Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High

Dimensions
Alexandr Andoni Piotr Indyk
MIT MIT
andoni@mit.edu indyk@mit.edu
Abstract current solutions suffer from either space or query time tha

is exponentiain d. In fact, for large enough, in theory

We present an algorithm for the-approximate near- or in practice, they often provide little improvement over a
est neighbor problem in d-dimensional Euclidean space, linear algorithm that compares a query to each point from
achieving query time dt)(dnl/chf"(l)) and space)(dn + the database. This phenomenon is often called “the curse of
nl+1/e’+o(1)) " This almost matches the lower bound for dimensionality”.
hashing-based algorithm recently obtained in [27]. We also Inrecentyears, several researchers proposed methods for
obtain a space-efficient version of the algorithm, whiclsuse overcoming the running time bottleneck by usigproxi-
dn +nlog®™M n space, with a query time @h©(/<*). Fi- mation (e.g., [7, 23, 21, 25, 16, 24, 17, 12, 8, 28, 1], see
nally, we discuss practical variants of the algorithms that also [31]). In that formulation, the algorithm is allowed to
utilize fast bounded-distance decoders for the Leech Lat-return a point, whose distance from the query is at most
tice. c times the distance from the query to its nearest points;
¢ = 1+4€ > 1is called theapproximation factorThe appeal
of this approach is that, in many cases, an approximate near-
est neighbor is almost as good as the exact one. In partic-
ular, if the distance measure accurately captures themotio
of user quality, then small differences in the distance &hou

The nearest neighboproblem is defined as follows: not matter. Moreover, an efficient approximation algorithm
given a collection of: points, build a data structure which, can be used to solve tixactnearest neighbor problem, by
given any query point, reports the data point that is clos- enumeratingll approximate nearest neighbors and choos-
est to the query. A particularly interesting and well-sasli ing the closest point. For many data sets this approach re-
instance is where the data points live id-dimensional Eu- sults in very efficient algorithms (see e.g., [4]).
clidean space. This problem is of major importance in sev- | [25, 21, 8, 1], the authors constructed data structures
eral areas; some examples are: data compression, databasgsy the(1-+¢)-approximate nearest neighbor problem which
and data mining, information retrieval, image and video ayoided the curse of dimensionality. Specifically, for any
databases, machine learning, pattern recognition, t&tatis constant > 0, the data structures support queries in time
and data analysis. Typically, the features of each object OfO(dlog n), and use space which is polynomiakinUnfor-
interest (document, image, etc) are represented as a point itunately, the exponent in the space bounds is roughfk?
R4 and the distance metric is used to measure similarity of (for e < 1), whereC is a “non-negligible” constant. Thus,
objects. The basic problem then is to perform indexing or eyen for, saye = 1, the space used by the data structure
similarity searching for query objects. The number of fea- is |arge enough so that the algorithm becomes impractical
tures (i.e., the dimensionality) ranges anywhere from tenseyen for relatively small data sets. In fact, in a recent pa-
to thousands. per [6] we show that, in order to solve thecisionversion

There are several efficient algorithms known for the case of the approximate nearest neighbor problem, the exponent
when the dimensiod is “low” (see [30] for an overview). in the space bound must be at le&)il/e?), as long as
Therefore the main issue is that of dealing with a Iarge num-the search a|gorithm performs 0n|y a constant number of
ber of dimensions. Despite decades of intensive effort, the«probes” to the data structure. The algorithms of [25, 21]

*This work was supported in part by NSF CAREER award CCR- use onlyoneprobe. . .
0133849, David and Lucille Packard Fellowship and Alfre@®Ran Fel- In [21, 1_511 the authors introduced an a“femauve ap-
lowship. proach, which uses much smaller space while preserving

1. Introduction

sub-linear query time (see Figure 1 for the running times).
It relies on a concept dbcality-sensitive hashing (LSH)
The key idea is to hash the points using several hash func
tions so as to ensure that, for each function, the probwbilit
of collision is much higher for objects which are close to
each other than for those which are far apart. Then, one ca
determine near neighbors by hashing the query point and
retrieving elements stored in buckets containing thattpoin
In[21, 15] the authors provided such locality-sensitivetha
functions for the case when the points live in binary Ham-
ming spacé {0, 1}%. In a followup work [12], the authors
introduced LSH functions that work directly in Euclidean
space and result in a (slightly) faster running time. The
latter algorithm forms the basis ofESH package [5] for
high-dimensional similarity search, which has been used in
several applied scenarios. Recently, [28] proposed a dif-
ferent method of utilizing locality-sensitive hash furcts,

Paper Metric Space Query time Comments
[21, 15] | Hamming niti/e dnl/c
[12] | Euclidean| nit+e'(® dn?'(©) ple) <1/e
[28] | Euclidean n dn*’' (®) 27Le) 2,09
here | Euclidean | nlt1/c®+o(1) | gpl/c®+o(1)
Euclidean n dn@/¢*)

Figure 1. Space and time bounds for LSH-
based data structures. Factors polynomial in

logn and 1/¢, as well as an additive term of
in the storage bound, are omitted for clarity.

dn

which results in near-linear space, at the cost of somewhatime of the algorithm is bounded by the formula
tO(t)nl/c2+O(logt)/t1/2

higher query time.
The natural question raised by this line of research is:
what is the smallest exponemtchievable via the locality-

ond author (e.g., in [19]) that < 1/c%. The conjecture was

exists for the closely related problem of finding faethest
neighbor{20].

