖H∗ 6 1,
and ‖g(1− β)‖Z∗ 6 ‖g‖F# = 1.

Consider the function h : S→ C given by h(z) = 〈fx(z), g(z)〉, and note that h is continuous and
holomorphic on S. Since ‖g(j + it)‖ 6 1 for j ∈ {0, 1} and t ∈ R with ‖ · ‖ = ‖ · ‖A∗ when j = 0 and
‖ · ‖ = ‖ · ‖H∗ when j = 1,

|h(j + it)| 6
{

‖fx(it)‖A j = 0
‖fx(1 + it)‖H j = 1 ,

so by definition of the space F2(β),∑
j=0,1

∫ ∞
−∞
|h(j + it)|P (β, j + it)dt 6 ‖fx‖F2(β) 6 1 + ε. (20)

Since ‖g(1− β)‖Z∗ 6 1, we have:

‖fx(1− β)‖Z > |〈fx(1− β), g(1− β)〉| = |h(1− β)|.

We have that |h(β)| = |〈z, g(β)〉| > 1 − 2ε by definition, and |h(z)| 6 1 + ε for z ∈ ∂S. Thus,
consider the sets

L = {t ∈ R : |h(it)− h(β)| > δ} and R = {t ∈ R : |h(1 + it)− h(β)| > δ},

for δ = 100ε1/3

β2/3 . Let a = h(β)
|h(β)| ∈ C, and for any t ∈ R and j ∈ {0, 1}, consider the quantity

π(j, t) = Re(a) · Re(h(j + it)) + Im(a) · Im(h(j + it)),

which measures the magnitude of the projection of h(j + it) onto the direction of h(β), interpreted
as vectors in R2. Then, since h is continuous and holomorphic on S, and (20) holds, we may apply
Corollary 2.3 to conclude ∑

j=0,1

∫ ∞
−∞

h(j + it)P (β, j + it)dt = h(β),

and therefore, the projections satisfy∑
j=0,1

∫ ∞
−∞

π(j, t)P (β, j + it)dt = |h(β)|.

23

Additionally, since |h(j + it)| 6 1 + ε and 1 − 2ε 6 |h(β)| 6 1 + ε, by Lemma 4.8, if t ∈ L, then
π(t, 0) 6 1− δ2/4 and if t ∈ R, then π(t, 1) 6 1− δ2/4. Thus, if we let:

α =
∫
L
P (β, it)dt+

∫
R
P (β, 1 + it)dt,

we have

1− 2ε 6 α(1− δ2/4) + (1− α)(1 + ε),

and thus α 6 12ε
δ2 . Finally, we have:

|h(1− β)− h(β)| 6
∑
j=0,1

∫ ∞
−∞
|h(j + it)− h(β)|P (1− β, j + it)dt

6 δ+
∫
L
|h(it)− h(β)|P (1− β, t)dt+

∫
R
|h(1 + it)− h(β)|P (1− β, t)dt

(4.4)
6 δ+

(2
π2β2

)
· 3
(∫

L
P (β, it)dt+

∫
R
P (β, 1 + it)dt

)
6 δ+ 2

π2β2 · 3 · α 6 150ε1/3

β2/3 ,

where the first inequality follows from Corollary 2.3, and we used the fact that |h(it)−h(β)| 6 3 and
|h(1+it)−h(β)| 6 3 for all t ∈ R. In other words, we have that |h(1−β)| > 1−2ε− 150ε1/3

β2/3 > 1− 200ε1/3

β2/3 ,
which gives the desired lower bound.

We now note that we may follow the same argument of Claim 4.5 with ε < β2

800p3 , or equivalently,
200ε1/3

β2/3 < 1
4p to conclude the following claim.

Claim 4.7. For ε < β2

800p3 , let u, v ∈ Sh(Z, 200ε1/3

β2/3) and fu, fv ∈ Sh
(
F2(1− β), 200ε1/3

β2/3

)
, with

fu(1− β) = u and fv(1− β) = v. Then, ‖fu − fv‖pF2(1−β) 6 60pp ·
(
‖u− v‖Z + 1000ε1/3

β2/3

)
.

Combining (19) with Claim 4.7, we conclude:

‖x− y‖Y
(19)
.

1
β
· ‖fx − fy‖F2(1−β) + 2ε

(4.7)
.

1
β
·
(
‖ϕ(x)− ϕ(y)‖Z + 1000ε1/3

β2/3

)1/p

+ 2ε,

which gives (15) in Lemma 4.1.

4.1.2 An auxiliary lemma

Lemma 4.8. For 0 < ε, δ < 1
10 with δ2 > 10ε, let z ∈ C have 1 − ε 6 |z| 6 1 + ε and a = z

|z| .
Suppose z′ ∈ C with |z′| 6 1 + ε satisfies |z − z′| > δ, then,

Re(a) · Re(z′) + Im(a) · Im(z′) 6 1− δ2/4.

24

z

y

x

z′
δ

b

1− ε 1 + ε

Figure 1: Figure corresponding to the proof of Lemma 4.8. The number z ∈ C is shown with
1− ε 6 |z| 6 1 + ε. Then, the number z′ ∈ C lies at a distance at least δ from z with |z′| 6 1 + ε.

Proof. Consider the scalar z′ ∈ C with |z′| 6 1 + ε, |z − z′| = δ which maximizes x = Re(a) Re(z′) +
Im(a) Im(z′) ∈ R, and let y = |z| − x ∈ R and b = z′ − x · a ∈ C (see Figure 4.1.2). Note that by the
Pythagorean theorem, we have:

x2 + |b|2 = |z′|2 and y2 + |b|2 = δ2.

Thus, simplifying the above two equalities, we have x2 + δ2 − y2 = (x+ y)(x− y) + δ2 = |z′|2, and
therefore,

2x = |z
′|2 − δ2

|z|
+ |z| 6 (1 + ε)2 − δ2

1− ε + (1 + ε) 6 2 + 4ε− δ2

1− ε + ε 6 2− δ
2

2

4.2 Extension to the whole space

From Lemma 4.1, we obtain an approximate Hölder homeomorphism ϕ mapping a thin shell of
a uniformly convex space to another thin shell of a uniformly convex space. We now show how
such a map may be extended to the whole space by an approximate radial extension. Similarly to
Subsection 4.1, we define the radial extension assuming a map ` : Cd → R>0 which approximately
computes the norm of a vector in an interpolated space. We defer the details of how to compute `
to Section 5. The resulting extended map will have similar Hölder guarantees, and in Corollary 4.10,
we apply the lemma below to ϕε.

Lemma 4.9. Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) be complex normed spaces, C > 0,
0 6 εX , ε1 6 1

6 , and 0 < α 6 1. Suppose there exists a map ϕ : Sh(W0, ε0)→ Sh(W1, ε1) satisfying:

‖ϕ(x)− ϕ(y)‖W1 6 C · (‖x− y‖W0 + 5ε0)α

‖x− y‖W0 − 2ε0 6 C · (‖ϕ(x)− ϕ(y)‖W1 + 5ε1)α

25

for all x, y ∈ Sh(W0, ε0). Then, for any real r > α, ϕ can be extended to Φ: W0 → W1 so that
‖Φ(x)‖W1 ≈ (1± ε0)r (1± ε1) ‖x‖rW0

and

‖Φ(x)− Φ(y)‖W1 6
(
2rC + 2 · 3r+1 max{1, r}

)
· (‖x− y‖W0 + 5Rε0)α

(
‖x‖r−αW0

+ ‖y‖r−αW0

)
, (21)

‖x− y‖W0 − 2ε0R 6
(
4C + 12 max{1, 1

r}
)
· (‖Φ(x)− Φ(y)‖W1 + 5Rrε1)α

(
‖x‖1−rαW0

+ ‖y‖1−rαW0

)
,

(22)

with R = max{‖x‖W0 , ‖y‖W0}.

Proof. We define the map Φ as an approximate radial extension of ϕ. In particular, consider some
vector x ∈ Cd, and let `(x) : Cd → R>0 be a function satisfying

(1− ε0/2)‖x‖W0 6 `(x) 6 (1 + ε0/2)‖x‖W0 ,

and note that x
`(x) ∈ Sh(W0, ε0). We let the function Φ: W0 →W1 be:

Φ(x) = `(x)r · ϕ
(

x

`(x)

)
.

For x, y ∈ Cd, let a = x
`(x) and b = y

`(y) and let t = `(y)
`(x) 6 1 without loss of generality. By the

triangle inequality, we have:

‖Φ(x)− Φ(y)‖W1

`(x)r 6 ‖ϕ(a)− ϕ(b)‖W1
+ ‖ϕ(b)− trϕ(b)‖W1

6 ‖ϕ(a)− ϕ(b)‖W1 + (1 + ε1)(1− tr)
6 C (‖a− b‖W0 + 5ε0)α + (1 + ε1) max{1, r}(1− t), (23)

where the last inequality is by the assumption on ϕ, and the fact that (1− tr) 6 max{1, r}(1− t)
when t 6 1. In addition,

‖a− tb‖W0 > ‖a‖W0 − t‖b‖W0 > 1− ε0 − t(1 + ε0) = (1− t)(1 + ε0)− 2ε0, (24)

and therefore,

‖a− b‖W0 6 ‖a− tb‖W0 + ‖tb− b‖W0 6 ‖a− tb‖W0 + (1− t)(1 + ε0)
(24)
6 2‖a− tb‖W0 + 2ε0. (25)

Plugging in (24) and (25) into (23) and recalling that ε1 6 1
6 implies

‖Φ(x)− Φ(y)‖W1

`(x)r
(25)
6 C (2‖a− tb‖W0 + 7ε0)α + 2 max{1, r}(1− t)

(24)
6 C (2‖a− tb‖W0 + 7ε0)α + 2 max{1, r} (‖a− tb‖W0 + 2ε0)

6
(
2α · C + 2 max{1, r} (‖a− tb‖W0 + 4ε0)1−α

)
(‖a− tb‖W0 + 4ε0)α

6
(
2α · C + 2 · 31−α ·max{1, r}

)
(‖a− tb‖W0 + 4ε0)α ,

26

where we use the fact that ‖a− tb‖W0 + 4ε0 6 1 + ε0 + t(1 + ε0) + 4ε0 6 3 since t 6 1 and ε0 6 1
6 ,

as well as the fact that α 6 1. Finally, since `(x) 6 max{(1 + ε0/2)‖x‖W0 , (1 + ε0/2)‖y‖W0}:

‖Φ(x)− Φ(y)‖W1 6
(
2αC + 2 · 31−α max{1, r}

)
(‖x− y‖W0 + 4ε0`(x))α · (1 + ε0

2)r−α
(
‖x‖r−αW0

+ ‖y‖r−αW0

)
,

which gives (21), since (1 + ε0
2) 6 2. For the reverse inequality, we follow in a similar fashion:

‖x− y‖W0

`(x) 6 ‖a− b‖W0 + (1− t)‖b‖W0

6 C (‖ϕ(a)− ϕ(b)‖W1 + 5ε1)α + (1− t)(1 + ε0) + 2ε0, (26)

In addition, we have:

‖ϕ(a)− trϕ(b)‖W1 > (1− ε1)− tr(1 + ε1) > (1− tr)(1 + ε1)− 2ε1,

So,

‖ϕ(a)− ϕ(b)‖W1 6 ‖ϕ(a)− trϕ(b)‖W1 + ‖trϕ(b)− ϕ(b)‖W1 6 ‖ϕ(a)− trϕ(b)‖W1 + (1− tr)(1 + ε1)
6 2‖ϕ(a)− trϕ(b)‖W1 + 2ε1. (27)

Combining (26) and (27),

‖x− y‖W0

`(x) 6 C (2‖ϕ(a)− trϕ(b)‖W1 + 7ε1)α + (1− t)(1 + ε0) + 2ε0

6 C (2‖ϕ(a)− trϕ(b)‖W1 + 7ε1)α + 2 max{1, 1
r} (‖ϕ(a)− trϕ(b)‖W1 + 2ε1) + 2ε0

6
(
2αC + 2 · 31−α max{1, 1

r}
)

(‖ϕ(a)− trϕ(b)‖W1 + 4ε0)α + 2ε0.

Finally, we have:

‖x− y‖W0 6
(
4C + 12 max{1, 1

r}
)

(‖Φ(x)− Φ(y)‖W1 + 4ε0`(x)r)α
(
‖x‖1−rαW0

+ ‖y‖1−rαW0

)
+ 2ε0`(x).

4.3 Summary and necessary subroutines

We now combine Lemma 4.1 with Lemma 4.9 in order to obtain an approximate homeomorphism
which will later be used in the design and analysis of ANN algorithms. Recall that A = (Cd, ‖ · ‖A)
is a uniformly convex normed space with p-convexity constant Kp(A) 6 1, and H = (Cd, ‖ · ‖H) is
the complex Hilbert space (`d2)C with BA ⊆ BH ⊆ d ·BA, where d = poly(d). We define the normed
spaces given by the complex interpolation of A and H with parameter β ∈ (0, 1), so

Y = [A,H]β and Z = [A,H]1−β.

We summarize the discussion of an approximate homeomorphism Φε : Y → Z, built by combining
Lemma 4.1 with Lemma 4.9 in the following corollary. After that, we collect the necessary assumptions
made about existence of two maps which are needed in order to compute Φε. In Section 5, we will
show how to implement the necessary steps in an efficient manner.

27

Corollary 4.10. For any R > 0, 0 6 ε 6 1
6p , and r >

1
p , there exists a map Φε : Y → Z satisfying

the following conditions:

• For every x ∈ Cd, we have (1− ε)r+1‖x‖rY 6 ‖Φε(x)‖Z 6 (1 + ε)r+1‖x‖rY .

• For every x, y ∈ Cd with ‖x‖Y , ‖y‖Y 6 R and ‖x− y‖Y > 5R(εβ)1/100,

‖Φε(x)− Φε(y)‖Z .
4r

β
· ‖x− y‖1/pY

(
‖x‖r−1/p

Y + ‖y‖r−1/p
Y

)
,

additionally, if ‖Φε(x)− Φε(y)‖Z > 5Rr(εβ)1/100,

‖x− y‖Y .
(1
β

+ 1
r

)
· ‖Φε(x)− Φε(y)‖1/pZ

(
‖Φε(x)‖

1
r
− 1
p

Z + ‖Φε(y)‖
1
r
− 1
p

Z

)
.

Before presenting the proof, which sets appropriate parameters in order to apply Lemma 4.1 and
Lemma 4.9, let us take a moment to comment on the parameters R, ε and r from the corollary
above. Recall that p will be high enough so the p-convexity constant Kp(A) 6 1, specifically, for
our applications, p ≈

√
log d

log log d . In addition, the parameter β ∈ (0, 1) defining the interpolation
Y and Z will have β ≈ 1

log d . We encourage the reader to think of r = 1 and R = d4, as these
will be the parameters used for our applications. At a high level, we think of R as a large enough
radius containing all the points of interest. Then, we set ε > 0 to be the inverse of a large enough
polynomial in d, so that R(ε/β)1/100 and Rp(ε/β)1/100 are small enough numbers. These specific
parameter settings allow us to only consider pairs of points x, y ∈ Cd whose distance ‖x− y‖Y and
‖Φε(x)− Φε(y)‖Z is large enough to overcome the additive error terms from Lemma 4.1.

Proof. Let the parameters ε0, ε1 > 0 and α ∈ (0, 1] be given by:

ε0 = ε3β2

2003 ε1 = ε α = 1
p
,

so that ε0 6 β2

800p3 , and ε1 = ε
1/3
0

200β2/3 . These parameter settings allow us to invoke Lemma 4.9, and
we denote ϕε0 : Sh(Y, ε0)→ Sh(Z, ε1), as the map satisfying the inequalities from Lemma 4.1. Then,
we let Φε : Y → Z be the map defined as,

Φε(x) = `(x)rϕε0

(
x

`(x)

)
from Lemma 4.9. Since ε > ε0, we have Φε satisfies:

(1− ε)r+1‖x‖rY 6 ‖Φε(x)‖Z 6 (1 + ε)r+1‖x‖rY .

