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Abstract

We present an algorithm for thec-approximate near-
est neighbor problem in ad-dimensional Euclidean space,
achieving query time ofO(dn1/c2+o(1)) and spaceO(dn +

n1+1/c2+o(1)). This almost matches the lower bound for
hashing-based algorithm recently obtained in [27]. We also
obtain a space-efficient version of the algorithm, which uses
dn + n logO(1) n space, with a query time ofdnO(1/c2). Fi-
nally, we discuss practical variants of the algorithms that
utilize fast bounded-distance decoders for the Leech Lat-
tice.

1. Introduction

The nearest neighborproblem is defined as follows:
given a collection ofn points, build a data structure which,
given any query point, reports the data point that is clos-
est to the query. A particularly interesting and well-studied
instance is where the data points live in ad-dimensional Eu-
clidean space. This problem is of major importance in sev-
eral areas; some examples are: data compression, databases
and data mining, information retrieval, image and video
databases, machine learning, pattern recognition, statistics
and data analysis. Typically, the features of each object of
interest (document, image, etc) are represented as a point in
ℜd and the distance metric is used to measure similarity of
objects. The basic problem then is to perform indexing or
similarity searching for query objects. The number of fea-
tures (i.e., the dimensionality) ranges anywhere from tens
to thousands.

There are several efficient algorithms known for the case
when the dimensiond is “low” (see [30] for an overview).
Therefore the main issue is that of dealing with a large num-
ber of dimensions. Despite decades of intensive effort, the
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current solutions suffer from either space or query time that
is exponentialin d. In fact, for large enoughd, in theory
or in practice, they often provide little improvement over a
linear algorithm that compares a query to each point from
the database. This phenomenon is often called “the curse of
dimensionality”.

In recent years, several researchers proposed methods for
overcoming the running time bottleneck by usingapproxi-
mation (e.g., [7, 23, 21, 25, 16, 24, 17, 12, 8, 28, 1], see
also [31]). In that formulation, the algorithm is allowed to
return a point, whose distance from the query is at most
c times the distance from the query to its nearest points;
c = 1+ǫ > 1 is called theapproximation factor.The appeal
of this approach is that, in many cases, an approximate near-
est neighbor is almost as good as the exact one. In partic-
ular, if the distance measure accurately captures the notion
of user quality, then small differences in the distance should
not matter. Moreover, an efficient approximation algorithm
can be used to solve theexactnearest neighbor problem, by
enumeratingall approximate nearest neighbors and choos-
ing the closest point. For many data sets this approach re-
sults in very efficient algorithms (see e.g., [4]).

In [25, 21, 8, 1], the authors constructed data structures
for the(1+ǫ)-approximate nearest neighbor problem which
avoided the curse of dimensionality. Specifically, for any
constantǫ > 0, the data structures support queries in time
O(d log n), and use space which is polynomial inn. Unfor-
tunately, the exponent in the space bounds is roughlyC/ǫ2

(for ǫ < 1), whereC is a “non-negligible” constant. Thus,
even for, say,ǫ = 1, the space used by the data structure
is large enough so that the algorithm becomes impractical
even for relatively small data sets. In fact, in a recent pa-
per [6] we show that, in order to solve thedecisionversion
of the approximate nearest neighbor problem, the exponent
in the space bound must be at leastΩ(1/ǫ2), as long as
the search algorithm performs only a constant number of
“probes” to the data structure. The algorithms of [25, 21]
use onlyoneprobe.

In [21, 15], the authors introduced an alternative ap-
proach, which uses much smaller space while preserving
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sub-linear query time (see Figure 1 for the running times).
It relies on a concept oflocality-sensitive hashing (LSH).
The key idea is to hash the points using several hash func-
tions so as to ensure that, for each function, the probability
of collision is much higher for objects which are close to
each other than for those which are far apart. Then, one can
determine near neighbors by hashing the query point and
retrieving elements stored in buckets containing that point.
In [21, 15] the authors provided such locality-sensitive hash
functions for the case when the points live in binary Ham-
ming space1 {0, 1}d. In a followup work [12], the authors
introduced LSH functions that work directly in Euclidean
space and result in a (slightly) faster running time. The
latter algorithm forms the basis of E2LSH package [5] for
high-dimensional similarity search, which has been used in
several applied scenarios. Recently, [28] proposed a dif-
ferent method of utilizing locality-sensitive hash functions,
which results in near-linear space, at the cost of somewhat
higher query time.

The natural question raised by this line of research is:
what is the smallest exponentρ achievable via the locality-
sensitive hashing approach ? It was conjectured by the sec-
ond author (e.g., in [19]) thatρ ≤ 1/c2. The conjecture was
motivated by the fact that an algorithm with such exponent
exists for the closely related problem of finding thefurthest
neighbor[20].

Our results. In this paper we essentially resolve the is-
sue by providing an algorithm with query timednρ(c) using
spacedn + n1+ρ(c), where

ρ(c) = 1/c2 + O(log log n/ log1/3 n).

This significantly improves over the earlier running time
of [12]. In particular, forc = 2, our exponent tends to0.25,
while the exponent in [12] was around0.45. Moreover, a re-
cent paper [27] shows that hashing-based algorithms (as de-
scribed in Section 2.3) cannot achieveρ < 0.462/c2. Thus,
the running time exponent of our algorithm is essentially
optimal, up to a small constant factor.