Our results. In this paper we essentially resolve the is-
sue by providing an algorithm with query tird@”(®) using
spacein + n'**() where

p(c) = 1/¢* + O(loglogn/ log'? n).

This significantly improves over the earlier running time
of [12]. In particular, forc = 2, our exponent tends @25,
while the exponentin [12] was aroufidl5. Moreover, are-

scribed in Section 2.3) cannot achigve: 0.462/c2. Thus,
the running time exponent of our algorithm is essentially
optimal, up to a small constant factor.

Our result immediately implies improved algorithms for
several approximate problems in high dimensional spaces
For example, it is known [21, 18] that theapproximate
minimum spanning tree (MST) problem fer points in
19 can be computed by usin@(nlogn) calls to thec-
approximate near neighbor oracle for that space. Thus,
our result implies an!*1/<*+o(-time algorithm for the--
approximate MST problem. Other problems for which sim-
ilar improvement is obtained include dynamic closest pair
and facility location [18].

Unfortunately, the convergence of the exponent to the
1/c? limit is rather slow. To be more precise: the running

1The algorithm can be extended to other norms, such ay using
embeddings. However, this extension adds additional cexiiplto the
algorithm.

wheret is a parameter chosen to minimize the expression.
sensitive hashing approach ? It was conjectured by the secThet©(*) factor appears due to the fact that our algorithm
exploits certain configurations of points in-alimensional
motivated by the fact that an algorithm with such exponent space; the “quality” of the configurations increases with
One can observe that the paraméteeeds to be somewhat
large for the exponent to be competitive against the earlier
bounds. But then the facto?*) becomes very large, eras-
ing the speedup gained from the improved exponent (unless
n is really large).
To overcome this difficulty, we modify the algorithm to
make it efficient for more moderate valuesqaf Specif-
ically, we replace the aforementioned configurations of
points by known constructions of “nice” point-sets in spe-
cific dimensions.

In particular, by utilizing Leech Lat-

cent paper [27] shows that hashing-based algorithms (as det_|ce [26] in 24 dimensions, we obtain an algorithm with ex-

ponentp(c) such thatp(2) < 0.37, while the leading term

in the running time is reduced to only few hundred. More-
over, if the dimensiod does not exceegl, the exponentis
reduced further, and we achieve(2) < 0.27. The leading
term in the running time remains the same.

Finally, we show that the LSH functions can be used as

in [28] to design a data structure with nearly-linear space
of O(dn + nlog®® n) and query timedn®/<"). This
improves over the earlier bound @£°(*/¢) due to [28].

1.1 Techniques

We obtain our result by carefully designing a family of
locality-sensitive hash functions ip. The starting point of

2An astute reader will observe thatibththe dimension! and approx-
imation factorc are fixed constants, one can obtain a data structure with
constantquery time, essentially via table lookup. However, thisrapph
leads to “big-Oh” constants that are exponential in the dsien, which
defeats our goal of achieving a practical algorithm.

our construction is the method of [12]. There, a ppimtas Leech Lattice LSH. In order to obtain a more practical
mapped intdt! by using random projection. Then, the line algorithm, we introduce a different partitioning methoditth
R! was partitioned into equal-length intervals of length avoids thet©(") factor. Specifically, we use tessellations
wherew is a parameter. The hash function foreturned induced by (randomly shifted) Voronoi diagramsfieedt-
the index of the interval containing the projectiorpof dimensional point constellations which have the following

An analysis in [12] showed that the query time exponent two nice properties:
has an interesting dependence on the parametetf w _ _ _ _
tends to infinity, the exponent tendsltge, which yields no e The clos_es_t constellation point to a given point can be
improvement over [21, 15]. However, for small values of found efficiently, and
w, the exponent lies slightly belowy/c. In fact, the unique
minimum exists for each.

In this paper we utilize a "multi-dimensional version” of
the aforementioned approach. Specifically, we first perform
random projection intdr?, wheret is super-constant, but
relatively small (i.e.t = o(logn)). Then we partition the

e The exponenp induced by the constellation is as close
to 1/c? as possible.

The partitioning is then implemented by randomly pro-
jecting the points intdt¢, and using the Voronoi diagram.
g _ _ We discovered that a constellation in 24 dimensions known
_spacé}% into cells. T he hash funcupn functhn retuns the as Leech Lattice [26] satisfies the above properties quite
index of the_ gell.whmh contains prpjected pont) well. First, the nearest point in the lattice can be found by
The partitioning of the spac®” is somewhat more in- sing a (bounded) decoder of [2] which perform only 519
volved than its one-dimensional counterpart. First, oleser floating point operations per decoded point. Second, the ex-

that the natural idea of partitioning using a grid does not yonenty(c) guaranteed by that decoder is quite attractive:
work. This is because this process roughly correspondsiy, . — 9 the exponenp(2) is less than 0.37. The intuitive

to hashing using concatenation of several one-dimensionaleason for that is that Leech Lattice is a “very symmetric”
functions (as in [12]). Since the LSH algorithms performs ¢qngellation, and thus its Voronoi cells are very “round”.
such concatenation anyway (see Preliminaries), grid-parti \joreover, if the dimensiod does not exceegl, then we
tioning does not result in any improvement. Instead, we ¢4 skip the dimensionality reduction part. In that case we

use the method of "ball partitioning”, introduced in [9] in getp(2) < 0.27, while the leading term in the running time
the context of embeddings into tree metrics (a similar tech- \emains the same.