In addition, whenever ‖x‖Y , ‖y‖Y 6 R and ‖x−y‖Y > 5R(εβ)1/100, then ‖x−y‖Y > 5Rε0, and when
‖Φε(x)−Φε(y)‖Z > 5Rr(εβ)1/100, ‖Φε(x)−Φε(y)‖Z > 5Rpε1. We obtain the desired inequalities the
properties of Φε given in Lemma 4.9.

28

Finally, the following lemma asserts that the map Φε : Y → Z is close to the optimal homeomorphism
Φ0 : Y → Z obtained by extending ϕ0 : S(Y) → S(Z) through Lemma 4.9 with perfect access to
norm. In particular, we let Φ0 : Y → Z be given by:

Φ0(x) = ‖x‖rY · ϕ0

(
x

‖x‖Y

)
.

First, note that by Theorem 8, we may extend that map ϕ0 : S(Y) → S(Z) to obtain the map
Φ0 : Y → Z, which is a homeomorphism since ϕ0 : S(Y) → S(Z) is a homeomorphism. Since ϕ0
satisfies the conclusions of Lemma 4.1, then Φ0 satisfies the conclusions of Corollary 4.10. We record
this observation as a corollary, which is almost equivalent to Corollary 4.10, except the conditions
on the distances are unnecessary, since ε = 0 in this case.

Corollary 4.11. There exists a map Φ0 : Y → Z satisfying the following conditions:

• For every x ∈ Cd, we have ‖x‖rY = ‖Φ0(x)‖Z .

• For every x, y ∈ Cd, we have:

‖Φ0(x)− Φ0(y)‖Z .
4r

β
· ‖x− y‖1/pY

(
‖x‖

r− 1
p

Y + ‖y‖
r− 1

p

Y

)
,

‖x− y‖Y .
(1
β

+ 1
r

)
· ‖Φ0(x)− Φ0(y)‖1/pZ

(
‖Φ0(x)‖

1
r
− 1
p

Z + ‖Φ0(y)‖
1
r
− 1
p

Z

)
.

Lastly, we give the following lemma, which states Φε(x)→ Φ0(x) as ε→ 0. This last lemma justifies
the fact that the map Φε : Y → Z is indeed an approximate Hölder homeomorphism, even though
Φε may not be a bijection.

Lemma 4.12. For any R > 0 and 0 6 ε 6 1
6p , for any x ∈ Cd with ‖x‖Y 6 R,

‖Φ0(x)− Φε(x)‖Z .
4r

β

(
5 ·R

(
ε

β

)1/100
) 1
p (
‖x‖

r− 1
p

Y

)
.

Proof. Consider the map Φ′ε : Y → Z given by:

Φ′ε(z) =
{

Φε(z) z 6= x
Φ0(z) z = x

.

We note that Φ′ε also satisfies the conclusions in Corollary 4.10, since we ϕ′ε given by ϕ′ε(x) = ϕ0(x)
and ϕ′ε(z) = ϕε(z) for z 6= x satisfies Lemma 4.1. Consider y ∈ Cd with ‖x− y‖Y = 5R(εβ)1/100 and
‖y‖Y 6 ‖x‖Y , then using the triangle inequality and applying Corollary 4.10 twice, we conclude:

‖Φ0(x)− Φε(x)‖Z 6 ‖Φ′ε(x)− Φ′ε(y)‖Z + ‖Φε(y)− Φε(x)‖H

.
4r

β

(
5R
(
ε

β

)1/100
) 1
p (
‖x‖

r− 1
p

Y + ‖y‖
r− 1

p

Y

)
.

29

Necessary subroutines for computing Φε In order to define Φε : Y → Z, some assumptions
were made on the existence of two maps. We collect these assumptions as algorithmic tasks such
that given efficient algorithms for these tasks, we can compute Φε satisfying the properties of
Corollary 4.10 and Lemma 4.12.

• (Approximately computing norms) Given approximate oracle access to a normed space W =
(Cd, ‖ · ‖W), as well as the Hilbert space H = (`d2)C with BW ⊆ BH ⊆ d ·BW , and parameters
ε > 0 and θ ∈ (0, 1), let W ′ = [W,H]θ. For each x ∈ Cd, output a value `(x) satisfying:

(1− ε)‖x‖W ′ 6 `(x) 6 (1 + ε)‖x‖W ′ .

The proof of Lemma 4.9 assumed access to this kind of map ` : Cd → R>0 with W = A, θ = β

and ε = εX/2 .

• (Approximately optimal functions) Given approximate oracle access to a normed space W =
(Cd, ‖ · ‖W) and the Hilbert space H = (`d2)C with BW ⊆ BH ⊆ d ·BW , and parameters ε > 0
and θ ∈ (0, 1), letW ′ = [W,H]θ. For each x ∈ Sh(W ′, ε), output a function f : S→ Cd ∈ F2(θ)
satisfying:

1. ‖f(θ)− x‖W ′ 6 ε, and
2. max{supt∈R ‖f(it)‖W , supt∈R ‖f(1 + it)‖H} 6 1 + ε, and

The description of the map ϕ in Subsection 4.1 assumed the existence of such a map Fε with
W = A, θ = β.

For our applications to ANN over a general normed space X = (Rd, ‖ · ‖X) in Section 6 and Section 8,
we will instantiate the map by letting A = [XC, H]α and Y = [A,H]β and Z = [A,H]1−β. Therefore,
while we have oracle access to computing norms ‖ · ‖X , we will need to solve the algorithmic tasks
above for the cases W = A and W = XC. In Section 5, we give an algorithm for accomplishing the
two algorithmic tasks set forth above and analyze the complexity in terms of the dimension d, as
well as the error parameter ε.

5 Computing approximate Hölder homeomorphisms

5.1 High-level overview

The goal of this section is to give polynomial time algorithms for computing various aspects of
complex interpolation which completes the description of the approximate Hölder homeomorphism
from Section 4. The data structures for ANN over a real normed space X = (Rd, ‖ · ‖X) will
compute this map, so we will assume oracle access to computing ‖ · ‖X . In particular, we will provide
algorithms for the two tasks specified towards the end of Subsection 4.3. We will consider a complex
normed space W = (Cd, ‖ · ‖W) and the Hilbert space H = (`d2)C, i.e., the complexification of `d2,
and assume

BW ⊆ BH ⊆ d ·BW , (28)

30

(note that we may compute ‖x‖H since it is isometrically isomorphic to `2d2 by separating the real
and imaginary parts of each coordinate; see Subsection 2.4).

At a high level, our algorithm will express the algorithmic tasks from Subsection 4.3 as the
optimums of convex programs, which we then solve using various tools from convex optimization.
We first set up some notation. For a convex set K ⊆ Rm, and a real number δ > 0 we let
B(K, δ) = {y ∈ Rm : x ∈ K and ‖x − y‖2 6 δ}, and we abuse notation slightly by letting
B(y, δ) = B({y}, δ) for y ∈ Rm. Then, we let B(K,−δ) = {y ∈ Rm : B(y, δ) ⊆ K}. We will
frequently interpret convex sets K ⊆ Cm as convex sets of R2m, by separating the real and imaginary
parts of the vectors in Cm.

Definition 5.1 (Membership Oracle (MEM(K)) [LSV17]). For a convex set K ⊆ Rm, given a vector
y ∈ Rm and a real number δ > 0, with probability 1 − δ, either assert that y ∈ B(K, δ) or assert
y /∈ B(K,−δ).

The goal of this section is to solve the following algorithmic task, which we denote ApproxRep(x, θ, ε;W),
where we will assume access to MEM(BW), thus, we will measure the complexity of the algorithm for
ApproxRep(x, θ, ε;W) in the number of calls to MEM(BW), as well as the error parameter δ > 0 in
these calls. In Subsection 5.5, we show how the subsequent algorithms are used in our applications
to ANN.

Definition 5.2 (Algorithmic Task ApproxRep(x, θ, ε;W)). For a complex normed space W =
(Cd, ‖ · ‖W) satisfying

BW ⊆ BH ⊆ d ·BW ,

we want to solve the following algorithmic task. Given access to MEM(BW), a parameter θ ∈ (0, 1),
a vector x ∈ Cd, and an approximation parameter ε > 0, output the representation of a function
f : S→ Cd ∈ F (where F is defined with respect to the couple (W,H)6) such that:

• ‖f(θ)− x‖[W,H]θ 6 ε‖x‖[W,H]θ, and

• ‖f‖F = max{supt∈R ‖f(it)‖W , supt∈R ‖f(1 + it)‖H} 6 (1 + ε1)‖x‖[W,H]θ.

The representation of the function should also have the property that we may compute a (1 ± ε)-
multiplicative approximation to ‖f‖F in poly(d/ε) time, and for any θ′ ∈ (0, 1) we may compute
f(θ′) ∈ Cd in poly(d/ε) time.

In the following section, we will assume that ε is a small enough parameter, which will later be set to
1

poly(d) . Before proceeding to present an algorithm for ApproxRep(x, θ, ε;W), we give the following
simple consequence of being able to solve ApproxRep(x, θ, ε;W), which solves the first algorithmic
task from Subsection 4.3.

Corollary 5.3. For any x ∈ Cd, θ ∈ (0, 1) and ε > 0, we may obtain a (1 ± ε)2-multiplicative
approximation to ‖x‖[W,H]θ from a call to ApproxRep(x, θ, ε;W).

6see Subsection 2.5 for a formal definition of F

31

Proof. Given f ∈ F as an output of ApproxRep(x, θ, ε;W), we note that

‖f‖F > ‖f(θ)‖[W,H]θ > ‖x‖[W,H]θ − ‖f(θ)− x‖[W,H]θ > (1− ε)‖x‖[W,H]θ ,

where we first used the definition of interpolation, and then we utilized the triangle inequality, as well
as the fact that f(θ) is close to x. The upper bound follows by definition of ApproxRep(x, θ, ε;W).
Finally, we note that we may compute a (1± ε)-approximation to ‖f‖F in poly(d/ε) time.

For simplicity, when working with a couple (W,H), where W = (Cd, ‖ · ‖W) is a complex normed
space and H = (`d2)C is a Hilbert space satisfying (28) we denote Wθ = (Cd, ‖ · ‖θ) as the complex
normed space given by Wθ = [W,H]θ and ‖ · ‖θ = ‖ · ‖[W,H]θ .

5.2 Discretization of F

We will now give the discretization of F we optimize over. Specifically, we show a quantitative
version of Lemma 4.2.2 from [BL76]. We will write the discretization of F, where F is defined with
respect to the complex normed spaces W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1). In our applications
of this discretization to computing ApproxRep(x, θ, ε;W), we will setW0 = W andW1 = H. Assume
that W0 and W1 are both close to the Hilbert space H = (`d2)C, i.e., every x ∈ Cd satisfies

‖x‖W0 6 ‖x‖H 6 d‖x‖W0 and ‖x‖W1 6 ‖x‖H 6 d‖x‖W1 . (29)

Recall from Subsection 2.5, the space F, defined with respect to W0 and W1, is a space over bounded
continuous functions f : S→ Cd which are holomorphic in S. We will consider a x ∈ Cd such that
‖x‖[W0,W1]θ = 1.

Let us first introduce some notation. For f ∈ F and τ ∈ R, we denote:

BF(f, τ) def= max{‖f(iτ)‖W0 , ‖f(1 + iτ)‖W1}, and (30)

B∞(f, τ) def= max
06u61

‖f(u+ iτ)‖`∞ . (31)

In addition, for each f ∈ F, we may view g0 : R→ Cd as g0(τ) = f(iτ) and g1(τ) = f(1 + iτ). Given
these definitions, when the derivatives dg0

dτ and dg1
dτ exist, we denote:

D∞(f, τ) def= max
{∥∥∥∥dg0

dτ
(τ)
∥∥∥∥
`∞

,

∥∥∥∥dg1
dτ

(τ)]
∥∥∥∥
`∞

}
.

The following lemma is a quantitative version of the classical Fejér’s theorem [Kat04].

Lemma 5.4. Let f : R→ C to be a differentiable 2πL-periodic function. Consider its Fourier series:

f 7→
∑
n∈Z

ane
inx
L ,

where

an = 1
2πL ·

πL∫
−πL

f(x)e−
inx
L dx.

32

Then the Césaro partial sums

fM (x) =
∑
|n|6M

(
1− n

M + 1

)
ane

inx
L

satisfy ‖fM − f‖`∞ 6 ε for 0 < ε < 0.1 with

M .
‖f‖`∞ · ‖f ′‖2`∞ · L

2

ε3 .

Proof. We can assume, by rescaling, that L = 1. Then, one has:

fM = f ∗ FM ,

where

FM = 1
M

(
sin Mx

2
sin x

2

)2

is the Fejér’s kernel. Thus, for every δ > 0, one has:

|fM (x)− f(x)| =

∣∣∣∣∣∣ 1
2π

π∫
−π

(
f(x− t)− f(x)

)
FM (t) dt

∣∣∣∣∣∣
6

1
2π

π∫
−π

∣∣f(x− t)− f(x)
∣∣FM (t) dt

= 1
2π

∫
|t|6δ

∣∣f(x− t)− f(x)
∣∣FM (t) dt+ 1

2π

∫
δ6|t|6π

∣∣f(x− t)− f(x)
∣∣FM (t) dt

. δ‖f ′‖`∞ + ‖f‖`∞
δ2M

,

where the first step follows from 1
2π

π∫
−π

FM (t) dt = 1, the second step follows from FM (t) > 0, and

the fourth step follows from 1
2π

π∫
−π

FM (t) dt = 1, and FM (t) . 1
δ2M for δ 6 |t| 6 π. Substituting

δ ∼
(
‖f‖`∞

M‖f ′‖`∞

)1/3
, we get

|fM (x)− f(x)| .
(
‖f‖`∞‖f ′‖2`∞

M

)1/3

,

which implies the desired bound.

Claim 5.5. For every x ∈ Cd with ‖x‖[W0,W1]θ = 1 and every ε > 0, there exists fx ∈ F such that:

• fx(θ) = x,

• for every τ ∈ R, BF(fx, τ) 6 1 + ε and B∞(fx, τ) . d;

33

Proof. By definition of ‖x‖[W0,W1]θ from (8), let fx ∈ F be the function with fx(θ) = x and ‖fx‖F 6
‖x‖[W0,W1]θ+ε 6 1+ε. In addition, since ‖fx‖F = supτ∈RBF(fx, τ), we obtain that BF(fx, τ) 6 1+ε.
Finally, we note that fx is holomorphic on S, continuous on S, and bounded, so by the Hadamard
three-lines theorem, B∞(fx, τ) 6 supu∈(0,1)

τ∈R
‖f(u+iτ)‖H 6 supτ∈R max{‖fx(iτ)‖H , ‖fx(1+iτ)‖H} 6

d.

Claim 5.6. For every x ∈ Cd with ‖x‖[W0,W1]θ = 1 and every ε > 0, there exists f (2)
x ∈ F such that:

• ‖f (2)
x (θ)− x‖`∞ . ε, and

• for every τ ∈ R, BF(f (2)
x , τ) 6 1 + ε, B∞(f (2)

x , τ) . d, and D∞(f (2)
x , τ) . d2·Λ(θ,θ)

ε .