Our result immediately implies improved algorithms for
several approximate problems in high dimensional spaces.
For example, it is known [21, 18] that thec-approximate
minimum spanning tree (MST) problem forn points in
ld2 can be computed by usingO(n log n) calls to thec-
approximate near neighbor oracle for that space. Thus,
our result implies adn1+1/c2+o(1)-time algorithm for thec-
approximate MST problem. Other problems for which sim-
ilar improvement is obtained include dynamic closest pair
and facility location [18].

Unfortunately, the convergence of the exponent to the
1/c2 limit is rather slow. To be more precise: the running

1The algorithm can be extended to other norms, such asl2, by using
embeddings. However, this extension adds additional complexity to the
algorithm.

Paper Metric Space Query time Comments

[21, 15] Hamming n1+1/c dn1/c

[12] Euclidean n1+ρ′(c) dnρ′(c) ρ′(c) < 1/c

[28] Euclidean n dnρ′′(c) ρ′′(c)
c

→ 2.09

here Euclidean n1+1/c2+o(1) dn1/c2+o(1)

Euclidean n dnO(1/c2)

Figure 1. Space and time bounds for LSH-
based data structures. Factors polynomial in
log n and 1/ǫ, as well as an additive term of dn
in the storage bound, are omitted for clarity.

time of the algorithm is bounded by the formula

tO(t)n1/c2+O(log t)/t1/2

wheret is a parameter chosen to minimize the expression.
The tO(t) factor appears due to the fact that our algorithm
exploits certain configurations of points in at-dimensional
space; the “quality” of the configurations increases witht.
One can observe that the parametert needs to be somewhat
large for the exponent to be competitive against the earlier
bounds. But then the factortO(t) becomes very large, eras-
ing the speedup gained from the improved exponent (unless
n is really large).

To overcome this difficulty, we modify the algorithm to
make it efficient for more moderate values ofn. Specif-
ically, we replace the aforementioned configurations of
points by known constructions of “nice” point-sets in spe-
cific dimensions. In particular, by utilizing Leech Lat-
tice [26] in24 dimensions, we obtain an algorithm with ex-
ponentρ(c) such thatρ(2) ≤ 0.37, while the leading term
in the running time is reduced to only few hundred. More-
over, if the dimensiond does not exceed24, the exponent is
reduced2 further, and we achieveρ(2) ≤ 0.27. The leading
term in the running time remains the same.

Finally, we show that the LSH functions can be used as
in [28] to design a data structure with nearly-linear space
of O(dn + n logO(1) n) and query timednO(1/c2). This
improves over the earlier bound ofdnO(1/c) due to [28].

1.1 Techniques

We obtain our result by carefully designing a family of
locality-sensitive hash functions inl2. The starting point of

2An astute reader will observe that ifboth the dimensiond and approx-
imation factorc are fixed constants, one can obtain a data structure with
constantquery time, essentially via table lookup. However, this approach
leads to “big-Oh” constants that are exponential in the dimension, which
defeats our goal of achieving a practical algorithm.



our construction is the method of [12]. There, a pointp was
mapped intoℜ1 by using random projection. Then, the line
ℜ1 was partitioned into equal-length intervals of lengthw,
wherew is a parameter. The hash function forp returned
the index of the interval containing the projection ofp.

An analysis in [12] showed that the query time exponent
has an interesting dependence on the parameterw. If w
tends to infinity, the exponent tends to1/c, which yields no
improvement over [21, 15]. However, for small values of
w, the exponent lies slightly below1/c. In fact, the unique
minimum exists for eachc.

In this paper we utilize a ”multi-dimensional version” of
the aforementioned approach. Specifically, we first perform
random projection intoℜt, wheret is super-constant, but
relatively small (i.e.,t = o(log n)). Then we partition the
spaceℜt into cells. The hash function function returns the
index of the cell which contains projected pointp.

The partitioning of the spaceℜt is somewhat more in-
volved than its one-dimensional counterpart. First, observe
that the natural idea of partitioning using a grid does not
work. This is because this process roughly corresponds
to hashing using concatenation of several one-dimensional
functions (as in [12]). Since the LSH algorithms performs
such concatenation anyway (see Preliminaries), grid parti-
tioning does not result in any improvement. Instead, we
use the method of ”ball partitioning”, introduced in [9] in
the context of embeddings into tree metrics (a similar tech-
nique was also used in the SDP-based approximation algo-
rithm for graph coloring [22]). Its idea is as follows. Create
a sequence of ballsB1, B2 . . ., each of radiusw, with cen-
ters chosen independently “at random”. Each ballBi then
defines a cell, containing pointsBi − ∪j<iBj .

In order to apply this method in our context, we need to
take care of a few issues. First, we cannot use the method
as given, since locating a cell containing a given point could
take a long time. Instead, we show that one can simulate
the above procedure by replacing each ball by a ”grid of
balls”. It is not difficult then to observe that a finite (albeit
exponential int) number of such grids suffices to cover all
points inℜt.

The second and the main issue is the choice ofw. Again,
it turns out that for largew, the method yields only the ex-
ponent of1/c. Specifically, it was shown in [9] that for
any two pointsp, q ∈ ℜt, the probability that the parti-
tioning separatesp and q is at mostO

(√
t · ‖p − q‖/w

)

.
This formula can be showed to be tight for the range of
w where it makes sense as a lower bound, that is, for
w = Ω

(√
t · ‖p − q‖

)

. However, as long as the separa-
tion probability depends linearly on the distance betweenp
andq, the exponentρ is still equal to1/c. Fortunately, a
more careful analysis shows that, as in the one-dimensional
case, the minimum is achieved for finitew. For that value
of w, the exponent tends to1/c2 ast tends to infinity.