nique was also used in the SDP-based approximation algo-
rithm for graph coloring [22]). Its idea is as follows. Creat

a sequence of ballB,, B .. . each of r‘?,‘,d'us"* with cen- pjike the algorithm of [21] (which used” independent
ters chosen independently “at random”. Each @althen aqp aples), his algorithm uses oblyehash table to store
defines a cell, containing point$; — Uj<; B;. the data set”. The hash table is then probed by hash-
In order to apply this method in our context, we need to ing not just the query poing (as in [21]) but by hashing
take care of a few issues. First, we cannot use the method,gyerg] points chosen randomly from the neighborhood of
as given, since locating a cell containing a given pointdoul , The intuition behind this approach is as follows. Let
take a long time. Instead, we show that one can simulate)» < p pe a point within distance from q. If a random
the above procedure by replacing each ball by a "grid of | SH function causes collision betweghandg with prob-
balls”. It is not difficult then to observe that a finite (albei zpjlity 1/n”, then it is plausible that, with constant proba-
exponential inf) number of such grids suffices to cover all pjjity3, a random hash function causes collision betwgen
points in®'. and a “non-negligible” (sayy 1/n*) fraction of the points
The second and the main issue is the choice.ofgain, in the unit ball around;. Sinceq and p* are “close”, it
it turns out that for largev, the method yields only the ex- follows that, with constant probability, a random hash func
ponent of1/c. Specifically, it was shown in [9] that for tion causes collision betweei and a “non-negligible” (al-
any two pointsp,q € %, the probability that the parti- though slightly smaller) fraction of the unit ball around
tioning separatep andq is at mostO (\/Z lp — q||/w). which is exactly what the algorithm of [28] needs.
This formula can be showed to be tight for the range of Converting this intuition into a formal proof is somewhat
w where it makes sense as a lower bound, that is, fortechnical. This is mostly due to the fact that the new LSH
w = Q(Vt-|p—q|). However, as long as the separa- functions are more complex than the ones from [12] (used
tion probability depends linearly on the distance between in [28]), and thus we had to extend his framework to a more

andg, the exponenp is still equal tol/c. Fortunately, a general setting. We defer the proofs to the full version of
more careful analysis shows that, as in the one-dimensionathis paper.

case, the minimum is achieved for finite For that value
of w, the exponent tends ti/c? ast tends to infinity. 3In the actual proof, the probability is/ log® ") n.

Near-linear space algorithm.This result is achieved by
plugging our new LSH function into the algorithm of [28].

2. Preliminaries

2.1. Notation

In this paper, we work in the Euclidean space. For a

pointp € R?, we denote byB(p, r) the ball centered at
with radiusr, and we callB(p,) its surface. For a ball
with radiusr in %7, we call its surface aregur?(r) and
its volume Vol%(r). We note thaSur? = S, - r¢~1 and

Vold(r) = SJT’d whereS, is the surface area of a ball of

radius one (see, for example, [29], page 11).

We also need a (standard) bound on the volume of the

cap ofaballB(p,r). LetC(u,r) be the volume of the cap at
distance: from the center of the ball. Alternativelg;(u,)

is the half of the volume of the intersection of two balls
of radiusr with centers at distancu. Furthermore, let
I(u,r) = \if;;”(’;)) be the cap volume relative to the volume
of the entire sphere. We can bouh, r) as follows.

Lemma 2.1. Foranyd > 2and0 <u <r,

(-63)’ << (-7

The proof is deferred to the appendix.

A
Nz

We also use the following standard facts about random
projections in Euclidean spaces (for proofs see, e.g.)[21]

LetA € M, 4 be arandom projection frof? to R; specif-

ically each element ofl is chosen from normal distribution
N (0,1), multiplied by a scaling facto%.
Fact 2.2. For any vectorv € R4, the value||Av||?/||v]|?
is distributed with probability densityP,- (xt), where

Py (z) = % is the chi-squared distribution with
t degrees of freedom. The expectation|dfv||?/||v||? is

equal tol.

Fact 2.3. For any vectorv € R?, Pra[||Av|| > 2|jv|]] <
exp [—Q(t)].

Fact 2.4. For any vector € R¢ and any constant > 10,
Pra[[Av]| > aljv]] < exp [-Q(tv/a)].

2.2. Problem definition

In this paper, we solve theapproximate near neighbor
problem inis, the Euclidean space.