Proof. Let fx ∈ F be from Claim 5.5 for the vector x ∈ Cd and ε. For σ > 0 let

f (2)
x (z) def= E

g∼N(0,σ2)
fx(z + ig). (32)

We note the bounds on BF(f (2)
x , τ) and B∞(f (2)

x , τ) are immediate from Jensen’s inequality and
convexity of ‖ · ‖ : Cd → R>0. In order to bound ‖f (2)

x (θ)− x‖`∞ , we have

f (2)
x (θ)− fx(θ) (2.3)=

∫
∂S

(
f (2)
x (z)− fx(z)

)
dµθ(z)

(32)=
∫
∂S

(
E

g∼N(0,σ2)
fx(z + ig)− fx(z)

)
dµθ(z)

= E
g∼N(0,σ2)

∫
∂S

(fx(z + ig)− fx(z)) dµθ(z)

= E
g∼N(0,σ2)

∫
∂S
fx(z)

(
P (θ, z − ig)− P (θ, z)

)
dz,

where we used the definition of µθ(z) from Subsection 2.2 in the last line. Therefore,

‖f (2)
x (θ)− fx(θ)‖`∞ 6

(
sup
τ∈R

B∞(fx, τ)
)

E
g∼N(0,σ2)

∫
∂S
|P (θ, z)− P (θ, z − ig)| dz

. d E
g∼N(0,σ2)

∫
∂S
|P (θ, z)− P (θ, z − ig)| dz. (33)

Note that for θ ∈ (0, 1), P (θ, ·) is symmetric around zero and unimodal, when g > 0, we have
P (θ, z) > P (θ, z− ig) when Im(z) 6 g

2 and P (θ, z) 6 P (θ, z− ig) when Im(z) > g
2 . So we have that

when g > 0,∫
∂S
|P (θ, z)− P (θ, z − ig)|dz =

∫
z∈∂S

Im(z)6 g
2

(P (θ, z)− P (θ, z − ig))dz −
∫

z∈∂S
Im(z)> g

2

(P (θ, z)− P (θ, z − ig))dz

=
∫

z∈∂S
Im(z)6 g

2

P (θ, z)dz −
∫

z∈∂S
Im(z)6− g2

P (θ, z)dz −
∫

z∈∂S
Im(z)> g

2

P (θ, z)dz +
∫

z∈∂S
Im(z)>− g2

P (θ, z)dz

= 2
∫

z∈∂S
| Im(z)|6 g

2

P (θ, z)dz. (34)

34

The case when g 6 0 is symmetric, thus, we may combine (33) and (34) to conclude

‖f (2)
x (θ)− fx(θ)‖`∞ . d E

g∼N(0,σ2)

∫
z∈∂S

| Im(z)|6 |g|2

P (θ, z) . dΛ(θ, θ) E
g∼N(0,σ2)

|g| . dΛ(θ, θ)σ 6 ε

when σ . ε
d·Λ(θ,θ) , where we used the fact that P (θ, z) . Λ(θ, θ) when z ∈ ∂S and θ ∈ (0, 1).

Now let us upper bound D∞(f (2)
x , τ). Denote pσ(t) the p.d.f. of N(0, σ2). In addition, if we let

g0, g1, g
(2)
0 , g

(2)
1 : R → Cd have gj(τ) = fx(j + iτ) and g

(2)
j (τ) = f

(2)
x (j + iτ) for j = 0, 1, we have

g
(2)
j = gj ∗ pσ(τ). Thus, we have dg

(2)
j

dτ (τ) = gj ∗ p′σ(τ),∥∥∥∥ ddτ [g(2)
j (τ)]

∥∥∥∥
`∞

=
∥∥gj ∗ p′σ∥∥`∞ .

d
σ
.

d2Λ(θ, θ)
ε

.

Claim 5.7. For every x ∈ Cd with ‖x‖[W0,W1]θ = 1 and every ε > 0, there exists f (3)
x ∈ F such that:

• ‖f (3)
x (θ)− x‖`∞ . ε,

• for every τ ∈ R, BF(f (3)
x , τ) 6 (1 + ε) · e

ε(1−τ2)
d and B∞(f (3)

x , τ) . d · e− ετ
2

d , and

• for every τ ∈ R, one has: D∞(f (3)
x , τ) . d2·Λ(θ,θ)

ε · e−
ετ2

d + ε|τ | · e−
ετ2

d .

Proof. We may consider f (2)
x ∈ F from Claim 5.6 and set

f (3)
x (z) = e

εz2
d · f (2)

x (z).

All the desired properties are immediate to check.

Claim 5.8. For every x ∈ Cd with ‖x‖[W0,W1]θ = 1 and every ε > 0, there exists f (4)
x ∈ F such that:

• ‖f (4)
x (θ)− x‖`∞ . ε,

• for every τ ∈ R, BF(f (4)
x , τ) 6 1 +O(ε), B∞(f (4)

x , τ) . d, D∞(f (4)
x , τ) . d2·Λ(θ,θ)

ε , and

• f (4)
x is 2πiL-periodic for

L .

√
d · log d

ε

ε
.

Proof. We take f (3)
x from Claim 5.7, and set:

f (4)
x (z) =

∑
k∈Z

f (3)
x (z + 2πiLk).

All the desired properties are immediate to check.

35

Denote for n ∈ Z the n-th Fourier coefficient:

an = 1
2πL

πL∫
−πL

f (4)
x (iτ)e−

inτ
L dτ ∈ Cd.

Claim 5.9. For every 0 6 θ̃ 6 1, one has:

1
2πL

πL∫
−πL

f (4)
x (θ̃+ iτ)e−

n(̃θ+iτ)
L dτ = an.

Proof. First, let us show that the left-hand side, which we denote by A(θ̃), does not change when
θ̃ is varied in (0; 1). Consider the following contour on the complex plane for k > 1: θ1 − iπLk to
θ1 + iπLk to θ2 + iπLk to θ2 − iπLk to θ1 − iπLk. On the one hand, the integral of f (4)

x (z)e−
nz
L

over it equals to zero. On the other hand, it is equal to k · (A(θ1) − A(θ2)) plus a term that is
independent of k. Since k is arbitrary, we get A(θ1) = A(θ2). On the other hand, for 0 < θ < 1, we
have A(θ) = A(0) = A(1) = an, since the function f (4)

x (z) converges uniformly to the corresponding
boundary value as the real part of z converges to zero or to one.

Claim 5.10. One has:

• ‖an‖`∞ 6 min{1, e−n/L} · ‖f (4)
x ‖`∞ . min{1, e−n/L} · d.

• If we denote f (5)
x ∈ F by

f (5)
x (z) =

∑
|n|6M

M + 1− |n|
M + 1 · ane

nz
L ,

then ‖f (5)
x (z)− f (4)

x (z)‖`∞ 6 ε̃ for

M .
d5 · L2 · Λ(θ, θ)2

ε̃3 .

Proof. The bound ‖an‖`∞ 6 ‖f (4)
x ‖`∞ . d is trivial. To show that ‖an‖`∞ 6 e−n/L · ‖f (4)

x ‖`∞ , we
just use Claim 5.9 with θ̃ = 1:

an = 1
2πL

πL∫
−πL

f (4)
x (1 + iτ)e−

n(1+iτ)
L dτ = e−n/L · 1

2πL

πL∫
−πL

f (4)
x (1 + iτ)e−

inτ
L dτ.

f
(5)
x (z) converges to f (4)

x (z) uniformly in `∞ for Re z = 0 by Lemma 5.4. But due to Claim 5.9, it is
also the case for Re z = 1. We get the required bound on M from the conclusions of Lemma 5.4 and
Claim 5.8. For 0 < Re z < 1, we simply use the Hadamard three-line theorem.

36

Lemma 5.11. For every x ∈ Cd with ‖x‖[W0,W1]θ = 1 and every ε > 0, there exists a function
f̃x ∈ F with

f̃x(z) = e
z2
M

∑
q∈QM

vq · eqz,

where QM = { sL : |s| 6ML} and vq ∈ Cd for all q ∈ QM satisfying:

• L .M = poly(d/ε);

• ‖vq‖H . min{1, e−q} ·M ;

• ‖f̃x‖F 6 1 + ε
d2 ;

• ‖f̃x(θ)− x‖[W0,W1]θ 6 ε
d2 .

Proof. We take f (5)
x (z) from Claim 5.10 with ε̃ . poly(ε, 1

d). This implies that ‖f (5)
x − f (4)

x ‖F .
ε

d2

and ‖f (5)
x (θ)− x‖[W0,W1]θ 6 ε

d2 . Finally, setting f̃x(z) = e
z2
M · f (5)

x (z), and a similar argument to that
of Claim 5.7, the required properties hold.

5.3 Convex program for ApproxRep(x, θ, ε; W)

In this subsection, we present a convex program for solving ApproxRep(x, θ, ε;W) and argue that a
good enough solution to this program can be a valid response for ApproxRep(x, θ, ε;W).

Given any vector x ∈ Cd, we may compute the vector y ∈ Cd with y = x
‖x‖H . We note that since

‖x‖H 6 ‖x‖θ 6 d‖x‖H from (28), we have 1 6 ‖y‖θ 6 d, and recall that d = poly(d). Thus, we may
assume that calls to ApproxRep(x, θ, ε;W) always have x ∈ Cd satisfying

‖x‖H = 1 and 1 6 ‖x‖θ 6 d. (35)

Given x ∈ Cd satisfying (35), we will define a convex program Rep(x, θ, ε;W) which takes a parameter
ε > 0 and has size poly(d/ε) whose optimum will give a valid response for ApproxRep(x, θ, 10ε;W).
Recall the parameter M = poly(d, 1

ε ,Λ(θ, θ)), as well as the definition of the set QM ⊆ R from
Lemma 5.11, and let N . M4d

ε for a large enough constant.7 For j ∈ {0, 1}, consider the subset:

D(j)
N

def=
{
j + is

N
∈ ∂S : s ∈ Z, |s| 6MN

}
.

Let the sequence of vectors V = (vq ∈ Cd : q ∈ QM) define a map fV ∈ F given by:

fV (z) def= e
z2
M

∑
q∈QM

vq · eqz. (36)

7see (6) for the definition of Λ(θ1, θ2), and note that Λ(θ, θ) = poly(d) for θ ∈ (1
poly(d) , 1− 1

poly(d)).

37

The convex program Rep(x, θ, ε;W) is given by:

Rep(x, θ, ε;W) =

minV ∈(Cd)|QM |
α∈R>0

α

s.t i. ∀z ∈ D(0)
N , ‖fV (z)‖W 6 α+ ε

ii. ∀z ∈ D(1)
N , ‖fV (z)‖H 6 α+ ε

iii. ∀q ∈ QM , ‖vq‖H max{eq, 1} 6 2Md
iv. ‖fV (θ)− x‖H 6 2ε

d

. (37)

In the language of Grötschel, Lovász and Schrijver [GLS12], we will argue that solving the weak
optimization problem of Rep(x, θ, ε;W) satisfies the requirements of ApproxRep(x, θ, 8ε;W). After
that, we address the problem of computing Rep(x, θ, ε;W).

Lemma 5.12. For x ∈ Cd and ε > 0, and θ ∈ (0, 1) with Λ(θ, θ) 6 poly(d), let (V,α) ∈ (Cd)|QM |×R
be a feasible solution to Rep(x, θ, ε;W), where the optimum of Rep(x, θ, ε;W) is at least α − 5ε.
Then fV ∈ F is a valid output of ApproxRep(x, θ, 8ε;W).

Before giving the proof of Lemma 5.12, we give some discussion as well as a sequence of claims from
which Lemma 5.12 will easily follow.

Consider the unit vector a = x
‖x‖θ ,

8 and let fa ∈ F be an optimal representative for a at θ in F. In
other words, fa(θ) = a and ‖fa‖F = 1. Applying Lemma 5.11, there exists some f̃a ∈ F such that:

• f̃a(z) = e
z2
M
∑
q∈QN vqe

qz, and for all q ∈ QM , vq ∈ Cd with ‖vq‖H ·max{eq, 1} 6M .

• ‖f̃a‖F 6 1 + ε
d2 and ‖f̃a(θ)− a‖H 6 ε

d2 .

Therefore, let the function f̃x ∈ F be

f̃x(z) def= ‖x‖θf̃a(z) (38)

which satisfies,

‖f̃x(θ)− x‖H 6 ‖x‖θ · ‖f̃a(θ)− a‖H 6 ‖x‖θ ·
ε

d2 6
ε

d . (39)

In addition, we have:

‖f̃x(θ)− x‖θ 6 d‖f̃x(θ)− x‖H 6
ε

d · ‖x‖θ (40)

‖x‖θ‖vq‖ ·max{eq, 1} 6Md for all q ∈ QM , (41)

‖f̃x‖F 6 ‖x‖θ · ‖f̃a‖F 6
(

1 + ε

d2

)
‖x‖θ. (42)

We note that the above facts imply that if (V,α) ∈ (Cd)|QM | × R, where V = (vq : q ∈ QM) and
the vectors vq define f̃x ∈ F according to (36), and α = ‖f̃x‖F, then (V,α) is a feasible solution for
Rep(x, θ, ε;W).

8algorithmically, we do not have access to this vector

38

Claim 5.13. Suppose V = (vq : q ∈ QM),α ∈ Rd defines a feasible solution for Rep(x, θ, ε;W), and
suppose z = j + iτ ∈ ∂S with |τ | >M , then ‖fV (z)‖H 6 1

2d .

Proof. We simply follow the computations, using the third constraint of (37):

‖fV (z)‖H 6 e
j2−τ2
M

 ∑
q∈QM

‖vq‖H · eqj

6 e−
τ2−1
M (|QM | · 2Md) 6 1

2d ,

when τ >M �
√
M log(d) log(M), since d = poly(d).

Corollary 5.14. Let V = (vq : q ∈ QM),α ∈ R be a feasible solution for Rep(x, θ, ε;W). We have
that:

‖fV ‖F = max
{

sup
|τ |6M

‖fV (iτ)‖W , sup
|τ |6M

‖fV (1 + iτ)‖H

}
.

Proof. From the fourth constraint of (37), ‖fV (θ)− x‖θ 6 d‖fV (θ)− x‖H 6 2ε. Therefore, we have
‖fV ‖F > ‖fV (θ)‖θ > ‖x‖θ − 2ε > 1 − 2ε > 1

2 for small enough ε < 1
4 . Since by Claim 5.13, any

|τ | >M satisfies ‖fV (iτ)‖W 6 d‖fV (iτ)‖H 6 1
2 and ‖fV (1 + iτ)‖H 6 1

2d , we must have

‖fV ‖F = max
{

sup
|τ |6M

‖fV (iτ)‖W , sup
|τ |6M

‖fV (1 + iτ)‖H

}
.

Let us write fV : S→ Cd as fV = (g1(z), . . . , gd(z)), where gk : S→ C is given by the k-th coordinate
of fV . Then, taking derivatives, all k ∈ [d] satisfy

g′k(z) = ez
2/M

∑
q∈QM

(vq)keqz
(
q + 2z

M

)
.

Thus, when (V,α) is feasible in Rep(x, θ, ε;W), the third constraint of (37) implies that for each
z = j + iτ ∈ ∂S with |τ | 6M and every k ∈ [d],

|g′k(z)| 6 e · e−τ2/M
∑
q∈QM

|(vq)k · eq|(q + 2)

6 e|QM | · 2Md · (M + 2) .M4d. (43)

Claim 5.15. For large enough N . M4d3

ε = poly(d/ε), we have that any (V,α) which is feasible for
Rep(x, θ, ε;W) satisfies

‖fV ‖F 6 max

 sup
z∈D(0)

N

‖fV (z)‖W , sup
z∈D(1)

N

‖fV (z)‖H

+ ε.

39

Proof. By definition of D(j)
N , any z ∈ ∂S with| Im(z)| 6M and Re(z) = j, there exists some z′ ∈ D(j)

N

with |z − z′| 6 1
N . This implies that every k ∈ [d] satisfies |gk(z)− gk(z′)| . |z − z′| ·M4d = M4d

N by
(43). Thus,

‖fV (z)− fV (z′)‖2H 6
d∑

k=1
|gk(z)− gk(z′)|2 6

ε2

d2 ,

for a large enough setting of N . Therefore, we have ‖fV (z) − fV (z′)‖H 6 ε
d , and that ‖fV (z) −

fV (z′)‖W 6 ε, which completes the proof.