Leech Lattice LSH. In order to obtain a more practical
algorithm, we introduce a different partitioning method that
avoids thetO(t) factor. Specifically, we use tessellations
induced by (randomly shifted) Voronoi diagrams offixedt-
dimensional point constellations which have the following
two nice properties:

• The closest constellation point to a given point can be
found efficiently, and

• The exponentρ induced by the constellation is as close
to 1/c2 as possible.

The partitioning is then implemented by randomly pro-
jecting the points intoℜd, and using the Voronoi diagram.
We discovered that a constellation in 24 dimensions known
as Leech Lattice [26] satisfies the above properties quite
well. First, the nearest point in the lattice can be found by
using a (bounded) decoder of [2] which perform only 519
floating point operations per decoded point. Second, the ex-
ponentρ(c) guaranteed by that decoder is quite attractive:
for c = 2 the exponentρ(2) is less than 0.37. The intuitive
reason for that is that Leech Lattice is a “very symmetric”
constellation, and thus its Voronoi cells are very “round”.
Moreover, if the dimensiond does not exceed24, then we
can skip the dimensionality reduction part. In that case we
getρ(2) ≤ 0.27, while the leading term in the running time
remains the same.

Near-linear space algorithm.This result is achieved by
plugging our new LSH function into the algorithm of [28].
Unlike the algorithm of [21] (which usednρ independent
hash tables), his algorithm uses onlyonehash table to store
the data setP . The hash table is then probed by hash-
ing not just the query pointq (as in [21]) but by hashing
several points chosen randomly from the neighborhood of
q. The intuition behind this approach is as follows. Let
p∗ ∈ P be a point within distance1 from q. If a random
LSH function causes collision betweenp∗ andq with prob-
ability 1/nρ, then it is plausible that, with constant proba-
bility 3, a random hash function causes collision betweenq
and a “non-negligible” (say,≈ 1/nρ) fraction of the points
in the unit ball aroundq. Sinceq and p∗ are “close”, it
follows that, with constant probability, a random hash func-
tion causes collision betweenp∗ and a “non-negligible” (al-
though slightly smaller) fraction of the unit ball aroundq,
which is exactly what the algorithm of [28] needs.

Converting this intuition into a formal proof is somewhat
technical. This is mostly due to the fact that the new LSH
functions are more complex than the ones from [12] (used
in [28]), and thus we had to extend his framework to a more
general setting. We defer the proofs to the full version of
this paper.

3In the actual proof, the probability is1/ logO(1) n.



2. Preliminaries

2.1. Notation

In this paper, we work in the Euclidean space. For a
point p ∈ ℜd, we denote byB(p, r) the ball centered atp
with radiusr, and we callB̄(p, r) its surface. For a ball
with radiusr in ℜd, we call its surface areaSurd(r) and
its volumeVold(r). We note thatSurd = Sd · rd−1 and

Vold(r) = Sd·rd

d , whereSd is the surface area of a ball of
radius one (see, for example, [29], page 11).

We also need a (standard) bound on the volume of the
cap of a ballB(p, r). LetC(u, r) be the volume of the cap at
distanceu from the center of the ball. Alternatively,C(u, r)
is the half of the volume of the intersection of two balls
of radiusr with centers at distance2u. Furthermore, let
I(u, r) = C(u,r)

Vold(r)
be the cap volume relative to the volume

of the entire sphere. We can boundI(u, r) as follows.

Lemma 2.1. For anyd ≥ 2 and0 ≤ u ≤ r,

Al√
d

(

1 −
(u

r

)2
)

d
2

≤ I(u, r) ≤
(

1 −
(u

r

)2
)

d
2

The proof is deferred to the appendix.
We also use the following standard facts about random

projections in Euclidean spaces (for proofs see, e.g., [21]).
LetA ∈ Mt,d be a random projection fromℜd toℜt; specif-
ically each element ofA is chosen from normal distribution
N(0, 1), multiplied by a scaling factor1√

t
.

Fact 2.2. For any vectorv ∈ ℜd, the value‖Av‖2/‖v‖2

is distributed with probability densitytPχ2 (xt), where

Pχ2(x) = xt/2−1e−x/2

Γ(t/2)2t/2 is the chi-squared distribution with

t degrees of freedom. The expectation of‖Av‖2/‖v‖2 is
equal to1.

Fact 2.3. For any vectorv ∈ ℜd, PrA[‖Av‖ > 2‖v‖] ≤
exp [−Ω(t)].

Fact 2.4. For any vectorv ∈ ℜd and any constantα > 10,
PrA[‖Av‖ > α‖v‖] ≤ exp [−Ω(t

√
α)].

2.2. Problem definition

In this paper, we solve thec-approximate near neighbor
problem inl2, the Euclidean space.

Definition 2.5 (c-approximate near neighbor, orc-NN).
Given a setP of points in ad-dimensional Euclidean space
ℜd, and parametersR > 0, δ > 0, construct a data struc-
ture which, given anyquerypointq, does the following with
probability1− δ: if there exists anR-near neighbor ofq in
P , it reports somecR-near neighbor ofq in P .

In the following, we will assume thatδ is an absolute
constant bounded away from1. Note that the probability of
success can be amplified by building and querying several
instances of the data structure.