Definition 2.5 (c-approximate near neighbor, @*NN).
Given a sef” of points in ad-dimensional Euclidean space
R?, and parameters® > 0, § > 0, construct a data struc-
ture which, given anguerypointq, does the following with
probability 1 — §: if there exists am?-near neighbor of; in
P, it reports someR-near neighbor of; in P.

In the following, we will assume that is an absolute
constant bounded away from Note that the probability of
success can be amplified by building and querying several
instances of the data structure.

Formally, anR-near neighbor of is a pointp such that
llp—¢l|2 < R. Note that we can scale down the coordinates
of all points byR, in which case we need only to solve the
NN problem forR = 1. Thus, we will consider thak = 1
for the rest of the paper.

2.3. Locality-Sensitive Hashing

To solve thec-approximate near neighbor, we use the
locality-sensitive hashing scheme (LSH). Below we de-
scribe the general LSH scheme, as it was first proposed
in [21]. In this paper we reuse the same LSH scheme, but
we introduce a new family of locality-sensitive hash func-
tions.

The LSH scheme relies on existencdafality-sensitive
hash functionsConsider a family{ of hash functions map-
ping R to some universy.

Definition 2.6 (Locality-sensitive hashing)A family H is
called(R, cR, p1, p2)-sensitivef for any p, ¢ € R¢

h(p)] > P1,

e if [[p — || > cRthenPry[h(q) = h(p)] < po.

o if |[p— gq|| < RthenPrylh(q) =

The LSH functions can be used to solve tAbN prob-

lem, as per the following theorem of [21]. Let =
log(1/p1)
log(1/p2)*

Fact 2.7. Given a family of(1, ¢, p1, p2)-sensitive hash
functions for®?, where each function can be evaluated
in time 7, one can construct a data structure ferNN
with O((d + 7)n” log, ,,,, n) query time and spad@ (dn +
n1+p)_

3. Main algorithm

Our new algorithm fore-NN uses a new family of LSH
functions forl,, while reusing the LSH scheme of section
2.3. This new family is presented below. Once we de-
scribe the new family of LSH functions, we prove that the
query time isO(n!/¢*+°(1)) by showing thatl, = n* =
O(n/<*+°oW) k. = O(log n), and thatr = O(dn°™)).

3.1. LSH Family for I,

We first describe an “ideal” LSH family fds. Although
this approach has some deficiencies, we show how to over-
come them, and obtain a good family of LSH functions. The

final description of the LSH family is presented in the figure
2.

Ideal LSH family. Construct a hash functiol as fol-
lows. ConsideiG?, a regular infinite grid of balls if<:
each ball has radius and has the center div - 7. Let
G4, for positive integeru, be the gridG? shifted uni-
formly at random; in other word€7¢ = G? + s,,, where
sy € [0,4w]?. Now we choose as marty!’s as are needed
to cover the entire spade? (i.e., until each point fron¢
belongs to at least one of the balls). Suppose we iéed
such grids to cover the entire space with high probability.

We defineh on a pointp as a tuple(u, x1, xa, ...x4),

u € [1,Uland(z1,...x4) € G4. The tuple(u, z1, z2, ...zq)
specifies the ball which contains the poipt p €
B((xz1,xa,...2,),w). Ifthere are several balls that contain
p, then we take the one with the smallest valu€Comput-
ing h(p) can be done im = O(U) time: we iterate through
all G¢, G4, ...G¢, and find the firstG¢ such thap is inside

a ball with the center frond/<.

Intuitively, this family satisfies our locality-sensitidef-
inition: the closer are the points, g, the higher is the
probability thatp, ¢ belong to the same ball. Indeed, if
we choose a suitable radius > 1/2, then we will get
L=nf= O(n1/°2+0(1)).

However, the deficiency of this family is that the time to
computeh(p) might be too large ifl = Q(logn) since we
need to set/ = Q(2¢) (see lemma 3.1). We show how to
circumvent this deficiency next.

Actual LSH family. Our actual construction utilizes the
“ideal” family described above, while introducing an ad-
ditional step, necessary to redue the number of grids
covering the space. The algorithm is given in Figure 2.

To reducelU, we projectR? to a lower-dimensional
spacert via a random dimensionality reduction. The pa-
rametert is o(logn), such that factors exponential in
areo(n). After performing the projection, we choose the
grids G4, G5, ...G%; in the lower-dimensional spac®’.
Now, to computeh(p), we compute the projection qf
onto the lower dimensional spa#¥, and process the pro-

jected point as described earlier. In short, the actual hash

function ish(p) = h(Ap), where A is a random matrix
representing the dimensionality reduction mapping, And
works in thet¢-dimensional space. Note thatbecomes
T = O(dt) + O(U") corresponding to the projection and
the bucket-computation stages respectively.

3.2. Analysis of the LSH family
We start by bounding the number of gri@€ needed to

cover the entire spade?, for any dimensionl.

Lemma 3.1. Consider ad-dimensional spac&?. Let G¢
be a regular infinite grid of balls of radius placed at co-
ordinatesow - Z¢, where2 < ¢ < d°"). DefineG¢, for

Initialization of a hash function h € H

1. Foru = 1to U, choose a random shigt, € [0, 4w]t, which
specifies the grids!, = G* + s, in the t-dimensional Eu-
clidean space.