Claim 5.16. We have that
‖x‖θ 6 Rep(x, θ, ε;W) + 3ε.

Proof. Every vector (V,α) which is feasible in Rep(x, θ, ε;W) defines a function fV ∈ F by (36),
which by Claim 5.15, satisfies

‖fV ‖F 6 max

 sup
z∈D(0)

N

‖fV (z)‖W , sup
z∈D(1)

N

‖fV (z)‖H

+ ε.

Therefore, for all (V,α) which are feasible for Rep(x, θ, ε;W), we have:

‖x‖θ 6 ‖fV (θ)‖θ + ‖fV (θ)− x‖θ 6 ‖fV ‖F + ε 6 α+ 3ε,

which implies ‖x‖θ 6 Rep(x, θ, ε;W) + 3ε.

Proof of Lemma 5.12. First, consider the solution (V,α) whose values of (vq : q ∈ QM) define the
function f̃x according to (36), and α = ‖f̃x‖F. Then, (V,α) lies in the feasible set of Rep(x, θ, ε;W).
In particular, (39) shows that vq satisfies the last constraint of (37). In addition, since ‖x‖θ 6 d, the
third constraint of (37) is also satisfied. Therefore, we have that the optimal solution of Rep(x, θ, ε;W)
satisfies:

Rep(x, θ, ε;W) 6 ‖f̃x‖F 6
(

1 + ε

d2

)
‖x‖θ.

If, in addition, (V,α) has α 6 Rep(x, θ, ε;W) + 5ε, then by Claim 5.16 and ‖x‖θ > 1,

(1− 8ε)‖x‖θ 6 α 6
(

1 + ε

d2 + ε

)
‖x‖θ,

which is a valid output of ApproxRep(x, θ, 8ε;W).

5.4 Computing ApproxRep(x, θ, ε; W) with MEM(BW)

In this section, we show how to compute an approximate optimum of Rep(x, θ, ε;X) described in (37).
In particular, we will compute some value (V,α) which satisfies the conditions of Lemma 5.12. In
other words, the solution (V,α) is feasible for Rep(x, θ, ε;W), and the optimal value of Rep(x, θ, ε;W)
is at least α− 5ε. If the algorithm runs in poly(d/ε) time, by Lemma 5.12, this would give us the
required algorithm for ApproxRep(x, θ, 8ε;X).

40

Let P ⊆ (Cd)|QM | × R>0 be the set:

P =

((vq max{eq, 1} : q ∈ QM),α) ∈ (Cd)|QM | × R>0 :

i. ∀z ∈ D(0)
N ‖fV (z)‖W 6 α+ ε

2
ii. ∀z ∈ D(1)

N ‖fV (z)‖H 6 α+ ε
2

iii. ∀q ∈ QM ‖vq‖H max{eq, 1} 6 3M ·d
2

iv. ‖fV (θ)− x‖H 6 3ε
2d

v.
∑
q∈QM ‖vq‖

2
H max{e2q, 1}+ α2 6 R2

,

(44)

where R = poly(d/ε) is a large enough parameter. In addition, we view the set P ⊆ (Cd)|QM | ×R as
a subset of (R2d)|QM | × R by separating the real and imaginary parts of the vectors vq for q ∈ QM .

5.4.1 Properties of the set P

The following are a couple of useful facts showing that the convex set P is nice. In particular, we
will have that P is convex and inscribed within a Euclidean ball of polynomial radius. Any solution
close to P (by an inverse polynomial amount), gives a feasible solution to Rep(x, θ, ε;W). The
approximate representative to x, given by f̃x in (38) lies well within P (by an inverse polynomial
amount). Finally, there exists an explicit solution well within P (by an inverse polynomial amount).

For the remainder of the section, we let δ = poly
(
ε, 1

d

)
be the parameter:

δ
def= ε

2e · |QM | · d
.

Fact 5.17. The set P is convex and is contained in a Euclidean ball of radius R.
Lemma 5.18. Let (U,α) ∈ B(P, δ) where U = (uq : q ∈ QM), and let V = (vq : q ∈ QM) where
vq = uq

max{eq ,1} . Then, (V,α) is a feasible solution to Rep(x, θ, ε;W).

Proof. Consider (U,α) ∈ B(P, δ) and let (Ũ , α̃) ∈ P with ‖(U,α) − (Ũ , α̃)‖2 6 δ. We denote
Ũ = (ũq : q ∈ QM) and Ṽ = (ṽq : q ∈ QM) where ṽq = ũq

max{eq ,1} . Therefore, we have∑
q∈QM

‖uq − ũq‖2H + |α− α̃|2 6 δ2.

We will check that assuming constraints (i–iv) in (44), we can satisfy constraints (i–iv) in (37) for
the point (V,α). All the subsequent checks proceed in the same fashion: we first use the triangle
inequality to argue about (Ũ , α̃) and use (28) and the constraints (i–iv) in (44) of (Ũ , α̃) to deduce
(V,α) is feasible for Rep(x, θ, ε;W).

iv. We simply follow the computations:

‖fV (θ)− x‖H 6 ‖f
Ṽ

(θ)− x‖H + ‖fV (θ)− f
Ṽ

(θ)‖H 6
3ε
2d + eθ

2/M
∑
q∈QM

eqθ‖vq − ṽq‖H

6
3ε
2d + eθ

2/M
∑
q∈QM

eqθ

max{eq, 1}‖uq − ũq‖H 6
3ε
2d + e

∑
q∈QM

‖uq − ũq‖H

6
3ε
2d + e|QM |δ 6

2ε
d .

41

iii. For q ∈ QM , we have:

‖vq‖H max{eq, 1} 6 ‖ṽq‖H max{eq, 1}+ ‖uq − ũq‖H 6
3M · d

2 + δ 6 2M · d.

ii. For z = 1 + iτ ∈ D(1)
N , we have:

‖fV (z)‖H 6 ‖f
Ṽ

(z)‖H + ‖fV (z)− f
Ṽ

(z)‖H 6 α+ ε

2 + e−
τ2−1
M

∑
q∈QM

eq‖ṽq − vq‖H

6 α+ ε

2 + e|QM |δ 6 α+ ε.

i. In addition, for z = iτ ∈ D(1)
N , we similarly have,

‖fV (z)‖W 6 ‖f
Ṽ

(z)‖W + d‖fV (z)− f
Ṽ

(z)‖H 6 α+ ε

2 + d · e−
τ2
M

∑
q∈QM

‖ṽq − vq‖H

6 α+ ε

2 + d|QM |δ 6 α+ ε.

This completes the proof.

Lemma 5.19. We have B((U,α), δ) ⊆ P , where (U,α) is given by U = (vq max{eq, 1} : q ∈ QM)
where the vectors vq ∈ Cd define f̃x in (38) according to (36), and α = ‖f̃x‖F. In other words,
(U,α) ∈ B(P,−δ).

Proof. Consider the point (V,α) where the vectors vq define the function f̃x ∈ F from (38) and
α = ‖f̃x‖F. Let U = (uq : q ∈ QM) where uq = vq max{eq, 1}. We claim that B((U,α), δ) ⊆ P . In
particular, consider any (U ′,α′) with U ′ = (u′q : q ∈ QM) where ‖(U ′,α′)− (U,α)‖2 6 δ, i.e.,∑

q∈QM

‖u′q − uq‖2H + |α′ − α|2 6 δ2.

With arguments very similar to those in the proof of Lemma 5.18 above, we may check that
constraints (i–iv) of (44) have (U ′,α′) ∈ P since vq satisfy (40) and (41)9. It remains to check that
constraint (v) is satisfied. Letting v′q = u′q

max{eq ,1} ,∑
q∈QM

‖v′q‖2H max{e2q, 1}+ α′2 6
∑
q∈QM

(‖uq‖H + ‖u′q − uq‖H)2 + (α+ |α′ − α|)2

6 2

 ∑
q∈QM

‖uq‖2H + α2

+ 2

 ∑
q∈QM

‖u′q − uq‖2H + |α′ − α|2

6 2

 ∑
q∈QM

‖vq‖2H max{e2q, 1}+ α2

+ 2δ2

6 2
(
|QM |M2d2 + d2

)
+ 2δ2 6 R.

Therefore, we may conclude that (U ′,α′) ∈ P , which implies that B((U,α), δ) ⊆ P .
9Note that vq here corresponds to vq‖x‖θ in (40) and (41), since in (40) and (41), vq are the vectors which define

f̃a, and f̃x = ‖x‖θf̃a.

42

Corollary 5.20. We have that min(V,α)∈B(P,−δ) α 6 ‖f̃x‖F.

In addition, using the very similar arguments as in the proof of Lemma 5.18, one may deduce the
following lemma.

Lemma 5.21. Let (U,α) be the vector given by:

uq =
{
x · e−θ2/M q = 0

0 otherwise and α = d.

Then, B((U,α), δ) ⊆ P .

5.4.2 Optimizing over P

In this subsection, we show how to optimize over the convex set P defined in (44) using the tools
from [LSV17].

Definition 5.22 (Optimization Oracle (OPT(K)) [LSV17]). For a convex set K ⊆ Rm, given a unit
vector c ∈ Rm and a real number δ > 0, with probability 1−δ, the oracle either finds a vector y ∈ Rm
such that y ∈ B(K, δ) and cᵀx 6 cᵀy + δ for all B(K,−δ), or asserts B(K,−δ) is empty.

The next lemma, combined with Lemma 5.12 shows that in order to solve ApproxRep(x, θ, ε;W), it
suffices to give an optimization oracle for P , OPT(P).

Lemma 5.23. Let (U,α) be the response to a call to OPT(P) with vector c = (0, . . . , 0,−1) and
δ = ε

2e|QM |d , and let V = (vq : q ∈ QM) be given by vq = uq
max{eq ,1} . Then, (V,α) is a feasible solution

for Rep(x, θ, ε;W) and the optimum of Rep(x, θ, ε;W) is at least α− 5ε.

Proof. Note from Lemma 5.19 that B(P,−δ) is non-empty, so that OPT(P) always returns a vector
(U,α) ∈ (R2d)|QM | × R such that (U,α) ∈ B(P, δ) and α′ > α − δ for all (U ′,α′) ∈ B(P,−δ). We
note that by Lemma 5.18, (V, q) is feasible for Rep(x, θ, ε;W).

Additionally, let (U ′,α′) where U ′ = (v′q max{eq, 1} : q ∈ QM) where the vectors v′q define f̃x
from (38) according to (36), and α′ = ‖f̃x‖F. By Lemma 5.19, (U ′,α′) ∈ B(P,−δ), which implies
α− δ 6 α′ = ‖f̃x‖F, and by (42), ‖f̃x‖F 6 (1 + ε

d2)‖x‖θ . Finally, using Claim 5.16, and the fact
that Rep(x, θ, ε;W) 6 2d,

α 6 Rep(x, θ, ε;W) + 2ε
d + 4ε+ δ 6 Rep(x, θ, ε;W) + 5ε,

which completes the proof.

Given Lemma 5.23 and Lemma 5.12, in order to solve ApproxRep(x, θ, 8ε;W) it suffices to give an
algorithm which solves OPT(K) with a unit vector c and error δ in time poly(dε ,

1
δ). In order to

do this, we will utilize the reduction from [LSV17] which reduces the optimization problem to the
separation problem.

43

Definition 5.24 (Separation Oracle (SEP(K)) [LSV17]). For a convex set K ⊆ Rm, given a vector
y ∈ Rm and a real number δ > 0, with probability 1− δ, the oracle either asserts y ∈ B(K, δ), or
finds a unit vector c ∈ Rm such that cᵀx 6 cᵀy + δ for all x ∈ B(K,−δ).

Theorem 9 (Theorem 15 from [LSV17]). Let K ⊆ Rm be a convex set satisfying B(0, r) ⊆ K ⊆
B(0, 1), and let κ = 1

r . For any δ ∈ (0, 1), with probability 1−δ, one can compute OPT(K) with a unit
vector c and parameter δ with O(m log(mκδ)) calls to SEP(K) with error parameter δ′ = poly(m, δ, 1

κ)
and poly(m, log(κδ)) additional time.

Given Theorem 9, we give an algorithm which solves OPT(P) using calls to SEP(P).

Lemma 5.25. There exists an algorithm for OPT(P) with a unit vector c and error parameter δ
making poly

(
d
ε , log

(
1
δ

))
calls to SEP(P) with error parameter δ′ = poly

(
d
ε , δ
)
and poly

(
d
ε , log

(
1
δ

))
additional time.

Proof. Recall that by Lemma 5.21, there exists a vector (U0,α0) ∈ B(P,−δ), which we may
compute algorithmically. This implies that the set P ′ = {(U,α) − (U0,α0) : (U,α) ∈ P}, has
B(0, δ) ⊆ P ′ ⊆ B(0, 2R). This in turn, implies that the set P0 = { 1

2R(U,α) : (U,α) ∈ P ′} has
B(0, δ

2R) ⊆ P0 ⊆ B(0, 1). Suppose (Ũ , α̃) is the output of OPT(P0) with a unit vector c and error
parameter δ

2R . In addition, one may easily verify that 2R(Ũ , α̃) + (U0,α0) is a valid output for
OPT(P) with unit vector c and error parameter δ.

Given Theorem 9, and the fact that R = poly(d/ε), it suffices to show that one may implement
SEP(P0) with SEP(P). Consider a call to SEP(P0) with some point (U,α) and error parameter δ′ > 0.
Let (Ũ , α̃) = 2R(U,α) + (U0,α0). Then if (Ũ , α̃) ∈ B(P, 2Rδ′), then (U,α) ∈ B(P0, δ

′). If c is a unit
vector where cᵀ · (U ′,α′) 6 cᵀ · (Ũ , α̃) + 2Rδ′ for all (U ′,α′) ∈ B(P,−2Rδ′), then, the vector c is a
valid output of SEP(P0).

Thus, given Lemma 5.25, it suffices to design an algorithm for SEP(P) which runs in poly
(
d
ε , δ
)

time with error parameter δ.

Lemma 5.26. There exists an oracle for SEP(P) with error parameter δ which makes poly
(
d
ε

)
calls

to an oracle SEP(BW) with error parameter δ′ = poly
(
d
ε ,

1
δ

)
and takes poly

(
d
ε

)
additional time.

Proof. Consider some (U,α) ∈ (R2d)|QM | × R with U = (uq : q ∈ QM) which is an input to SEP(P)
with error parameter δ. Let V = (vq : q ∈ QM) have vq = uq

max{eq ,1} . The algorithm proceeds as
follows:

1. First, check whether constraint (v) in (44) is violated by computing ‖(U,α)‖22 in poly
(
d
ε

)
time

since H = `2d2 . If ‖(U,α)‖22 6 R2, then continue. Otherwise, we output the vector c = (U,α)
‖(U,α)‖2

,
which is a valid output of SEP(P).

2. Second, we may think of UM as the 2d× |QM | matrix, whose columns are the vectors vq ∈ R2d.
Thus, the constraints (ii–iv) may be written as ‖UMγ‖H 6 λ for some γ ∈ R|QM | which is
a column vector. If none of the constraints (ii–iv) are violated, then we continue. If some

44

constraint is violated, i.e., ‖UMγ‖H > λ, let b = UMγ, so that bᵀUMγ
‖b‖H > λ, but any (U ′,α′) ∈ P

with ‖U ′Mγ‖H 6 λ has bᵀU ′Mγ
‖b‖H 6 λ. Thus, we consider the vector c = (γqb

‖b‖H ∈ R2d : q ∈
QM)× (0) ∈ (R2d)|QM |×R, so that cᵀ · (U,α) = bᵀUMγ

‖b‖H . Thus, c
‖c‖2

is a valid output for SEP(P).