Formally, anR-near neighbor ofq is a pointp such that
||p−q||2 ≤ R. Note that we can scale down the coordinates
of all points byR, in which case we need only to solve thec-
NN problem forR = 1. Thus, we will consider thatR = 1
for the rest of the paper.

2.3. Locality-Sensitive Hashing

To solve thec-approximate near neighbor, we use the
locality-sensitive hashing scheme (LSH). Below we de-
scribe the general LSH scheme, as it was first proposed
in [21]. In this paper we reuse the same LSH scheme, but
we introduce a new family of locality-sensitive hash func-
tions.

The LSH scheme relies on existence oflocality-sensitive
hash functions. Consider a familyH of hash functions map-
pingℜd to some universeU .

Definition 2.6 (Locality-sensitive hashing). A familyH is
called(R, cR, p1, p2)-sensitiveif for anyp, q ∈ ℜd

• if ‖p − q‖ ≤ R thenPrH[h(q) = h(p)] ≥ p1,

• if ‖p − q‖ ≥ cR thenPrH[h(q) = h(p)] ≤ p2.

The LSH functions can be used to solve thec-NN prob-
lem, as per the following theorem of [21]. Letρ =
log(1/p1)
log(1/p2)

.

Fact 2.7. Given a family of(1, c, p1, p2)-sensitive hash
functions forℜd, where each function can be evaluated
in time τ , one can construct a data structure forc-NN
with O((d + τ)nρ log1/p2

n) query time and spaceO(dn +

n1+ρ).

3. Main algorithm

Our new algorithm forc-NN uses a new family of LSH
functions forl2, while reusing the LSH scheme of section
2.3. This new family is presented below. Once we de-
scribe the new family of LSH functions, we prove that the
query time isO(n1/c2+o(1)) by showing thatL = nρ =

O(n1/c2+o(1)), k = O(log n), and thatτ = O(dno(1)).

3.1. LSH Family for l2

We first describe an “ideal” LSH family forl2. Although
this approach has some deficiencies, we show how to over-
come them, and obtain a good family of LSH functions. The



final description of the LSH family is presented in the figure
2.

Ideal LSH family. Construct a hash functioñh as fol-
lows. ConsiderGd, a regular infinite grid of balls inℜd:
each ball has radiusw and has the center at4w · Zd. Let
Gd

u, for positive integeru, be the gridGd shifted uni-
formly at random; in other words,Gd

u = Gd + su, where
su ∈ [0, 4w]d. Now we choose as manyGd

u’s as are needed
to cover the entire spaceℜd (i.e., until each point fromℜd

belongs to at least one of the balls). Suppose we needU
such grids to cover the entire space with high probability.

We defineh̃ on a pointp as a tuple(u, x1, x2, ...xd),
u ∈ [1, U ] and(x1, ...xd) ∈ Gd

u. The tuple(u, x1, x2, ...xd)
specifies the ball which contains the pointp: p ∈
B((x1, x2, . . . xn), w). If there are several balls that contain
p, then we take the one with the smallest valueu. Comput-
ing h̃(p) can be done inτ = O(U) time: we iterate through
all Gd

1, G
d
2, ...G

d
U , and find the firstGd

u such thatp is inside
a ball with the center fromGd

u.
Intuitively, this family satisfies our locality-sensitivedef-

inition: the closer are the pointsp, q, the higher is the
probability thatp, q belong to the same ball. Indeed, if
we choose a suitable radiusw ≥ 1/2, then we will get
L = nρ = O(n1/c2+o(1)).

However, the deficiency of this family is that the time to
computẽh(p) might be too large ifd = Ω(log n) since we
need to setU = Ω(2d) (see lemma 3.1). We show how to
circumvent this deficiency next.

Actual LSH family. Our actual construction utilizes the
“ideal” family described above, while introducing an ad-
ditional step, necessary to reduceU , the number of grids
covering the space. The algorithm is given in Figure 2.

To reduceU , we projectℜd to a lower-dimensional
spaceℜt via a random dimensionality reduction. The pa-
rametert is o(log n), such that factors exponential int
areo(n). After performing the projection, we choose the
grids Gt

1, G
t
2, ...G

t
U in the lower-dimensional spaceℜt.

Now, to computeh(p), we compute the projection ofp
onto the lower dimensional spaceℜt, and process the pro-
jected point as described earlier. In short, the actual hash
function is h(p) = h̃(Ap), whereA is a random matrix
representing the dimensionality reduction mapping, andh̃
works in thet-dimensional space. Note thatτ becomes
τ = O(dt) + O(U t) corresponding to the projection and
the bucket-computation stages respectively.

3.2. Analysis of the LSH family

We start by bounding the number of gridsGd needed to
cover the entire spaceℜd, for any dimensiond.

Lemma 3.1. Consider ad-dimensional spaceℜd. Let Gd

be a regular infinite grid of balls of radiusw placed at co-
ordinatesσw · Zd, where2 ≤ σ ≤ dO(1). DefineGd

u, for

Initialization of a hash function h ∈ H

1. Foru = 1 to U , choose a random shiftsu ∈ [0, 4w]t, which
specifies the gridGt

u = Gt + su in the t-dimensional Eu-
clidean space.

2. Choose a matrixA ∈ Mt,d, where each elementAij is dis-
tributed according to the normal distributionN(0, 1) times a
scaling factor, 1√

t
. The matrixA represents a random projec-

tion fromℜd to ℜt.