2. Choose a matrixl € M; 4, where each elemend;; is dis-
tributed according to the normal distributig¥i(0, 1) times a

scaling factor,%. The matrixA represents a random projec-

tion from R? to Rt
Computing /() on a pointp € R4

1. Letp’ = Ap be the projection of the point onto thet-
dimensional subspace given by

2. Foreachu =1,2,...U

3. Check whetheB(p’,w) N G # 0, i.e., whether
there exist somez1,z2,...2¢) € GY such that
p € B((z1,x2,...7t),w).

4. Once we find suchz1,z2,.
(u, z1,z2,...x¢), and stop.

..xy), seth(p)

5. Return0**1 if we do not find any such ball.

Figure 2. Algorithms for initializing a hash
function h from the LSH hash family, and for
computing h(p) for a point p € R,

positive integew, asG? = G? + s, wheres,, € [0, ow]?
is a random shift of the grid:?. If U; = 29(dlogd) Jogp,
then, the grids7{, G§, ... G{; cover the entire spac@®,
w.h.p.

Proof. First, observe that the entire space is covered if and
only if the hypercubeé0, ow]? is covered by grid&:¢ (due
to the regularity of the grids).

To prove that|0, ow]¢ is covered, we partition the hy-
percubd0, cw]? into smaller “micro-cubes” and prove that
each of them is covered with a high enough probabil-
ity. Specifically, we partition the hyperculie, cw]? into
smaller micro-cubes, each of si% X % S X % There

(cw)?

areN = 55T = (ov/d)? such micro-cubes in total.
Letx be the probability that a micro-cube is covered by one
grid G¢. Thenz > % = 1/N because, for a micro-
cube to be covered, it suffices that the center of the ball
B(0? + s, w) falls inside the micro-cube, which happens
with probability1/N. Furthermore, ifc;; is the probability
that a micro-cube is covered by any of thiggridsG¢, then

rp >1—(1—2)V,

Thus, we can compute the probability that there exists
at least one uncovered micro-cube, which is also the prob-
ability that the entirg0, cw]? hypercube is uncovered. Set
Uq = aN(logn + log N) for a suitable constant. Using
union bound, we obtain that the probability that the entire

hypercube is not covered is at most

N(1-2)% <N1-1/N)Vi <

< N(]. o 1/N)aN(]ogn+logN) < N2710gnflogN <]./TL
Concluding: with probability at leadt — 1/n we cover
the entire space with the grids{, ... G{, , if we choose
Ug = O(N(logn +log N)) = 20(dlogd) Jog p, O
The next lemma states the main technical result of this
paper.
Lemma 3.2. Consider the hash functiondescribed in the
figure 2, and letp, ¢ be some points ifR?. Letp; be the
probability thath(p) = h(q) given that||p — ¢|| < 1, and
let po be the probability that(p) = h(q) given that||p —
gl| > c. Then, forw = © (V/f), we obtainy = [2E1/PL —

log1/p2 —
1/e2+0 (181).

logt

Proof. The proof proceeds in three stages. Fix some pointsobtain

p,q € R? at distance). First we compute the probability
of collision of p and ¢ given that their distance after the
projection is equal to some fixed vald€. Next, for each
of the cases whelh < 1 andA > ¢, we compute the
collision probabilities f; andp-, resp.) by integrating over
the range of the possible (distorted) distandés Finally,
given the bounds op; andp,, we compute the value of

= e

Suppose pointg andq are projected under the dimen-
sionality reduction into pointg’ Ap and¢ = Ag,
p'.q € R, with A = |p’ — ¢|; the probability of col-
lision of p andq can be deduced as follows. Consider the
sequence of grid&!, G%, ..., Gt;, and letG?, be the first
grid such thap’ or ¢’ are inside a balB(x, w) with center
in G,. Note that the position of this ball defines whether
h(p) = h(q) or not. In particular, ifp’, ¢’ € B(z,w) then
h(p) = h(q) and, otherwise, if exactly one of, ¢’ is inside
B(x,w) thenh(p) # h(q). Thus, we can conclude that the
probability of collision of point®, g is

Pr(h(p) = h(q) | Ip" — ¢l = A'] =
Prlp’, ¢ € B(z,w) | p’ € B(z,w) V¢ € B(z,w)]
|B(p’,w)NB(q",w)| _
[B(p",w)UB(q",w)]
2C(A'/2,w)
2Volt(w) 2C(A2,0)
I1(A"/2,w)
1-1(A’/2,w)

/

1)
whereC'(A’/2,w) andI(A’/2,w) are respectively the
cap volume and the relative cap volume, as defined in the

preliminaries.