3. Finally, we consider constraint (i), which may be written as ‖UMγ‖W 6 λ for some λ ∈ R
with λ ∈ (ε2 , 2R). For each constraint of type (i), we query the oracle SEP(BW) on the
vector y = UMγ(1+δ′d)

λ with error parameter δ′ (which we specify later). If SEP(BW) asserts
y ∈ B(BW , δ′), then ‖UMγ‖W 6 λ. So if all oracle calls to SEP(BW) assert y ∈ B(BW , δ′),
then since constraints (ii–v) are satisfied as well, we have (U,α) ∈ P , so we may assert
(U,α) ∈ B(P, δ).
Otherwise, suppose ‖UMγ‖W > λ. Then, we have

λ

d 6 ‖UMγ‖H 6
∑
q∈Q
|γq|‖uq‖H 6 ‖γ‖1 ·M · d.

In this case, SEP(BW) outputs a unit vector b ∈ R2d where bᵀỹ 6 bᵀy+δ′ for all ỹ ∈ B(BW ,−δ′).
So suppose (Ũ , α̃) ∈ P and in particular, ‖ŨMγ‖W 6 λ. Then, letting ỹ = ŨMγ(1−δ′d)

λ , we have
ỹ ∈ B(BW ,−δ′). Therefore,

bᵀŨMγ 6 bᵀUMγ+ δ′λ+ δ′d‖b‖2‖ŨMγ‖H 6 bᵀUMγ+ 2δ′λd.

Similarly to step 2 above, we consider the vector c = (γqb : q ∈ QM) × (0) ∈ (R2d)|QM | × R
which satisfies bᵀUMγ = cᵀ(U,α) for all (U,α). Recall that since b is a unit vector in R2d, we
have ‖c‖2 = ‖γ‖2 > ‖y‖1

2d|QM | >
ε

4dd2M |QM | , which in turn, implies that:

cᵀ

‖c‖2
· (Ũ , α̃) 6 cᵀ

‖c‖2
· (U,α) + 8dλd3M |QM |

ε
· δ′ 6 cᵀ

‖c‖2
· (U,α) + δ,

when δ′ = δε

8dRd3M |QM |
.

Finally, we will use a reduction from [LSV17], which asserts that one may implement SEP(BW) with
MEM(BW).

Theorem 10 (Theorem 14 from [LSV17]). Let K ⊆ Rm be a convex body satisfying B(0, r) ⊆ K ⊆
B(0, 1), and let κ = 1

r . For any δ ∈ (0, 1), with probability 1 − δ, one can compute SEP(K) with
error parameter δ with O

(
m log

(
mκ
δ

))
calls to MEM(K) with error parameter δ′ = poly(δ, 1

κ ,
1
m) and

poly(m, log(κδ)) time.

Lemma 5.27. There exists an algorithm for SEP(BW) with parameter δ which makes poly
(
d
ε , log

(
1
δ

))
calls to MEM(BW) with parameter δ′ = poly(δ, εd).

Proof. We simply use Theorem 14 from [LSV17], where we note that BW ⊆ B2 ⊆ dBW , which
implies that B(0, 1

d) ⊆ BW ⊆ B(0, 1).

45

5.5 Summary and instantiation for applications

From the discussion above, we may conclude the following theorem, whose proof simply follows
by combining the reductions given in Lemma 5.12, Lemma 5.23, Lemma 5.25, Lemma 5.26, and
Lemma 5.27.

Theorem 11. There exists an algorithm which solves ApproxRep(x, θ, ε;W) with probability at least
1− poly(ε, 1

d) making poly(d, 1
ε) calls to MEM(W) and using poly(d, 1

ε) additional time.

In order to see how the above algorithm will be applied, recall from our discussion in Subsection 2.1,
that in designing algorithms for ANN over X, we will assume oracle access to the real normed space
X = (Rd, ‖ · ‖X).

Lemma 5.28. Let ε < 1
10 and assume access to computing ‖ · ‖X , where X = (Rd, ‖ · ‖X) is a real

normed space with
BX ⊆ B2 ⊆ d ·BX ,

for d = poly(d). Given a vector x ∈ Cd with ‖x‖XC, one can compute a multiplicative (1 ± 4ε)-
approximation to ‖x‖XC in time poly(d/ε).

Proof. Let x = u + iv ∈ Cd. We note that we may compute ‖x‖H for H = (`d2)C, so that the
vector y = x

‖x‖H satisfies 1 6 ‖y‖XC 6 d. Thus, we may assume without loss of generality that
1 6 ‖x‖XC 6 d. For a parameter P > 0 (which we set briefly to poly(d/ε), consider the set:

D(C)
P =

{
k

P
: 0 6 k 6 2πP

}
.

Then, we note that by differentiation, we have that for all ϕ ∈ [0, 2π], if we let ϕ̃ ∈ D(C)
P be the

smallest element greater than ϕ, when P = 2R
ε ,

‖u cos ϕ̃+ v sin ϕ̃‖X − ε 6 ‖u cosϕ+ v sinϕ‖X 6 ‖u cos ϕ̃+ v sin ϕ̃‖X + ε.

The value `XC(x) = 1
π·|D(C)

P |

∑
ϕ̃∈D(C)

P

‖u cos ϕ̃+ v sin ϕ̃‖2X may be computed in poly(dε , R) time with
access to ‖ · ‖X , and we have:

(1− 2ε)`XC(x) 6 1
π

∫ 2π

0
‖u cosϕ+ v sinϕ‖2Xdϕ 6 (1 + 2ε)`XC(x) + ε2.

Therefore, we have (1 − 2ε)`XC(x) 6 ‖x‖XC and ‖x‖XC 6 (1 + 2ε)`XC(x) + ε‖x‖XC , so ‖x‖XC 6
(1 + 4ε)`XC(x).

Given Lemma 5.28, we may now design a membership oracle for BXC .

Lemma 5.29. Assume oracle access to a real normed space X = (Rd, ‖ · ‖X) with

BX ⊆ B2 ⊆ d ·BX .

Let BXC ⊆ R2d be the convex set given by the unit ball BXC ⊆ Cd. There exists an membership
oracle MEM(BXC) running in time poly(d, 1

δ).

46

Proof. Given a vector y ∈ R2d, first compute ‖y‖2, and if ‖y‖2 > 1, assert that y /∈ B(BXC ,−δ)
since y /∈ B2 and BXC ⊆ B2. We interpret the vector y ∈ Cd and compute `XC(y) ∈ R>0 satisfying

‖y‖XC 6 `XC(y) 6
(

1 + δ

2‖y‖2

)
‖y‖XC . (45)

Note that since ‖y‖2 6 1, the computing `XC(y) takes poly(d, 1
δ) time by Lemma 5.28. If `XC(y) 6 1,

then by (45), ‖y‖XC 6 1, i.e, y ∈ BXC . This means we may safely assert that y ∈ B(XC, δ).
On the other hand, if `XC(y) > 1, then by (45), ‖y‖XC > 1

1+ δ
2‖y‖2

. Therefore, ‖y + δy
‖y‖2
‖XC =

(1+ δ
‖y‖2

)‖y‖XC > 1, which implies that B(y, δ) /∈ BXC , i.e., we may safely assert y /∈ B(BXC ,−δ).

Looking ahead to Section 7 and Section 8, as well as the discussion from Section 4, starting from
oracle access to the normed space X = (Rd, ‖ · ‖X), we will consider the normed spaces

A = [XC, H]α and Y = [A,H]β,

for some values of α,β ∈ (0, 1) with 1
d 6 α,β 6 1 − 1

d (which implies Λ(α,α) and Λ(β,β) are at
most poly(d)). During the course of the algorithms in Section 7 and Section 8, we will need to
compute ApproxRep(x,β, ε;A), which is needed for computing norms ‖x‖Y as well as approximate
representatives in F defined by the couple [A,H]θ in the definition of Section 4.

From Theorem 11, we consider the setting with W = A, so it suffices to construct an oracle MEM(BA)
which runs in poly(d, 1

δ) time. Note that we do not have oracle access to ‖ · ‖A (which would give
MEM(BA)). However, by Corollary 5.3, we may design MEM(BA) running in poly(d, 1

δ) time by solving
ApproxRep(x,α, δ;XC) again. Thus, we construct MEM(BA) by using Theorem 11, this time with
W = XC, to solve ApproxRep(x,α, δ;XC) using poly(d, 1

δ) time and oracle calls to MEM(XC). Finally,
Lemma 5.29 shows how to solve MEM(XC) in poly(d, 1

δ) time from oracle access to ‖ · ‖X . We thus
conclude the discussion below into the following corollary.

Corollary 5.30. Assume oracle access to a real normed space X = (Rd, ‖ · ‖X) with

BX ⊆ B2 ⊆ d ·BX ,

where d = poly(d). Then, letting H = (`d2)C,

A = [XC, H] and Y = [A,H],

there exists a poly(d/ε) time algorithm which for each x ∈ Cd, computes a (1± ε)-approximation to
‖x‖Y with probability at least 1− ε.

6 Nonlinear Rayleigh quotient inequalities

6.1 High-level overview

In this section, we prove various nonlinear Rayleigh quotient inequalities using the approximate Hölder
homeomorphism from Section 4. We refer the reader to the summary of the discussion of Section 4
in Subsection 4.3, where we collect the necessary properties of the approximate homeomorphism in
Corollary 4.10 and Lemma 4.12. We recall the definition of the nonlinear Rayleigh quotient.

47

Definition 6.1 (Nonlinear Rayleigh quotient). For any G ∈ ∆(m), any metric space (X, dX), and
any x = (x1, . . . , xm) ∈ Xm, we denote:

R(x, G, dqX) =
∑m
i=1

∑m
j=1 gijdX(xi, xj)q∑m

i=1
∑m
j=1 ρ(i)ρ(j)dX(xi, xj)q

,

where ρ(i) =
∑m
j=1 gij denotes the row sums.

At a high level, the goal is to use the approximate Hölder homeomorphism to relate a nonlinear
Rayleigh quotient in one normed space, to a nonlinear Rayleigh quotient in another normed space.
In particular, we seek to derive a relationship between the nonlinear Rayleigh quotient of a matrix
G ∈ ∆(m) and sequence of points x ∈ (Cd)m lying in a Banach space X = (Cd, ‖ · ‖X) and the
nonlinear Rayleigh quotient of the same matrix G with a transformed set of points y ∈ (Cd)m in a
Hilbert space H = (Cd, ‖ · ‖H). The key properties that we need is that 1) the underlying matrix G
remains the same, and 2) the transformation x 7→ y depends very little on G and on x, i.e., the
transformation can be encoded with succinctly.

Considering the exact homeomorphism Φ0 : Cd → Cd (from Corollary 4.10 with ε = 0), we note that
the arguments from from Lemma 6.3 and Lemma 6.5 applied to Φ0 give the following lemma.

Lemma 6.2. Let X = (Cd, ‖ · ‖X) be a Banach space and H = (Cd, ‖ · ‖H) be a Hilbert space
satisfying:

BX ⊆ BH ⊆ d ·BX .
For any G ∈ ∆(m) and any x = (x1, . . . , xm) ∈ (Cd)m, there exists a point z ∈ Cd such that letting
y = (y1, . . . , ym) ∈ (Cd)m be yi = Φ0(xi − z) satisfies:

R(y, G, ‖ · ‖2H) . log4 d · R(x, G, ‖ · ‖2X)
√

log log d
log d .

Note that the above lemma indeed satisfies the two key properties: both nonlinear Rayleigh quotients
use the same matrix G, and the map x 7→ y is specified by z since Φ0 is independent of G and
x. However, since we will use the nonlinear Rayleigh quotients algorithmically, the computational
efficiency of Φ0 and the representation of z becomes an issue. In particular, instead of the exact
map Φ0, we have to settle for an approximation Φε : Cd → Cd from Corollary 4.10 for some specified
ε > 0, and instead of storing z (which may be an arbitrary complex vector), we need to round z to a
bounded number of bits of precision.

Let us briefly describe how these issues manifest themselves in the more complicated statement
of the nonlinear Rayleigh quotient inequality in Lemma 6.6. First, we will require that the points
x ∈ (Cd)m and z ∈ Cd be such that the approximate map Φε applied to points xi− z has the desired
Hölder properties. We achieve this condition by requiring that ‖xi − z‖X is not too large, and that
the points x are not too close to each other. Second, we will want our inequality to be robust
to small changes in z, which will allow us to round z to polynomially many bits, as well as small
changes in G. In order to do this, we will require that points in x are “spread out” with respect to
the distribution induced on points by the row sums of G.

Even though our applications require setting ε > 0, we encourage the reader to first consider the case
when ε = 0. This case highlights the conceptual ideas in this section, and the particular parameter
settings for ε > 0 are very loose, since our algorithm will allow us to set ε = 1

dO(1) .

48

In Section 7, we show how these inequalities are used in order to construct efficient partitions of
points in an arbitrary normed space. We first show how to derive nonlinear Rayleigh quotient
relationships given an approximate Hölder homeomorphism with a mild condition on the points.
This is done in Lemma 6.3 in Subsection 6.2, and the mild condition on the points requires the image
of points after the map be in a roughly centered position. We then show in Lemma 6.5 that a rough
centering may be achieved by translating the original points by some vector whose norm is not too
large. Finally, Lemma 6.6 in Subsection 6.3 shows how to combine the results from Subsection 6.2
and Section 4 in order to relate the nonlinear Rayleigh quotient of any norm to that of a Hilbert
space.

6.2 Relating nonlinear Rayleigh quotients with Hölder homeomorphisms

Consider two Banach spaces Y = (Cd, ‖ · ‖Y) and Z = (Cd, ‖ · ‖Z) and let R > 1 be a large parameter
and ε > 0 be a small parameter, p > 1, r > 1

p and C > 1. Suppose there exists a map Φ: Y → Z

satisfying the following conditions of Corollary 4.10 and Lemma 4.1210:

• For every x ∈ Cd,

‖x‖rY 6 2‖Φ(x)‖Z 6 4‖x‖rY , (46)

• For every x, y ∈ Cd with ‖x‖Y , ‖y‖Y 6 R and ‖x− y‖Y > ε,

‖Φ(x)− Φ(y)‖Z 6 C‖x− y‖1/pY

(
‖x‖r−1/p

Y + ‖y‖r−1/p
Y

)
. (47)

• Every x ∈ Cd satisfies

‖Φ(x)− Φ0(x)‖Z . εr‖x‖
r− 1

p

Y , (48)

where Φ0 : Y → Z is a homeomorphism such that for every x ∈ Cd, ‖Φ0(x)‖Z = ‖x‖rY and for
every x, y ∈ Cd,

‖Φ0(x)− Φ0(y)‖Z 6 C‖x− y‖1/pY

(
‖x‖r−1/p

Y + ‖y‖r−1/p
Y

)
. (49)

For the remainder of this section, we fix ε > 0 to be a small enough parameter and refer to Φ: Y → Z
as the map satisfying the properties from above.

Lemma 6.3. Let G ∈ ∆(m) with row sums ρ(i) =
∑m
j=1 gij. Suppose x = (x1, . . . , xm) ∈ (Cd)m,

y = (y1, . . . , ym) ∈ (Cd)m, and δ ∈ Cd satisfy:

• ‖xi‖Y 6 R for all i ∈ [m], and ‖xi − xj‖Y > ε for i 6= j ∈ [m],

• yi = Φ(xi) for all i ∈ [m], and δ =
∑m
i=1 ρ(i)yi,

10Note that these are only the first two-conditions in Corollary 4.10, where we note that we will have ε� 1
r
, so that

(1− ε)r‖x‖rY 6 ‖Φε(x)‖Z implies ‖x‖rY 6 2‖Φε(x)‖Z .