Computing h() on a point p ∈ ℜd

1. Let p′ = Ap be the projection of the pointp onto thet-
dimensional subspace given byA.

2. For eachu = 1, 2, . . . U

3. Check whetherB(p′, w) ∩ Gt
u 6= ∅, i.e., whether

there exist some(x1, x2, . . . xt) ∈ Gt
u such that

p ∈ B((x1, x2, . . . xt), w).

4. Once we find such(x1, x2, . . . xt), set h(p) =
(u, x1, x2, . . . xt), and stop.

5. Return0t+1 if we do not find any such ball.

Figure 2. Algorithms for initializing a hash
function h from the LSH hash family, and for
computing h(p) for a point p ∈ ℜd.

positive integeru, asGd
u = Gd + su, wheresu ∈ [0, σw]d

is a random shift of the gridGd. If Ud = 2O(d log d) log n,
then, the gridsGd

1, G
d
2, . . . G

d
Ud

cover the entire spaceℜd,
w.h.p.

Proof. First, observe that the entire space is covered if and
only if the hypercube[0, σw]d is covered by gridsGd

u (due
to the regularity of the grids).

To prove that[0, σw]d is covered, we partition the hy-
percube[0, σw]d into smaller “micro-cubes” and prove that
each of them is covered with a high enough probabil-
ity. Specifically, we partition the hypercube[0, σw]d into
smaller micro-cubes, each of sizew√

d
× w√

d
· · ·× w√

d
. There

areN = (σw)d

(w/
√

d)d
= (σ

√
d)d such micro-cubes in total.

Let x be the probability that a micro-cube is covered by one

grid Gd
u. Thenx ≥ (w/

√
d)d

(σw)d = 1/N because, for a micro-
cube to be covered, it suffices that the center of the ball
B(0d + su, w) falls inside the micro-cube, which happens
with probability1/N . Furthermore, ifxU is the probability
that a micro-cube is covered by any of theUd gridsGd

u, then
xU ≥ 1 − (1 − x)Ud .

Thus, we can compute the probability that there exists
at least one uncovered micro-cube, which is also the prob-
ability that the entire[0, σw]d hypercube is uncovered. Set
Ud = aN(log n + log N) for a suitable constanta. Using
union bound, we obtain that the probability that the entire



hypercube is not covered is at most

N (1 − x)
Ud ≤ N(1 − 1/N)Ud ≤

≤ N(1 − 1/N)aN(log n+log N) ≤ N2− log n−log N ≤ 1/n

Concluding: with probability at least1 − 1/n we cover
the entire space with the gridsGd

1, . . .G
d
Ud

, if we choose
Ud = O(N(log n + log N)) = 2O(d log d) log n.

The next lemma states the main technical result of this
paper.

Lemma 3.2. Consider the hash functionh described in the
figure 2, and letp, q be some points inℜd. Let p1 be the
probability thath(p) = h(q) given that||p − q|| ≤ 1, and
let p2 be the probability thath(p) = h(q) given that||p −
q|| ≥ c. Then, forw = Θ

(

4
√

t
)

, we obtainρ = log 1/p1

log 1/p2
=

1/c2 + O
(

log t
t1/2

)

.

Proof. The proof proceeds in three stages. Fix some points
p, q ∈ ℜd at distance∆. First we compute the probability
of collision of p and q given that their distance after the
projection is equal to some fixed value∆′. Next, for each
of the cases when∆ ≤ 1 and ∆ ≥ c, we compute the
collision probabilities (p1 andp2, resp.) by integrating over
the range of the possible (distorted) distances∆′. Finally,
given the bounds onp1 andp2, we compute the value of
ρ = log 1/p1

log 1/p2
.

Suppose pointsp andq are projected under the dimen-
sionality reduction into pointsp′ = Ap and q′ = Aq,
p′, q′ ∈ ℜt, with ∆′ = ‖p′ − q′‖; the probability of col-
lision of p andq can be deduced as follows. Consider the
sequence of gridsGt

1, G
t
2, . . . , G

t
U , and letGt

u be the first
grid such thatp′ or q′ are inside a ballB(x, w) with center
in Gt

u. Note that the position of this ball defines whether
h(p) = h(q) or not. In particular, ifp′, q′ ∈ B(x, w) then
h(p) = h(q) and, otherwise, if exactly one ofp′, q′ is inside
B(x, w) thenh(p) 6= h(q). Thus, we can conclude that the
probability of collision of pointsp, q is

Pr[h(p) = h(q) | ‖p′ − q′‖ = ∆′] =
Pr[p′, q′ ∈ B(x, w) | p′ ∈ B(x, w) ∨ q′ ∈ B(x, w)] =
|B(p′,w)∩B(q′,w)|
|B(p′,w)∪B(q′,w)| =

2C(∆′/2,w)
2 Volt(w)−2C(∆′/2,w)

=
I(∆′/2,w)

1−I(∆′/2,w)

(1)
whereC(∆′/2, w) andI(∆′/2, w) are respectively the

cap volume and the relative cap volume, as defined in the
preliminaries.