In the next step we boung. This is done by integrating
the collision probability over all possible valuesAf, i.e.,
over all distortions ofj|p — ¢||. As noted in fact 2.2, the
distortion of||p — ¢||? is distributed with probability density
P,.

b = [Prlh) = h(o) | I ~ | = /Tl - P(o)da
0
< [Pe(a)- %dm
OS\/gCSQw 2Vt S
< [Pela)-21 (%\/?c,w) dz
0
° WACE
< 2[Pe(x)- 1_(2\1{?) A
0
S 2fPX2(QXp|: 5 x4w?t:| dx
0
= 2[Poe) exp|~§ -] do
0

where, for the third inequality, we used lemma 2.1. Set-

ting e = and replacing the expression fét ., we

4’(1)2 1

zt/2—1
/2 2t/2 exp

IA

2 [e o0 [5]) exp [~ 257 da
x(1+c%e))t/2~1 z(14c2e
2 f (1+£2£):;2—1)1)‘(t/2)2t/2 - €Xp {—7(+2)} dx

(1+C2 (1+ec2e)t/2 fP

#
(I+c2e)t/?

2(1+ c2e))d(x(1 + c2¢))

(2)

We boundp, from below in a similar way

1(3/%w) d

b1 > f PXQ(x)ﬁ T
O<\/_<2w ICVARD)
aw?t
> Ofoz(x)-I(%\/?,w)dx
t/e 1 JE 2 3
> [Pe(x) A—f‘<1—<2\u{j>) dx
3 ¢
A t/e ¢
- 4 [P (- %) a
A t/e
=] B (fi/:/t)
A e t ze/t
> 7%OfPX2(x).eXp [—5 - M/t} dx
4t
%Ofpxz(x) cexp [—L - Z¢(1 + 8e¢)] da

4t
3)
Note that the ternf% (z)dx represents the proba-
bility of expansion by more than a factor of 2, which is at
mostexp [—€(t)] by fact 2.3. Furthermore, replacing the

expression folP, 2, we obtain

P2 % (f Pa(z) - exp [—45(1+ 8¢)| dox — eQ(t)>
BN
> ﬂOO ‘7‘.%711 e_T/Q.exp —
-V of r($)22 [
— f (e(1+(14+8)e))s !
\/ (1+(14+8¢)e) 3 ~'T(4)2%
*Q()
_ ﬂ, 1 — ()
TV (14 (148¢)e)t/2 4
4
Fore = 1/4w? = o(1), we obtainp; > 2“‘& -
1
(1+€.+8€2)t/2 .
Finally, we can boung as follows:
_ logl/py log ZT\/lZ'(1+(1+8€)E)t/2
p= logl/p> — log %'(1+026)t/2
log(1+(1+8e)e)t/2+log2A‘—f
= log (1+c2¢)t/2—log 2
_ log (14+(148€)e) + 2los 2T/ A4,
- log‘(l—‘,—(zze)—zl"Tgz
log (14 (14-8¢€)e) 2log 2v/t/A;
< LY (14 it)
(]‘ + O (tloz 1332026))
(1+8€)e logt
< cZe—(cZe)2/2 (1 +0 (tlog(1+e)))
< L1486 (1+0(c2e/2)) - (1+o(logf
1 w? logt
< = 1+0(e+ f))
< Lo(1+0(k))
(5)

for w = v/, which also implies = O(t=1/2) = o(1).
([l

Theorem 3.3. There exists an algonthm solvirgNN prob-
lem in 14 that achievesO(dn!/<"+°()) query time and
O(dn“l/‘ +o(1)) space and preprocessing.

Proof. The result follows by using the LSH family in fig-

4. Acknowledgments

The authors would like to thank Assaf Naor for stimu-
lating discussions about the ball partitioning method.0Als

%(1 + 86)] dz — =) they thank Ofer Amrani for supplying the bounded distance

decoder code, and to Alex Vardy and Erik Agrell for an-

exp {_-’E(1+(12+8€>€>} dx swering numerous questions about Leech Lattice decoders.

References

(1]

(2]

(3]

N. Ailon and B. Chazelle. Approximate nearest neighbors
and the fast johnson-lindenstrauss transfoftoceedings

of the Symposium on Theory of Computiag06.

O. Amrani and Y. Be'ery. Efficient bounded-distance d&co
ing of the hexacode and associated decoders for the leech
lattice and the golay codéEEE Transactions on Communi-
cations 44:534-537, May 1996.

O. Amrani, Y. Be'ery, A. Vardy, F.-W. Sun, and H. C. A.
van Tilborg. The leech lattice and the golay code: Bounded-
distance decoding and multilevel constructidBEE Trans-
actions on Information Theoryt0:1030-1043, July 1994.

[4] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mir-

[5] A. Andoni and P.

(6]
(7]

(8]

ure 2 with the general LSH scheme described in section 2.3. [9]

By lemma 3.2, fort = log?®n, we havep = 1/c¢® +
0] (k’g}%”). Furthermore k. can be bounded as (using

lo

eqn. (2)

logn

log1/p2 ~ log (1 + c2/4w?)t? /2

9, (ﬁ%) = O(logn)

Finally, by lemma 3.1 forc = 4, 7 = O(dt) +
o(U") = O0(dt) + O (28t logn) = O(dt) +
90(log** nloglogn) 160y = O(dn°M). The theorem fol-
lows. O

logn

[10]

[11]

[12]

[13]

rokni. Locality-sensitive hashing scheme based on p-stabl
distributions. Nearest Neighbor Methods for Learning and
Vision, Neural Processing Information Series, MIT Press
2005.

Indyk. E2Ish: Exact euclidean
locality-sensitive hashing. Implementation available at
http://web.mit.edu/andoni/www/LSH/index.html

2004.