49

• ‖δ‖2Z 6 1
8
(∑m

i=1 ρ(i)‖xi‖2rY
)
.

Then,
R(y, G, ‖ · ‖2Z) 6 256C2 · R(x, G, ‖ · ‖2rY)

1
rp .

Proof. We use the first property of Φ, along with the definition of δ to say:

m∑
i=1
ρ(i)‖xi‖2rY

(46)
6 2

m∑
i=1
ρ(i)‖yi‖2Z = 2

m∑
i=1
ρ(i)

∥∥∥∥∥∥yi −
m∑
j=1

ρ(j)yj + δ

∥∥∥∥∥∥
2

Z

6 4
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖yi − yj‖2Z + 4‖δ‖2Z .

This, along with the upper bound on ‖δ‖2Z and the definition of R(y, G, ‖ · ‖2Z), implies:

m∑
i=1
ρ(i)‖xi‖2rY 6 8

m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖yi − yj‖2Z

6
8

R(y, G, ‖ · ‖2Z)

m∑
i=1

m∑
j=1

gij‖yi − yj‖2Z .

We now use the second condition of the map Φ to conclude:
m∑
i=1
ρ(i)‖xi‖2rY

(47)
6

8C2

R(y, G, ‖ · ‖2Z)

m∑
i=1

m∑
j=1

gij‖xi − xj‖2/pY

(
‖xi‖r−1/p

Y + ‖xj‖r−1/p
Y

)2
. (50)

Applying Hölder’s inequality to the right-hand side of (50) with exponents rp and rp
rp−1 ,

m∑
i=1

m∑
j=1

gij‖xi − xj‖2/pY

(
‖xi‖r−1/p

Y + ‖xj‖r−1/p
Y

)2

6

 m∑
i=1

m∑
j=1

gij‖xi − xj‖2rY

 1
rp
 m∑
i=1

m∑
j=1

gij
(
‖xi‖r−1/p

Y + ‖xj‖r−1/p
Y

) 2rp
rp−1

rp−1
rp

6 4

 m∑
i=1

m∑
j=1

gij‖xi − xj‖2rY

 1
rp (m∑

i=1
ρ(i)‖xi‖2rY

) rp−1
rp

, (51)

where in the last inequality, we used the fact that
m∑
i=1

m∑
j=1

gij
(
‖xi‖r−1/p

Y + ‖xj‖r−1/p
Y

) 2rp
rp−1 6

m∑
i=1

n∑
j=1

gij

(
2‖xi‖

(r− 1
p

)· 2rp
rp−1

Y + 2‖xj‖
(r− 1

p
)· 2rp
rp−1

Y

)

= 2
m∑
i=1
ρ(i)‖xi‖2rY + 2

m∑
j=1

ρ(j)‖xj‖2rY = 4
m∑
i=1
ρ(i)‖xi‖2rY ,

50

as well as the fact that 4
rp−1
rp 6 4 since rp > 1. Thus, combining (50) and (51), we have:

(
m∑
i=1
ρ(i)‖xi‖2rY

) 1
rp

6
32C2

R(y, G, ‖ · ‖2Z)

 m∑
i=1

m∑
j=1

gij‖xi − xj‖2rY

 1
rp

. (52)

Finally, note that:
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖xi − xj‖2rY 6
m∑
i=1

m∑
j=1

ρ(i)ρ(j) (‖xi‖Y + ‖xj‖Y)2r 6 2 · 4r
m∑
i=1
ρ(i)‖xi‖2rY . (53)

Thus combining (52) and (53), we may write:(
1

2 · 4r · R(x, G, ‖ · ‖2Y)

) 1
rp

6
32C2

R(y, G, ‖ · ‖2Z)
,

and the fact that 2
1
rp 4

1
p 6 8 gives the final result.

Note that Lemma 6.3 assumed a mild condition on the points. In particular, we assumed that
y ∈ (Cd)m satisfied that the average (according to ρ) given by δ =

∑m
i=1 ρ(i)yi is somewhat centered,

i.e., ‖δ‖2Z 6 1
8
(∑m

i=1 ρ(i)‖xi‖2rY
)
. Lemma 6.5 asserts that we may translate all original points

x ∈ (Cd)m by a point z ∈ Cd in order to control ‖δ‖Z without ‖z‖Y being too large. In order to
prove it, we will need the following claim from [ANN+17].

Claim 6.4 (Claim 8.8 from [ANN+17]). Let r be a positive integer and h : Rr → Rr be a continuous
map such that for some norm ‖ · ‖ on Rr one has:

‖h(w)− w‖ = o(‖w‖)

as w →∞. Then, h is surjective.

Lemma 6.5. Let G ∈ ∆(m) with row sums ρ(i) =
∑n
j=1 gij, and let R0 6 R be a positive parameter.

Suppose that x = (x1, . . . , xm) ∈ (Cd)m satisfies:

• ‖xi‖Y 6 R0 for all i ∈ [m], and

• ‖xi − xj‖Y > ε for i 6= j ∈ [m].

Then, there exists a point z ∈ Cd with ‖z‖Y 6 (6C)pR0 written with poly(d, log(1
ε), log(R0), log(C), p, r)

bits such that:

δ =
m∑
i=1
ρ(i)Φ(xi − z) satisfies ‖δ‖Z 6 2εr

m∑
i=1
ρ(i)‖xi − z‖

r− 1
p

Y + εrp.

Proof. We will prove that there exists a point z ∈ Cd with ‖z‖Y 6 (6C)pR0 such that

δ0 =
m∑
i=1
ρ(i)Φ0(xi − z) = 0.

51

For any z′ ∈ Cd with ‖z − z′‖Y 6 (εr2C)p, which is obtained if we round coordinates of z to
poly(log d, log(1

ε), log(R0), log(C), p, r) many bits, we have that δ′0 =
∑m
i=1 ρ(i)Φ0(xi − z′) satisfies:

‖δ′0‖Z 6
m∑
i=1
ρ(i)‖Φ0(xi − z′)− Φ0(xi − z)‖Z

6 C · ‖z − z′‖1/pY

m∑
i=1
ρ(i)

(
‖xi − z′‖r−1/p

Y + ‖xi − z‖r−1/p
Y

)
6 εr

m∑
i=1
ρ(i)‖xi − z‖r−1/p

Y + εrp.

Since Φ(xi − z′) is close to Φ0(xi − z′) for every xi, we obtain:

‖δ‖Z − ‖δ′0‖Z 6 ‖δ− δ′0‖Z 6
m∑
i=1
ρ(i)‖Φ(xi − z)− Φ0(xi − z)‖

(48)
6 εr

m∑
i=1
ρ(i)‖xi − z‖

r− 1
p

Y ,

which would give the desired upper bound on ‖δ‖Z . Towards this goal, consider the continuous map
h : Z → Z given by:

h(u) =
m∑
i=1
ρ(i)Φ0

(
xi − Φ−1

0 (u)
)
,

where we have:

‖h(u)− u‖Z 6
m∑
i=1
ρ(i)

∥∥∥Φ0
(
xi − Φ−1

0 (u)
)
− Φ0

(
Φ−1

0 (u)
)∥∥∥

Z

(49)
6 C

m∑
i=1
ρ(i)‖xi‖1/pY

(
‖xi − Φ−1

0 (u)‖r−1/p
Y + ‖Φ−1

0 (u)‖r−1/p
Y

)
6

(
2C

m∑
i=1
ρ(i)‖xi‖rY

)
+
(

3C
m∑
i=1
ρ(i)‖x‖1/pY

)
‖u‖

1− 1
rp

Z , (54)

where we used the triangle inequality and the fact ‖Φ−1
0 (u)‖rY = ‖u‖Z . Therefore, from (54) we

conclude that h : Cd → Cd is a continuous map with ‖h(u)−u‖Z = o(‖u‖Z) as ‖u‖Z → ∞, thus, we
may view h : R2d → R2d as a continuous which by Claim 6.4 implies h is surjective. Thus, consider
the value u ∈ Cd where h(u) = 0, and let z = Φ−1

0 (u).

Suppose that ‖u‖Z > 4C
∑n
i=1 ρ(i)‖xi‖rY , then since h(u) = 0, (54) implies:

‖u‖Z 6

(
6C

n∑
i=1
ρ(i)‖xi‖1/pY

)
‖u‖

1− 1
rp

Z ,

which implies

‖z‖Y = ‖u‖1/rZ 6

(
6C

n∑
i=1
ρ(i)‖xi‖1/pY

)p
6 (6C)pR0.

In the other case, we have:

‖z‖Y = ‖u‖1/rZ 6

(
4C

n∑
i=1
ρ(i)‖xi‖rY

)1/r

6 (4C)1/rR 6 (6C)pR0,

since r > 1
p .

52

6.3 A nonlinear Rayleigh quotient inequality for general norms

The goal of this subsection is to combine the results from Section 4 with Lemma 6.3 and Lemma 6.5
to relate the nonlinear Rayleigh quotient on an arbitrary norm to a nonlinear Rayleigh quotient in a
Hilbert space. The main lemma of this section is the following:

Lemma 6.6. Let X = (Cd, ‖ · ‖X) be a Banach space and H = (Cd, ‖ · ‖H) be a Hilbert space
satisfying:

BX ⊆ BH ⊆ d ·BX ,

where d = poly(d), and let 0 < ε0 <
1

10d and R0 > 1 be two parameters. There exists a map Φ: Cd →
Cd, such that for any G ∈ ∆(m) with row sums ρ(i) =

∑m
j=1 gij, and any x = (x1, . . . , xm) ∈ (Cd)m

satisfying:

• ‖xi‖X 6 R0 for all i ∈ [m], and

• ‖xi − xj‖X > ε0 for all i 6= j ∈ [m], and
∑m
i=1

∑m
j=1 ρ(i)ρ(j)‖xi − xj‖X > ε0.

There exists a point z ∈ Cd with ‖z‖X 6 R0 · d2 written with poly(d, log(R0), log(1
ε0

)) bits such that
letting y = (y1, . . . , ym) ∈ (Cd)m be yi = Φ(xi − z) satisfies:

R(y, G, ‖ · ‖2H) . log4 d · R(x, G, ‖ · ‖2X)
√

log log d
log d .

In addition, the map Φ: Cd → Cd is computable in poly(d, 1
ε0
, R0) time.

Proof. Consider the complex Banach space A = [X,H]α, where α =
√

log log d
log d . Since H is a Hilbert

space, we have K2(H) = 1, and we have K∞(X) = 1. Thus, by Lemma 2.14 we have:

Kp(A) 6 K∞(X)1−αK2(H)α 6 1,

when p = 1
α . In addition, we have that for every x ∈ Cd, ‖x‖A 6 ‖x‖X 6 dα‖x‖A, which implies:

R(x, G, ‖ · ‖2A) 6 e2α log d · R(x, G, ‖ · ‖2X). (55)

Consider the complex Banach spaces Y = [A,H]β and Z = [A,H]1−β where β = 1
log d which for

every x ∈ Cd satisfy:

‖x‖Y 6 ‖x‖A 6 dβ‖x‖Y and ‖x‖H 6 ‖x‖Z 6 dβ‖x‖H ,

which allows us to conclude:

R(x, G, ‖ · ‖2Y) . R(x, G, ‖ · ‖2A) and R(y, G, ‖ · ‖2H) . R(y, G, ‖ · ‖2Z). (56)

We apply Corollary 4.10 with parameters

R = R0 · d2 ε = β

5 ·
(

ε0
R · dα+β

)100
r = 1, (57)

53

to obtain the map Φ = Φε : Cd → Cd which by Section 5 is computable in poly(d,R0, ε0) time. We
also note that we have: ‖xi‖Y 6 dα+βR0 6 R

2 for all i ∈ [m] and that ‖xi−xj‖Y > ε for i 6= j ∈ [m].
Letting ρ(i) =

∑m
j=1 gij denote the row sums of G, we may apply Lemma 6.5 to obtain a point

z ∈ Cd with ‖z‖Y 6 R
2 written with poly(d, log(R0), log(1

ε0
)) bits where δ =

∑m
i=1 ρ(i)yi satisfies

‖δ‖Z − εp 6 ε
m∑
i=1
ρ(i)‖xi − z‖

1− 1
p

Y 6 ε

(
m∑
i=1
ρ(i)‖xi − z‖Y

)1− 1
p

,

where we used Jensen’s inequality. Note that

ε0 6
m∑
i=1

m∑
j=1

ρ(i)ρ(j)‖xi − xj‖X 6 2
m∑
i=1
ρ(i)‖xi − z‖X 6 2dα+β

m∑
i=1
ρ(i)‖xi − z‖Y ,

and that εp 6 (ε0
2dα+β)2 6

∑m
i=1 ρ(i)‖xi − z‖2Y . Thus we may conclude using this lower bound and

Jensen’s inequality

‖δ‖2Z 6 8ε2
(

2dα+β

ε0

)2/p m∑
i=1
ρ(i)‖xi − z‖2Y + 2ε2p 6

1
100

m∑
i=1
ρ(i)‖xi − z‖2Y . (58)

Let x′ = (x′1, . . . , x′m) ∈ (Cd)m be x′i = xi − z. These points satisfy ‖x′i‖Y 6 R by the triangle
inequality, and ‖x′i − x′j‖Y > ε for when i 6= j ∈ [m]. These two conditions, along with (58) allows
us to use Lemma 6.3 to obtain

R(y, G, ‖ · ‖2Z) . 1
β2 · R(x′, G, ‖ · ‖2Y)α = 1

β2 · R(x, G, ‖ · ‖2Y)α. (59)

We now combine the nonlinear Rayleigh quotient inequalities obtained to deduce:

R(y, G, ‖ · ‖2H)
(56)
. R(y, G, ‖ · ‖2Z)

(59)
.

1
β2 · R(x, G, ‖ · ‖2Y)α

(56)
.

1
β2 · R(x, G, ‖ · ‖2A)α

(55)
.

1
β2

(
e2α2 log d

)
· R(x, G, ‖ · ‖2X)α.

The last lemma addressed the final point that the inequality from Lemma 6.6 is robust to small
changes in the matrix G. Specifically, we show below that if we remove a small fraction of the rows
and columns of G (with respect to the measure given by ρ), then we may “reuse” the same point z
to derive the same nonlinear Rayleigh quotient inequality with respect to the modified matrix.

Lemma 6.7. Suppose G = (gij)i,j∈[m] ∈ ∆(m). Suppose x,y ∈ (Cd)m and z, δ ∈ Cd satisfy the
properties of Lemma 6.6. Let G′ = (g′ij)i,j∈[m] ∈ ∆(m) be obtained by considering any set S ⊆ [m]
with

∑
i∈S ρ(i) 6 1

poly(1
ε0
,R0,d) , and letting

g′ij =
{

0 i ∈ S or j ∈ S
gij
Z otherwise ,

where Z ∈ R>0 is an appropriate coordinate. Then, if
∑m
i=1

∑m
j=1 ρ

′(i)ρ′(j)‖xi − xj‖ > ε0, we also
have:

R(y, G′, ‖ · ‖2H) . log4 d · R(x, G′, ‖ · ‖2X)
√

log log d
log d .