In the next step we boundp2. This is done by integrating
the collision probability over all possible values of∆′, i.e.,
over all distortions of‖p − q‖. As noted in fact 2.2, the
distortion of‖p− q‖2 is distributed with probability density
Pχ2 .

p2 =
∞
∫

0

Pr[h(p) = h(q) | ‖p′ − q′‖ =
√

x
t c] · Pχ2(x)dx

≤
∫

0≤
√

x
t c≤2w

Pχ2(x) · I( 1
2

√
x
t c,w)

1−I( 1
2

√
x
t c,w)

dx

≤
∞
∫

0

Pχ2(x) · 2I
(

1
2

√

x
t c, w

)

dx

≤ 2
∞
∫

0

Pχ2 (x) ·
(

1 −
(

1
2

√
x
t c

w

)2
)

t
2

dx

≤ 2
∞
∫

0

Pχ2 (x) · exp
[

− t
2 · x c2

4w2t

]

dx

= 2
∞
∫

0

Pχ2 (x) · exp
[

− 1
2 · x c2

4w2

]

dx

where, for the third inequality, we used lemma 2.1. Set-
ting ǫ = 1

4w2 , and replacing the expression forPχ2 , we
obtain

p2 ≤ 2
∞
∫

0

xt/2−1

Γ(t/2)2t/2 exp
[

−x
2

]

· exp
[

−x·c2ǫ
2

]

dx

= 2
∞
∫

0

(x(1+c2ǫ))t/2−1

(1+c2ǫ)t/2−1Γ(t/2)2t/2 · exp
[

−x(1+c2ǫ)
2

]

dx

= 2
(1+c2ǫ)t/2

∞
∫

0

Pχ2(x(1 + c2ǫ))d(x(1 + c2ǫ))

= 2
(1+c2ǫ)t/2

(2)
We boundp1 from below in a similar way

p1 ≥
∫

0≤
√

x
t ≤2w

Pχ2 (x) · I( 1
2

√
x
t ,w)

1−I( 1
2

√
x
t ,w)

dx

≥
4w2t
∫

0

Pχ2(x) · I(1
2

√

x
t , w)dx

≥
t/ǫ
∫

0

Pχ2(x) · Al√
t

(

1 −
(

1
2

√
x
t

w

)2
)

t
2

dx

= Al√
t

t/ǫ
∫

0

Pχ2(x) ·
(

1 − xǫ
t

)
t
2 dx

= Al√
t

t/ǫ
∫

0

Pχ2(x) ·
(

1

1+ xǫ/t
1−xǫ/t

)
t
2

dx

≥ Al√
t

t/ǫ
∫

0

Pχ2(x) · exp
[

− t
2 · xǫ/t

1−xǫ/t

]

dx

≥ Al√
t

4t
∫

0

Pχ2 (x) · exp
[

− t
2 · xǫ

t (1 + 8ǫ)
]

dx

≥ Al√
t

(∞
∫

0

Pχ2(x) · exp
[

−xǫ
2 (1 + 8ǫ)

]

dx −
∞
∫

4t

Pχ2 (x)dx

)

(3)
Note that the term

∫∞
4t Pχ2(x)dx represents the proba-

bility of expansion by more than a factor of 2, which is at
mostexp [−Ω(t)] by fact 2.3. Furthermore, replacing the



expression forPχ2 , we obtain

p1 ≥ Al√
t

(∞
∫

0

Pχ2 (x) · exp
[

−xǫ
2 (1 + 8ǫ)

]

dx − e−Ω(t)

)

≥ Al√
t

∞
∫

0

x
t
2
−1

Γ( t
2
)2

t
2

e−x/2 · exp
[

−xǫ
2 (1 + 8ǫ)

]

dx − e−Ω(t)

= Al√
t

∞
∫

0

(x(1+(1+8ǫ)ǫ))
t
2
−1

(1+(1+8ǫ)ǫ)
t
2
−1Γ( t

2
)2

t
2

exp
[

−x(1+(1+8ǫ)ǫ)
2

]

dx

−e−Ω(t)

= Al√
t
· 1

(1+(1+8ǫ)ǫ)t/2 − e−Ω(t)

(4)
For ǫ = 1/4w2 = o(1), we obtainp1 ≥ Al

2
√

t
·

1
(1+ǫ+8ǫ2)t/2 .

Finally, we can boundρ as follows:

ρ = log 1/p1

log 1/p2
≤ log 2

√
t

Al
·(1+(1+8ǫ)ǫ)t/2

log 1
2
·(1+c2ǫ)t/2

=
log (1+(1+8ǫ)ǫ)t/2+log 2

√
t

Al

log (1+c2ǫ)t/2−log 2

=
log (1+(1+8ǫ)ǫ)+

2 log 2
√

t/Al
t

log (1+c2ǫ)− 2 log 2

t

≤ log (1+(1+8ǫ)ǫ)
log (1+c2ǫ) ·

(

1 + 2 log 2
√

t/Al

t log (1+(1+8ǫ)ǫ)

)

·
(

1 + O
(

2 log 2
t log (1+c2ǫ)

))

≤ (1+8ǫ)ǫ
c2ǫ−(c2ǫ)2/2 ·

(

1 + O
(

log t
t log (1+ǫ)

))

≤ 1
c2 (1 + 8ǫ) ·

(

1 + O(c2ǫ/2)
)

·
(

1 + O
(

log t
tǫ

))

≤ 1
c2 ·

(

1 + O
(

ǫ + w2 log t
t

))

≤ 1
c2 ·

(

1 + O
(

log t
t1/2

))

(5)
for w = 4

√
t, which also impliesǫ = O(t−1/2) = o(1).

Theorem 3.3.There exists an algorithm solvingc-NN prob-
lem in ld2 that achievesO(dn1/c2+o(1)) query time and
O(dn1+1/c2+o(1)) space and preprocessing.