A. Andoni, P. Indyk, and M. Patrascu. On the optimality

the dimensionality reduction methoManuscript 2006.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.
An optimal algorithm for approximate nearest neighbor
searchingProceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithmpages 573-582, 1994.

A. Chakrabarti and O. Regev. An optimal randomised
cell probe lower bounds for approximate nearest neighbor
searchingProceedings of the Symposium on Foundations of
Computer Scienc004.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin.
Approximating a finite metric by a small number of tree met-
rics. Proceedings of the Symposium on Foundations of Com-
puter Sciencel998.

J. H. Conway and J. A. Sloane. Soft decoding techniques
for codes and lattices, including the golay code and théhleec
lattice. IEEE Trans. Inf. Theor.32(1):41-50, 1986.

J. H. Conway and J. A. Sloan&phere Packings, Lattices,
and Groups Springer-Verlag, New York, 1993.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Loda}-
sensitive hashing scheme based on p-stable distributions.
Proceedings of the ACM Symposium on Computational Ge-
ometry 2004.

U. Feige and G. Schechtman. On the optimality of the ran-
dom hyperplane rounding technique for max c®andom
Struct. Algorithms20(3):403-440, 2002.

[14] G.Forney and A. Vardy. Generalized minimum distance de A. Cap of the sphere
coding of euclidean-space codes and lattidEEE Trans-

i\gtgl(éns on Information Theoryt2:1992-2026, November Proof. The result follows immediately from the lemma 9 of

[15] A. Gionis, P. Indyk, and R. Motwani. Similarity searah i [13], which gives bounds on the ratio of the surface areas of

high dimensions via hashingProceedings of the 25th In- the cap to that of the ball. Specifically, note tiigt, r) has
ternational Conference on Very Large Data Bases (vVLDB) the following form

1999.

[16] S. Har-Peled. A replacement for voronoi diagrams ofrnea I(u,r7) = C(u,r)- (Volé(r))~!
linear size.Proceedings of the Symposium on Foundations _ Sact(p2 _ 2\ %5 g S dy—1
of Computer Scien¢@001. = f i (r—y) T dy- (77")

=

L

[17] S. Har-Peled and S. Mazumdar. Coresets for k-means and r a1 _
k-medians and their application®roceedings of the Sym- <f Sa—1(r* —y*) "= dy - (Sar?) >
posium on Theory of Computing004. w

[18] P. Indyk. High-dimensional computational geometripe- o i1 =
partment of Computer Science, Stanford University, 2001. The quantity [Sq—1(r? — y*) = dy - (Sar?) ~ rep-

[19] P. Indyk. Approximate algorithms for high-dimensibna resents precisely the ratio of the surface area of the cap
geometric problems. Invited talk at DIMACS Work- (C'(u,r) (excluding the base) to the surface area of a ball
shop on Computational ~Geometry. Available at of radiusr in the (d + 1)-dimensional space. This ratio is

http://theory.csail.mit.edu/"indyk/high.ps + bounded [13] as
2002.
[20] P. Indyk. Better algorithms for high-dimensional piroity d T
problems via asymmetric embeddingBroceedings of the A 1— (3)2 2 < [s, (TQ_yQ)%dy.(Sdrt)—l <
ACM-SIAM Symposium on Discrete Algorithrae03. Vd+1 r - -t -

[21] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionalilBroceedings .,
of the Symposium on Theory of Computihg98. 1 un 2\ 2
[22] D. Karger, R. Motwani, and M. Sudan. Approximate graph 5 (1 - (—) >
coloring by semidefinite programmindgroceedings of the

35th IEEE Symposium on Foundations of Computer Science Thys, multiplying the above bounds Qﬁ—, we obtain

r

pages 2-13, 1994. that

[23] J. Kleinberg. Two algorithms for nearest-neighborrekan
high dlmenspns.Proceedlngs of the Tvyenty-Nmth Annual d A U 2 d d 1 un 2 4
ACM Symposium on Theory of Computii§97. -t (_) <I(u,r) < ——=(1— (_)

[24] R. Krauthgamer and J. R. Lee. Navigating nets: Simpleal d—1 vd+1 r d—12 T

gorithms for proximity search.Proceedings of the ACM-
SIAM Symposium on Discrete Algorithr2804. which implies the lemma. g
[25] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high dimenkiona : :
spaces. Proceedings of the Thirtieth ACM Symposium on B. Lattice-based LSH fam”y
Theory of Computingpages 614-623, 1998.
[26] J. Leech. Notes on sphere packingsanadian Journal of In this section we describe a practical variant of the LSH
Mathematics 1967. family based on lattices in Euclidean spaces. Although, the
[27] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on gretically, these families are not asymptotically betteart
locality sensitive hashingProceedings of the ACM Sympo- he ones described earlier, they are likely to perform bette
sium on Computational Geomef3006. in practice, due to much lower “big-Oh” constants.