54

Proof. Let ρ′(i) =
∑m
j=1 g

′
ij be the row sums of G′. Letting

δ′ =
m∑
i=1
ρ′(i)Φ(xi − z),

it remains to upper bound ‖δ′‖2Z 6 1
8
(∑m

i=1 ρ
′(i)‖xi − z‖2X

)
, since then, the same argument as

Lemma 6.6 will give the desired nonlinear Rayleigh quotient inequality. Recall by (58) in Lemma 6.6
that

‖δ‖2Z 6
1

100

m∑
i=1
ρ(i)‖xi − z‖2Y . (60)

Writing ρ(S) =
∑
i∈S ρ(i), and recalling the settings of ε and R in (57), we have that:∥∥∥∥δ′ − δ

Z

∥∥∥∥
Z
6

1
Z

∑
i∈S
ρ(i)‖Φ(xi − z)‖Z

(46)
6

2
Z

∑
i∈S
ρ(i)‖xi − z‖Y 6

2R
Z
· ρ(S) 6 ε2

R
, (61)

where we used the fact that ‖xi − z‖Y 6 R, and that ρ(S) 6 1
poly(1

ε0
,R0,d) . Therefore, we have:

‖δ′‖2H 6
(∥∥∥∥δ′ − δ

Z

∥∥∥∥
Z

+ 1
Z
‖δ‖Z

)2 (61)
6

2ε4

R2 + 2
Z2 ‖δ‖

2
Z

(60)
6

2ε4

R2 + 1
50 · Z2

m∑
i=1
ρ(i)‖xi − z‖2Y

6
2ε4

R2 + 1
25
∑
i/∈S
ρ′(i)‖xi − z‖2Y + ε2 6

1
8

m∑
i=1
ρ′(i)‖xi − z‖2Y ,

where we used the fact that 2dα+β∑m
i=1 ρ

′(i)‖xi − z‖Y >
∑m
i=1

∑m
j=1 ρ

′(i)ρ′(j)‖xi − xj‖X > ε0 to
conclude the last line.

7 ANN via nonlinear Rayleigh quotient inequalities

We now describe a data structure for ANN over an arbitrary normed space X = (Cd, ‖ · ‖X). The
main ingredient is a distribution over subsets of Cd for partitioning X.

Before proceeding with the algorithm, it will be convenient to assume X has some nice properties
(without loss of generality). First, we assume that the unit ball of X is close to (`22)C, i.e.,

B2 ⊆ BX ⊆ d ·B2,

for d = poly(d) where B2 represents the unit ball of (`d2)C = (Cd, ‖ · ‖`C2), which is isomorphic to
`2d2 = (R2d, ‖ · ‖2) considering the imaginary parts as distinct coordinates (see Section 2). We will
consider the finite metric space given by rounding coordinates of points to O(log d) many bits within
R0BX and measuring distance with respect to the norm ‖ · ‖X . We use the following setting

ε0 = 1
d100 and R0 = O(d2).

We slightly abuse notation by denoting the set

X = {x ∈ Cd : ‖x‖X 6 R0, and coordinates of x are rounded to c0 log d bits}

55

for some constant c0 > 0, in order to consider the metric space (X, dX), where dX(x, y) = ‖x− y‖X .
We may pick the constant c0 so that X is ε0-separated and 1

d -covering with respect to distances in
‖ · ‖X . Following the reduction from Section 5 of [ANN+18], it suffices to design an ANN algorithm
for (X, dX). While it was not crucial in [ANN+18], we will rely on the property that for x, y ∈ X,
‖x− y‖X > ε0 as it allows us to use the Rayleigh quotient inequality from Lemma 6.6.

In what follows, we assume that real numbers are written with poly(log d) bits of precision.

7.1 Efficient partitions of normed spaces

In this subsection, we state the main partitioning lemma for normed spaces. We let H be the set of
coordinate cuts in R2d.11 In particular, each H ∈ H is specified by a index i ∈ [2d], a real number
t ∈ R, and a direction {“+”, “−”}. We interpret H = (i, t, s) as a set specified by an axis-aligned
hyperplane separator with respect to coordinate i with threshold at t and direction s, i.e., we write:

H =
{
{x ∈ R2d : xi > t} s = “+”
{x ∈ R2d : xi 6 t} s = “−” .

A box in R2d is the intersection of coordinate cuts, and we note that a box may be encoded with at
most 4d coordinate cuts. We let B be the set of all boxes in R2d. We note two simple facts about
boxes in R2d. The first is that given the description of a box B in R2d (by at most 4d coordinate
cuts), for any point x ∈ R2d, one can determine whether x ∈ B or not in O(d) time. The second
fact is that the intersection of two boxes in R2d is also a box in R2d.

Given a map f : X → R2d, we consider boxes in X after being transformed by the map. More
specifically, for a map f : X → R2d and a box B ∈ B, the box transformed by f is the set

B ◦ f = {x ∈ X : f(x) ∈ B}.

The theorem below gives the partitioning result of a set of points in the normed space X. It shows
that, for every n-point subset of X either there exists a dense ball in X, or there exists a distribution
over efficient subsets of X which partition the n points into two nearly-balanced parts without
separating “close” points too often. We will require two properties from “efficient subsets” of X.
First, the encoding of a set should require at most poly(d) space, and second, there should be a
poly(d) time algorithm which determines whether a point lies in the set.

The distributions will be supported on the following family of sets:

S =
{

k⋂
i=1

Bi ◦ Φzi : z1, . . . , zk ∈ Cd, B1, . . . , Bi ∈ B and 1 6 k 6 poly(d)
}
,

where the map Φz : Cd → R2d is the result of “decomplexification” of the map x 7→ Φ(x− z), where
Φ is specified by Lemma 6.6. More specifically, for a subset S ∈ S with

S =
k⋂
i=1

Bi ◦ Φzi ,

11We will work in R2d since `2d
2 is isomorphic to (`d2)C (see Complexification in Section 2). We will use the nonlinear

Rayleigh quotient inequalities relating X = (Cd, ‖ · ‖X) to (`d2)C = (Cd, ‖ · ‖`C2) and immediately interpret points in
(`d2)C as being in `2d

2 by splitting all d coordinates of Cd from C to R× R encoding the real and imaginary parts.

56

we may determine if x ∈ S by the following procedure: for all i ∈ [k], 1) compute yi = Φ(x−zi) ∈ Cd,
2) interpret yi ∈ R2d by expanding each coordinate of yi into two coordinates encoding the real and
imaginary parts, and 3) x ∈ S if all i ∈ [k] satisfy yi ∈ Bi, otherwise, x /∈ S.

Theorem 12. Fix ε ∈ (0, 1
2), n ∈ N and let P be any n-point dataset in X, either there exists a

ball of radius (c1 log2 d
ε)

√
log d

log log d containing n
50 points from P for some universal constant c1 > 0, or

there exists a distribution D supported on S such that:

• For every two x, y ∈ X with ‖x− y‖X 6 1,

Pr
S∼D

[S separates (x, y)] 6 ε,

• For every set S ∈ D, we have
1

100 6
|P ∩ S|
n

6
99
100 .

We prove the above theorem by proving one partitioning lemma, and then building the distribution
according to [ANN+18]. Following the notation from [ANN+18], we consider the space of all non-
negative symmetric m × m matrices whose entries sum to 1 and denote this space ∆(m). For
G = (gij)ij ∈ ∆(m), we denote ρG : [m] → R and the row sums, i.e., ρG(i) =

∑m
j=1 gij , and for a

subset S ⊆ [m], we let ρG(S) =
∑
i∈S ρG(i).

We associate G ∈ ∆(m) with a sequence of points x = (x1, . . . , xm) ∈ Xm, where xi corresponds to
row/column i. Therefore, we may view ρG as giving a probability distribution supported on the
points x. We will frequently interpret x as a set of m points in X. For instance, given a subset
S ⊆ X and a real number γ ∈ [0, 1], we will say that S is γ-dense with respect to G and x if
ρG(S ∩ x) = γ, where S ∩ x denotes the set of points in x lying in S.

The main step of the proof of Theorem 12 is the following lemma (Lemma 7.1). Having established
this upcoming lemma, the proof of Theorem 12 follows in exactly the same way as Section 3 of
[ANN+18].

Lemma 7.1. Let x ∈ XN be the sequence of all points of X, where |X| = N , and let G ∈ ∆(N),
where gij > 0 implies ‖xi − xj‖X 6 1. Then, one of the following must hold:

• there exists a ball of radius (c1 log2 d
ε)

√
log d

log log d which is at least 1
4 -dense with respect to G and x;

• there exists a subset S ∈ S with:

1
3 6 ρG(S ∩ x) 6 3

4 and
∑

i∈S,j /∈S
gij 6 2ε.

Lemma 7.1 above is similar to Lemmas 3.7 and 8.3 of [ANN+18]. We use the Rayleigh quotient
inequality from Lemma 6.6 and Cheeger’s inequality to partition the points x. We note that the cuts
obtained by Cheeger’s inequality form a collection of poly(d) boxes after applying the transformation
Φ. Below is a formal proof.

57

Proof. Consider any G ∈ ∆(N) such that gij > 0 implies ‖xi − xj‖X 6 1. If there is no ball of

radius (c1 log2 d
ε)

√
log d

log log d which is 1
4 -dense with respect to G and x, then,

N∑
i=1

N∑
j=1

ρG(i)ρG(j)‖xi − xj‖2X &

(
c1 log2 d

ε

)2
√

log d
log log d

.

By Lemma 6.6, there exists a point z ∈ Cd with ‖z‖X 6 R0·d such that if we define y = (y1, . . . , yN) ∈
(Cd)N by setting yi = Φ(xi − z), the following holds:

R(y, G, ‖ · ‖2`C2) . log4 d · R(x, G, ‖ · ‖2X)
√

log log d
log d . (62)

Now we use the definition of R(x, G, ‖ · ‖2X), using the fact that ‖xi − xj‖X 6 1 whenever gij > 0,
and (62), we obtain that

R(y, G, ‖ · ‖2`C2) 6 ε2/2,

as long as we set c1 to be a large enough constant. Decomplexifying `C2 to consider `2d2 = (R2d, ‖ · ‖2)
by interpreting the points y ∈ (R2d)N , we have:

R(y, G, ‖ · ‖2) 6 ε2

2 .

This implies that for some coordinate k ∈ [2d], we have R((y)k, G, | · |2) 6 ε2/2, where (y)k =
((y1)k, (y2)k, . . . , (yN)k) ∈ RN is the projection of the points in y onto the k-th coordinate. Therefore,
by Cheeger’s inequality, there exists a threshold t ∈ R and a sign s ∈ {“+”, “−”} such that
the set H ∈ H specified by direction k with threshold t and sign s has ρG(H ∩ y) > 1

2 and∑
i:yi∈H

∑
j:yj 6∈H gij 6 ε.

Note that we obtain a desired partition, modulo the balance condition. Hence, we repeat the above
for a few stages iteratively on the larger side of the cut. In particular, we maintain a box B ∈ B which
is the intersection of the coordinate cuts found by Cheeger’s inequality. While ρG(B∩y) > 1− 1

poly(d) ,
by Lemma 6.7, we may utilize the same point z to obtain another coordinate cut, which decreases
the size of the box. As long as ρG(B ∩y) 6 1− 1

poly(d) , we no longer modify the box, and re-compute
a new center z to start another box B′. Once the intersection of all boxes is less than 3

4 -dense with
respect to G and y, we stop. Repeating this procedure, we obtain at most poly(d) boxes, while
keeping the sparsity condition that

∑
i:yi∈S

∑
j:yj 6∈S gij 6 ε.

7.2 From Theorem 12 to ANN data structures

From Theorem 12, we conclude that the cutting modulus of any norm is bounded by:

Ξ(X, ε) 6
(
c1 log2 d

ε

)√ log d
log log d

,

for some constant c1. Furthermore, the cuts obtained by Theorem 12 can be encoded in poly(d)
many bits (by specifying the poly(d) center points and the poly(d) boxes in Rd). Finally, there

58

exists an algorithm which, given the encoding of a set S ∈ S, as well as a point q ∈ X, can decide in
poly(d)-time whether q ∈ S (by checking whether q lies in all poly(d) transformed boxes).

We now use the algorithm from Section 4 from [ANN+18], to obtain a data structure for ANN over
any norm.

Theorem 13. For any normed space X = (Rd, ‖ · ‖X) and any ε > 0, there exists a data structure
for ANN over X achieving:

• approximation c .
(
c1 log2 d

ε

)√ log d
log log d

for some constant c1 > 0, using

• space poly(d) · n1+ε, and

• query time poly(d) · nε.

Recalling the fact that d = poly(d) gives us Theorem 4.

8 ANN via the embedding approach

8.1 High-level overview

In this section, we give an application of the approximate Hölder homeomorphism from Section 4.
The goal will be utilize the tools from [BG18] to design an ANN data structure over any norm with
subpolynomial approximation using polynomial space and sublinear query time. The main result is
summarized in the next theorem.

Theorem 14. For any normed space X = (Rd, ‖ · ‖X), there exists a data structure for c-ANN over
X achieving

• approximation c = 2O((log d)2/3(log log d)1/3), with

• space poly(n, d), and

• query time poly(d) logn.

Even though the approximation guarantee from Theorem 14 is weaker than the approximation
guarantee of the algorithm from Section 7, there are two main advantages. The first is that this data
structure achieves query time which is logarithmic in n, as opposed to nε.12 The second advantage
is that the algorithm of Theorem 14 is conceptually very simple.

Before presenting a high level overview, as well as the proof of Theorem 14, we record the following
lemma, which is a simple consequence of the definition of c-ANN.

12For a comparable approximation to that of Theorem 13, we may consider ε = 1
log1/4 n

. Then, Theorem 13 has

approximation 2O(log3/4 d) with query time poly(d) · 2log3/4 n � poly(d) log n

59

Lemma 8.1. Suppose W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1) are two Banach spaces, and γ > 1
is some parameter such that every x ∈ Cd satisfies

‖x‖W0 6 ‖y‖W1 6 γ‖x‖W0 . (63)

If there exists a data structure for c-ANN over W0 using space S(n) and query time Q(n), then there
exists a data structure for γc-ANN over W1 using space S(n) and query time Q(n).

Proof. Let D be a data structure for c-ANN over W0, the data structure D′ will simulate D while
computing distances in W1. In particular, suppose D′ is given a dataset P ⊆ Cd of n points to
preprocess, it will simply interpret these points as belonging to the Banach spaceW0. Upon receiving
a query x ∈ Cd where ‖x− p‖W1 6 1 for some p ∈ P , by (63), ‖x− p‖W0 6 1, so the data structure
D returns some point p′ ∈ P with ‖x− p′‖W0 6 c. Again, by (63), ‖x− p′‖W1 6 γc, which completes
the proof.

One of the conceptual contributions in [BG18] is a generic reduction from c-ANN to a c-bounded
near neighbor (c-BNN), which we formally define next.

Definition 8.2 (c-bounded near neighbor [BG18]). Consider a fixed Banach space X = (Cd, ‖ · ‖X).
The c-bounded near neighbor problem (c-BNN) over X asks to design a data structure which
preprocesses a dataset P ⊆ Cd of n points where every point p ∈ P satisfies ‖p‖X 6 c. Given a
query point q ∈ Cd where some p ∈ P satisfies ‖q − p‖X 6 1, the data structure should return any
point p′ ∈ P with ‖q − p′‖X 6 c

9 .

We now state Lemma 5.4 from [BG18] catered to general d-dimensional Banach spaces. While
the norms considered in [BG18] are easy to compute, we state Lemma 5.4 assuming access to an
approximate oracle for a normed space of interest.

Lemma 8.3 (Lemma 5.4 from [BG18]). Let X = (Cd, ‖ · ‖X) be a Banach space, and assume an
algorithm which computes a function `X : Cd → R>0 with

‖x‖X 6 `X(x) 6 2‖x‖X ,

in time T (n). Suppose D is a data structure for c-BNN over X using space S(n) and query time
Q(n). Then, there exists a data structure 8c-ANN over X using

• space poly(d) · n · S(n), and

• query time log d ·Q(n) · T (n).

Applying Lemma 8.3, [BG18] gave algorithms for ANN under `p distances for p > 2 by solving the
c-BNN problem and using the navigating net structure of [KL04]. In particular, they argued that
the Mazur map `p → `2 is a good enough embedding when points are within a ball of radius c. They
solve the c-BNN problem in `p by embedding `p into `2, and use black-box ANN algorithms for `2.
The proof of Theorem 14 proceeds in a similar high level fashion:

1. We aim to solve the c-BNN problem for a Banach space X. So first, we interpolate between
X and a Hilbert space H, to obtain the Banach spaces Y and Z, as well as the approximate
Hölder homeomorphism Φε : Y → Z (for some small ε > 0) from Corollary 4.10 from Section 4.