Proof. The result follows by using the LSH family in fig-
ure 2 with the general LSH scheme described in section 2.3.
By lemma 3.2, fort = log2/3 n, we haveρ = 1/c2 +

O
(

log log n
log1/3 n

)

. Furthermore,k can be bounded as (using

eqn. (2))

k =
log n

log 1/p2
≤ log n

log (1 + c2/4w2)
t/2

/2
=

O

(

log n

t/w2 − O(1)

)

= O(log n)

Finally, by lemma 3.1 forσ = 4, τ = O(dt) +
O(U t) = O(dt) + O

(

2t log t log n
)

= O(dt) +

2O(log2/3 n log log n) log n = O(dno(1)). The theorem fol-
lows.
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A. Cap of the sphere

Proof. The result follows immediately from the lemma 9 of
[13], which gives bounds on the ratio of the surface areas of
the cap to that of the ball. Specifically, note thatI(u, r) has
the following form

I(u, r) = C(u, r) · (Vold(r))−1

=
r
∫

u

Sd−1

d−1 (r2 − y2)
d−1
2 dy ·

(

Sd

d rd
)−1

= d
d−1 ·

(

r
∫

u

Sd−1(r
2 − y2)

d−1
2 dy ·

(

Sdr
d
)−1
)

The quantity
∫ r

u Sd−1(r
2 − y2)

d−1
2 dy ·

(

Sdr
d
)−1

rep-
resents precisely the ratio of the surface area of the cap
C(u, r) (excluding the base) to the surface area of a ball
of radiusr in the (d + 1)-dimensional space. This ratio is
bounded [13] as

Al√
d + 1

(

1 −
(u

r

)2
)

d
2

≤
r
∫

u

Sd−1(r
2−y2)

d−1
2 dy·

(

Sdr
t
)−1 ≤

1

2

(

1 −
(u

r

)2
)

d
2

Thus, multiplying the above bounds bydd−1 , we obtain
that

d

d − 1
· Al√

d + 1

(

1 −
(u

r

)2
)

d
2

≤ I(u, r) ≤ d

d − 1
·1
2

(

1 −
(u

r

)2
)

d
2

which implies the lemma.

B. Lattice-based LSH family

In this section we describe a practical variant of the LSH
family based on lattices in Euclidean spaces. Although, the-
oretically, these families are not asymptotically better than
the ones described earlier, they are likely to perform better
in practice, due to much lower “big-Oh” constants.

We start by presenting the general lattice-based ap-
proach. Then, we give an algorithm based on a concrete
24-dimensional lattice, called Leech Lattice [26]. For the
Leech lattice-based algorithm, we include the actual values
of the resulting exponentρ, the main indicator of the per-
formance.

B.1. Lattices in arbitrary dimension

The algorithm in this section uses an arbitrary lattice in
somet-dimensional space. An example of at-dimensional



lattice is the regular grid of points inℜt, although, as men-
tioned in the introduction, it does not serve well our pur-
poses. For a given lattice, we need an efficient lattice decod-
ing function, to which we refer as LATTICEDECODE(x).
The function LATTICEDECODE(x) takes as input a point
x ∈ ℜt and returns the lattice point that is the closest tox.

Given a specific lattice with a decoding function
LATTICEDECODE(x), an LSH function is constructed as
follows (formally presented in figure B.1). First, ifd > t,
we choose a randomprojection from d-dimensional space
to t-dimensional space, which we represent as a matrixA
of dimensiont × d. If d ≤ t, then, instead, we choose a
randomrotation in thet-dimensional space, which we also
represent as a matrixA of dimensiont× d (here,A is equal
to the firstd columns of an random ortonormal matrix of
dimensiont × t). Finally, we choose a randomtranslation
in the t-dimensional space, which we represent as a vector
T of dimensiont × 1. The values ofA, T identify an LSH
function.

For an LSH functionh specified by values ofA andT ,
we defineh(p) as beingh(p) = LATTICEDECODE(A · p +
T ). Or, in words, forp ∈ ℜd, we first projectp into ℜt

usingA (or rotate it ifd ≤ t); then, we translate the projec-
tion usingT ; and, finally, we find the closest point in lattice
using LATTICEDECODE. The output of LATTICEDECODE

gives the value ofh(p).

Initialization of a hash function h ∈ H

1. If d > t, choose a random projection fromd-dimensional
space tot-dimensional space. The projection is represented
by a matrixA ∈ Mt,d, where each elementAij is distributed
according to the normal distributionN(0, 1) times a scaling
factor, 1√

t
.

2. If d ≤ t, choose a random rotation in thet-dimensional space.
The rotation is represented by the matrixA, which is equal to
the firstd coordinates of ant × t ortonormal matrix.

3. Choose a random translation in thet-dimensional space. The
translation is represented by a vectorT ∈ Mt,1.

Computing h() on a point p ∈ ℜd

1. Letx = A · p + T .

2. Return LATTICEDECODE(x).

Figure 3. Algorithms for initializing an LSH
function h and for computing h(p) for a point
p ∈ ℜd.

The performance of the resulting LSH scheme depends
heavily on the choice of the lattice. Intuitively, we would
like a lattice that lives inℜt for high t, is “dense”4, and has

4A measure of “density” is, for example, the density of hypersphere
packing induced by the lattice. The density of hypersphere packing is the
percent of the space that is covered by non-overlapping balls centered at
lattice points.

a fast decoding function LATTICEDECODE. With a higher
t, the dimensionality reduction is more accurate. A “denser”
lattice gives a sharper difference in collision probabilities of
close and far points.