60

2. Since X will be relatively close to Y , using Lemma 8.1, we will solve the c-BNN over Y (up
to an approximation loss), and similarly to [BG18], we view Φε as an embedding into Z for
vectors within radius c.

3. Finally, Z will be relatively close to H, so we may use any black-box ANN algorithms for `2
(up to an approximation loss) to solve the problem in Z.

We execute the above plan next which completes the proof of Theorem 14.

8.2 Proof of Theorem 14

From Theorem 14, we will aim to design an ANN data structure for the Banach space X = (Cd, ‖·‖X).
Assume that X satisfies

BX ⊆ B2 ⊆ d ·BX ,

for d = poly(d). Consider the parameters α ∈ (0, 1) and β ∈ (0, 1), with

α =
(log log d

log d

)1/3
and β = 1

log d , (64)

and let A, Y and H be the complex normed spaces

A = [X,H]α, Y = [A,H]β, and Z = [A,H]1−β.

We note that for every x ∈ Cd, we have the following inequalities:

‖x‖Y 6 ‖x‖X 6 dα+β‖x‖Y and ‖x‖H 6 ‖x‖Z 6 dβ‖x‖H . (65)

In addition, since K∞(X) = 1 and K2(H) = 1, by Lemma 2.14, we have that Kp(A) 6 1 when
p = 1

α .

Corollary 8.4. There exists a data structure for c-ANN over Z with approximation c . dβ, using
space poly(n, d) and query time O(d logn).

Proof. We first note that by Lemma 8.1 and (65), it suffices to give a data structure for c-ANN over
H. In addition, the complex Banach space H = (Cd, ‖ · ‖H) is isomorphic to a Hilbert space over R2d,
so it suffices consider data structures for 2-ANN over a real Hilbert space. For this task, we may use
a data structure for 2-ANN over `2d2 with poly(n, d) space, and O(d logn) time [HIM12, KOR00].

The following corollary is immediate from Lemma 8.1 and (65).

Corollary 8.5. If there exists a data structure for c-ANN over Y with using space S(n) and query
time Q(n), there exists a data structure for c · dα+β-ANN over X using space S(n) and query time
Q(n).

Given Corollary 8.5, we state Lemma 8.6 which builds an approximate norm oracle and Lemma 8.7
which solves c-BNN over Y . Combining Lemma 8.6 and Lemma 8.7 with Lemma 8.3 gives Theorem 14.
The following lemma simply follows from Corollary 5.30.

61

Lemma 8.6. There exists an algorithm that computes a function `Y : Cd → R>0 such that

‖x‖Y 6 `Y (x) 6 2‖x‖Y

in poly(d) time with probability 1− 1
poly(d) .

The probability of error in Lemma 8.6 is smaller than the query time, so via a union bound, we may
assume that all distance computations in the algorithm are correct up to a factor of 2 with high
probability.

Lemma 8.7. There exists a data structure for c-BNN over Y using space poly(d, n) and time

O(d logn) + poly(d), whenever c &
(
Cdβ
β

)α+1
α2

for some constant C > 0.

Proof. From Corollary 8.4, let D be an O(dβ)-ANN data structure over Z using space poly(n, d) and
query time O(d logn). A data structure D′ for c-BNN over Y will obtain a dataset P of n points
and proceed as follows:

1. We first discretize every coordinate to O(log d) bits of precision in order to consider the
finite metric space (M, dM). The discretization produces a set M ⊆ Cd where every x ∈ Cd
with ‖x‖Y 6 c has x′ ∈ M with ‖x − x′‖Y 6 1

poly(d) , and for every two points x, y ∈ M,
‖x− y‖Y > 1

poly(d) . The distance dM(x, y) = ‖x− y‖Y .

2. For every point x ∈M, we consider the points Φε(x), where Φε : Y → Z is the approximate
Hölder homeomorphism from Corollary 4.10 from Section 4, defined according to the inter-
polation between Y = [A,H]β and Z = [A,H]1−β, where A is a uniformly convex space with
p-convexity constant Kp(A) 6 1 and p = 1

α . We initialize the parameters from Corollary 4.10
as

R = c, r = 1, and ε = 1
poly(d) ,

where ε is small enough so that x, y ∈M satisfy ‖x− y‖Y > 5R(εβ)1/100. Specifically, the map
Φε : Y → Z satisfies that every x, y ∈M,

‖Φε(x)− Φε(y)‖Z 6
c0
β
· ‖x− y‖αY · c1−α, (66)

for some constant c0 > 0. In addition, by Lemma 4.12, the Hölder homeomorphism Φ0 : Y → Z
is invertible and every x, y ∈M satisfy

‖x− y‖Y 6
c1
β
· ‖Φ0(x)− Φ0(y)‖αZc1−α, (67)

‖Φε(x)− Φ0(x)‖Z 6
c2
β
· c1−α, (68)

for constants c1, c2 > 0.

3. Finally, we use the data structure D to solve the O(dβ)-ANN problem over Z. In particular,
we preprocess the dataset P ′ = {Φε(p) : p ∈ P} in D. Upon receiving a query q ∈ Cd, we
query Φε(q) to D, and if D returns Φε(p) ∈ P ′, we return point p.

62

Note that the required space for the data structure D′ is poly(n, d), and the query time for D′ is
O(d logn) + poly(d), since for each query q ∈ Cd, computing Φε(q) takes poly(d) time. Suppose
p ∈ P satisfies ‖q − p‖Y 6 1. By Corollary 4.10, we have ‖Φε(q)− Φε(p)‖Z 6 c0

β · c
1−α. Thus, the

point Φε(p′) returned by D satisfies ‖Φε(q)− Φε(p′)‖Z . dβ

β · c
1−α. Thus, we have that:

‖Φ0(q)− Φ0(p′)‖Z 6 ‖Φ0(q)− Φε(q)‖Z + ‖Φε(q)− Φε(p′)‖Z + ‖Φε(p′)− Φ0(p′)‖Z
(68)
6

2c2
β
· c1−α + ‖Φε(q)− Φε(p′)‖Z

.
dβc1−α

β
,

and this implies that for some constant C > 0,

‖q − p′‖Y
(67)
.

1
β

(
C · dβ · c1−α

β

)α
c1−α .

Cαdβα
β1+α · c

1−α2 � c,

when cα2 � (Cdβ

β)α+1.

Proof of Theorem 14. Combining Lemma 8.3 and Lemma 8.7 with Corollary 8.5, we conclude that
there exists a data structure for c-ANN with poly(n, d) space, using query time O(d logn) + poly(d)
where:

c = O

dα+β ·
(
Cdβ
β

)α+1
α2
 ,

and recalling the parameters settings of α and β in (64), as well as the fact that d = poly(d) gives
the desired approximation.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplicative Weights Update Method: a
Meta-Algorithm and Applications. Theory of Computing, 8(1):121–164, 2012.

[AI06] Alexandr Andoni and Piotr Indyk. Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’2006), pages 459–468, 2006.

[AI17] Alexandr Andoni and Piotr Indyk. Nearest Neighbors in High-Dimensional Spaces. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, pages 1133–1153. CRC Press LLC, 2017.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1 Non-Embeddability
Barrier: Algorithms for Product Metrics. In Proceedings of the 20th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’2009), pages 865–874, 2009.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond Locality-Sensitive
Hashing. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2014),
pages 1018–1028, 2014. Available as arXiv:1306.1547.

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in
high dimensions. In Proceedings of ICM 2018 (to appear), 2018.

63

[ALRW17] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal Hashing-
based Time–Space Trade-offs for Approximate Near Neighbors. In Proceedings of the 28th
ACM-SIAM Symposium on Discrete Algorithms (SODA ’2017), pages 47–66, 2017. Available as
arXiv:1608.03580.

[And09] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. PhD thesis,
MIT, 2009.

[ANN+17] Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten.
Approximate Near Neighbors for General Symmetric Norms. In Proceedings of the 49th ACM
Symposium on the Theory of Computing (STOC ’2017), pages 902–913, 2017. Available as
arXiv:1611.06222.

[ANN+18] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. Data-
Dependent Hashing via Nonlinear Spectral Gaps. In Proceedings of the 50th ACM Symposium on
the Theory of Computing (STOC ’2018), 2018. To appear.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal Data-Dependent Hashing for Approximate Near
Neighbors. In Proceedings of the 47th ACM Symposium on the Theory of Computing (STOC ’2015),
pages 793–801, 2015. Available as arXiv:1501.01062.

[BCL94] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp Uniform Convexity and Smoothness
Inequalities for Trace Norms. Inventiones Mathematicae, 115(1):463–482, 1994.

[BG18] Yair Bartal and Lee-Ad Gottlieb. Approximate Nearest Neighbor Search for `p-Spaces (2 < p <∞)
via Embeddings. In Proceedings of the 13th Latin American Symposium in Theoretical Informatics
(LATIN ’2018), 2018.

[BKL06] Alina Beygelzimer, Sham Kakade, and John Langford. Cover Trees for Nearest Neighbor. In
Proceedings of the 23rd International Conference on Machine Learning (ICML ’2006), pages
97–104, 2006.

[BL76] Jöran Bergh and Jörgen Löfström. Interpolation spaces: an introduction. Springer-Verlag, 1976.

[BL00] Yoav Benyamini and Joram Lindenstrauss. Geometric Nonlinear Functional Analysis. Vol. 1,
volume 48 of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2000.

[Cal64] Alberto Calderón. Intermediate Spaces and Interpolation, the Complex Method. Studia Mathe-
matica, 24(2):113–190, 1964.

[Cha02] Moses Charikar. Similarity Estimation Techniques from Rounding Algorithms. In Proceedings of
the 34th ACM Symposium on the Theory of Computing (STOC ’2002), pages 380–388, 2002.

[Che69] Jeff Cheeger. A Lower Bound for the Smallest Eigenvalue of the Laplacian. In Proceedings of the
Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

[Cla99] Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete and Computational
Geometry, 22(1):63–93, 1999.

[Dah93] Mohamed Daher. Homéomorphismes uniformes entre les sphères unité des espaces d’interpolation.
Comptes Rendus Mathematique, 316(10):1051–1054, 1993.

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial
optimization. Springer, 2012.

[HIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality. Theory of Computing, 8(1):321–350, 2012.

64

[IM98] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality. In Proceedings of the 30th ACM Symposium on the Theory of Computing
(STOC ’1998), pages 604–613, 1998.

[Ind01] Piotr Indyk. On Approximate Nearest Neighbors under `∞ Norm. Journal of Computer and
System Sciences, 63(4):627–638, 2001.

[Ind02] Piotr Indyk. Approximate Nearest Neighbor Algorithms for Fréchet Distance via Product Metrics.
In Proceedings of the 18th ACM Symposium on Computational Geometry (SoCG ’2002), pages
102–106, 2002.

[Ind04] Piotr Indyk. Approximate Nearest Neighbor under Edit Distance via Product Metrics. In
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2004), pages
646–650, 2004.

[IT03] Piotr Indyk and Nitin Thaper. Fast Color Image Retrieval via Embeddings. Workshop on
Statistical and Computational Theories of Vision (at ICCV), 2003.

[Joh48] Fritz John. Extremum Problems with Inequalities as Subsidiary Conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187–204. Interscience
Publishers, Inc., New York, N. Y., 1948.

[Kat04] Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge University Press, 2004.

[KL04] Robert Krauthgamer and James R. Lee. Navigating Nets: Simple Algorithms for Proximity Search.
In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2004), pages
798–807, 2004.

[KLS97] Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an o ∗ (n5) volume
algorithm for convex bodies. Random Structures and Algorithms, 1997.

[KOR00] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient Search for Approximate Nearest
Neighbor in High Dimensional Spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[KR02] David R. Karger and Matthias Ruhl. Finding Nearest Neighbors in Growth-Restricted Metrics.
In Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC ’2002), pages
741–750, 2002.

[LSV17] Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala. Efficient convex optimization with
membership oracles. arXiv:1706.07357, 2017.

[Mat96] Jiří Matoušek. On the distortion required for embedding finite metric spaces into normed spaces.
Israel Journal of Mathematics, 93:333–344, 1996.

[Maz29] S. Mazur. Une remarque sur l’homéomorphie des champs fonctionels. Studia Math., 1:83–85, 1929.

[Mil99] Peter Bro Miltersen. Cell Probe Complexity – a Survey. In Advances in Data Structures, 1999.

[MN13] Manor Mendel and Assaf Naor. Spectral Calculus and Lipschitz Extension for Barycentric Metric
Spaces. Analysis and Geometry in Metric Spaces, 1:163–199, 2013.

[Nao12] Assaf Naor. On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon–
Roichman graphs. Combinatorics, Probability and Computing, 21(4):623–634, 2012.

[Nao17] Assaf Naor. A Spectral Gap Precludes Low-Dimensional Embeddings. In Proceedings of the 33rd
International Symposium on Computational Geometry (SoCG ’2017), pages 50:1–50:16, 2017.
Available as arXiv:1611.08861.

[NR06] Assaf Naor and Yuval Rabani. On Approximate Nearest Neighbor Search in `p, p > 2. Unpublished
manuscript; available on request, 2006.

65

[OR07] Rafail Ostrovsky and Yuval Rabani. Low Distortion Embedding for Edit Distance. Journal of the
ACM, 54(5):23:1–23:16, 2007.

[OS94] Edward Odell and Thomas Schlumprecht. The distortion problem. Acta Math., 173(2):259–281,
1994.

[Raz17] Ilya Razenshteyn. High-Dimensional Similarity Search and Sketching: Algorithms and Hardness.
PhD thesis, Massachusetts Institute of Technology, 2017.

[Ric15] Éric Ricard. Hölder Estimates for the Noncommutative Mazur Map. Archiv der Mathematik,
104(1):37–45, 2015.

[SS03] Elias M. Stein and Rami Shakarchi. Complex analysis. Princeton Lectures in Analysis, II. Princeton
University Press, 2003.

[Wid61] David V. Widder. Functions Harmonic in a Strip. Proceedings of the American Mathematical
Society, 12(1):67–72, 1961.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

66

	Introduction
	Approximate near neighbors
	Algorithmic version of Theorem 1
	The embedding approach: proof of Theorem 3
	The spectral approach: proof of Theorem 4
	Sparse cuts in embedded graphs
	Nonlinear Rayleigh quotient inequalities and Lemma 1.3

	Related work
	Organization of the paper
	Acknowledgments

	Preliminaries
	Computational model for general normed spaces
	The Poisson kernel for the strip S
	Harmonic and holomorphic functions on S
	Complexification
	Complex interpolation between normed spaces
	Uniform convexity
	The space F2()

	Hölder homeomorphisms: an existential argument
	Approximate Hölder homeomorphisms
	Maps between thin shells
	Proof of Lemma 4.1
	An auxiliary lemma

	Extension to the whole space
	Summary and necessary subroutines

	Computing approximate Hölder homeomorphisms
	High-level overview
	Discretization of F
	Convex program for ApproxRep(x, , ; W)
	Computing ApproxRep(x, , ; W) with MEM(BW)
	Properties of the set P
	Optimizing over P

	Summary and instantiation for applications

	Nonlinear Rayleigh quotient inequalities
	High-level overview
	Relating nonlinear Rayleigh quotients with Hölder homeomorphisms
	A nonlinear Rayleigh quotient inequality for general norms

	ANN via nonlinear Rayleigh quotient inequalities
	Efficient partitions of normed spaces
	From Theorem 12 to ANN data structures

	ANN via the embedding approach
	High-level overview
	Proof of Theorem 14