B.2. Leech Lattice

In this section, we focus on a particular lattice in 24 di-
mensional space, the Leech Lattice [26]. We give numerical
values for theρ when we use the Leech Lattice in the algo-
rithm B.1 with a specific decoder described below.

The Leech Lattice has been studied extensively (see,
e.g., [11, 10, 2, 32, 14]) and is known to be the lat-
tice that gives the densest (lattice) hypersphere packing
in 24 dimensions. Below, we denote the Leech Lat-
tice by λ24 and call the corresponding decoding function
LATTICEDECODEλ24

(x). Several efficient decoders for the
Leech Lattice are known; the best of them [32] requires
3595 floating point operations to decode one point. How-
ever, even faster decoders are known (e.g.,see [3, 2, 14])
for the bounded-distancedecoding problem. A bounded-
distance decoder guarantees to return the correct result only
when the query pointx is sufficiently close to one of the
lattice points; otherwise the decoder gives no guarantees.
Note that a bounded-distance decoder yields an LSH func-
tion, albeit not necessarily as good as the perfect decoder.

We have investigated the bounded-distance decoder of
[2], which we call LATTICEDECODEB

λ24
(x). Their imple-

mentation uses at most 519 real operations per decoded
point. For that decoder, we computed the values of the re-
sulting collision probabilities (for the cased > 24). The re-
sults are depicted in Table 1. The probabilities are computed
using Monte-Carlo simulation with107 trials. Specifically,
in a trial, we generate a random pointp and some other
point q, such thatp − q is drawn from a 24-dimensional
Gaussian distribution, scaled by1√

24
times the radius.

The pointsp andq collide iff L ATTICEDECODEB
λ24

(p) =

LATTICEDECODEB
λ24

(q). Table 1 summarizes the esti-
mated probabilities of collision for different values of radii
(the confidence intervals are computed with95% accuracy).
These probabilities yield values forρ that are summarized
in Table 2. The table shows maximum likelihoodρ and con-
servativeρ. The max likehoodρ is the ratio of correspond-
ing max likehood values ofp1 andp2 (from the middle col-
umn). The conservativeρ is the ratio of lowest estimate of
p1 from the confidence interval to the highest estimate ofp2

in the confidence interval.
For the case whend ≤ 24, the collision probabilities

are summarized in table 3. The method for computing the
probabilities is as before, except for the generation of the
pointq. In this case, the vectorq − p is a random vector of
fixed length. The resulting values ofρ are summarized in
Table 4.



Radius Est. collision prob. Confidence interval
0.7 0.0853465 [0.0853409, 0.0853521]
0.8 0.0525858 [0.0525813, 0.0525903]
0.9 0.0311720 [0.0311685, 0.0311755]
1.0 0.0177896 [0.0177869, 0.0177923]
1.1 0.0097459 [0.0097439, 0.0097479]
1.2 0.0051508 [0.0051493, 0.0051523]
1.3 0.0026622 [0.0026611, 0.0026633]
1.4 0.0013332 [0.0013324, 0.0013340]
1.5 0.0006675 [0.0006670, 0.0006681]
1.6 0.0003269 [0.0003265, 0.0003273]
1.7 0.0001550 [0.0001547, 0.0001553]
1.8 0.0000771 [0.0000769, 0.0000773]
1.9 0.0000368 [0.0000366, 0.0000370]
2.0 0.0000156 [0.0000155, 0.0000157]

Table 1. Probabilities of collision of two
points, for d > 24, under the hash func-
tion described in figure B.1 with bounded-
distance Leech Lattice decoder. The values
were obtained through Monte-Carlo simula-
tion for 107 trials. Confidence interval corre-
sponds to 95% accuracy.

c Max likelihood ofρ Conservativeρ RadiusR
1.5 0.5563 0.5565 1.2
2.0 0.3641 0.3643 1.0

Table 2. The values of ρ = log p1

log p2
correspond-

ing to the collision probabilities in Table 1
(d > 24). Probabilities p1 and p2 are the col-
lision probabilities corresponding to radii R
and cR, respectively.

Radius Est. collision prob. Confidence interval
0.7 0.0744600 [0.0744548, 0.0744653]
0.8 0.0424745 [0.0424705, 0.0424786]
0.9 0.0223114 [0.0223084, 0.0223144]
1.0 0.0107606 [0.0107585, 0.0107627]
1.1 0.0046653 [0.0046639, 0.0046667]
1.2 0.0017847 [0.0017838, 0.0017856]
1.3 0.0005885 [0.0005880, 0.0005890]
1.4 0.0001602 [0.0001599, 0.0001605]
1.5 0.0000338 [0.0000337, 0.0000340]
1.6 0.0000073 [0.0000072, 0.0000074]
1.7 0.0000009 [0.0000008, 0.0000010]
1.8 0.0000000 [0.0000000, 0.0000001]

Table 3. Probabilities of collision of two
points, for d ≤ 24, under the hash function de-
scribed in figure B.1 with bounded-distance
Leech decoder. The values were obtained
through Monte-Carlo simulation for 107 trials.
Confidence interval corresponds to 95% ac-
curacy.

c Max likelihood ofρ Conservativeρ RadiusR
1.5 0.4402 0.4405 1
2.0 0.2671 0.2674 0.8

Table 4. The values of ρ = log p1

log p2
correspond-

ing to the collision probabilities in table 1
(d ≤ 24). Probabilities p1 and p2 are the col-
lision probabilities corresponding to radii R
and cR respectively.