[28] R. Panigrahy. Entropy-based nearest neighbor alguarin . .
high dimensions. Proceedings of the ACM-SIAM Sympo- We start by presenting the general lattice-based ap-

sium on Discrete Algorithm{006. proach. Then, we give an algorithm based on a concrete
[29] G. Pisier. The volume of convex bodies and Banach space 24-dimensional lattice, called Leech Lattice [26]. For the
geometry Cambridge University Press, 1989. Leech lattice-based algorithm, we include the actual &lue
[30] H. Samet. Foundations of Multidimensional and Metric of the resulting exponent, the main indicator of the per-
Data StructuresElsevier, 2006. formance.

[31] G. Shakhnarovich, T. Darrell, and P. Indyk, editoxearest
Neighbor Methods in Learning and VisioNeural Process-
ing Information Series, MIT Press, 2006.

[32] A. Vardy and Y. Be’ery. Maximume-likelihood decoding of
the leech latticel EEE Transactions on Information Theory The algorithm in this section uses an arbitrary lattice in
39:1435-1444, July 1993. somet-dimensional space. An example of-dimensional

B.1. Lattices in arbitrary dimension

lattice is the regular grid of points iR?, although, as men- a fast decoding functionATTICEDECODE With a higher
tioned in the introduction, it does not serve well our pur- ¢, the dimensionality reduction is more accurate. A “denser”
poses. For a given lattice, we need an efficient lattice decod lattice gives a sharper difference in collision probalaitof

ing function, to which we refer as ATTICEDECODE(x).
The function LATTICEDECODEz) takes as input a point
x € Rt and returns the lattice point that is the closest.to
Given a specific lattice with a decoding function
LatTiIcCEDECODE), an LSH function is constructed as
follows (formally presented in figure B.1). First,df > ¢,
we choose a randomrojectionfrom d-dimensional space
to t-dimensional space, which we represent as a matrix
of dimensiont x d. If d < t, then, instead, we choose a
randomrotation in the t-dimensional space, which we also
represent as a matriz of dimensiont x d (here,A is equal
to the firstd columns of an random ortonormal matrix of
dimensiont x t). Finally, we choose a randotranslation

close and far points.
B.2. Leech Lattice

In this section, we focus on a particular lattice in 24 di-
mensional space, the Leech Lattice [26]. We give numerical
values for thep when we use the Leech Lattice in the algo-
rithm B.1 with a specific decoder described below.

The Leech Lattice has been studied extensively (see,
e.g., [11, 10, 2, 32, 14]) and is known to be the lat-
tice that gives the densest (lattice) hypersphere packing
in 24 dimensions. Below, we denote the Leech Lat-
tice by Ao4 and call the corresponding decoding function

in the t-dimensional space, which we represent as a vector| arTicEDECODE,,, (). Several efficient decoders for the

T of dimensiont x 1. The values ofd, T" identify an LSH
function.

For an LSH functiom specified by values oft andT’,
we defineh(p) as beingh(p) = LATTICEDECODEA - p +
T). Or, in words, forp € R, we first projectp into R
using A (or rotate it ifd < t); then, we translate the projec-
tion usingT’; and, finally, we find the closest point in lattice
using LATTICEDECODE The output of IATTICEDECODE
gives the value ok(p).

Initialization of a hash function h € H

1. If d > t, choose a random projection frothdimensional
space tot-dimensional space. The projection is represented
by amatrixA € M; 4, where each element;; is distributed
according to the normal distributiolv (0, 1) times a scaling

1
factor, NG

2. Ifd < t, choose a random rotation in thelimensional space
The rotation is represented by the matdxwhich is equal to
the firstd coordinates of an x ¢ ortonormal matrix.

3. Choose a random translation in thdimensional space. The
translation is represented by a veciore M; ;.

Computing A() on a pointp € K¢
1. Letx=A-p+T.
2. Return LATTICEDECODEZ).

Figure 3. Algorithms for initializing an LSH
function h and for computing h(p) for a point
p e R

Leech Lattice are known; the best of them [32] requires
3595 floating point operations to decode one point. How-
ever, even faster decoders are known (e.g.,see [3, 2, 14])
for the bounded-distancdecoding problem. A bounded-
distance decoder guarantees to return the correct result on
when the query point is sufficiently close to one of the
lattice points; otherwise the decoder gives no guarantees.
Note that a bounded-distance decoder yields an LSH func-
tion, albeit not necessarily as good as the perfect decoder.
We have investigated the bounded-distance decoder of
[2], which we call LATTICEDECODEEM (z). Their imple-
mentation uses at most 519 real operations per decoded
point. For that decoder, we computed the values of the re-
sulting collision probabilities (for the cage> 24). The re-
sults are depicted in Table 1. The probabilities are contpute
using Monte-Carlo simulation with07 trials. Specifically,
in a trial, we generate a random poimtand some other
point ¢, such thatp — ¢ is drawn from a 24-dimensional
Gaussian distribution, scaled b?/% times the radius.

The pointsp and ¢ collide iff LATT|CEDE<:0DE§24 (p) =
LATTICEDECODEEM (¢). Table 1 summarizes the esti-
mated probabilities of collision for different values oflia
(the confidence intervals are computed V¥, accuracy).
These probabilities yield values fprthat are summarized
in Table 2. The table shows maximum likelihopdnd con-
servativep. The max likehoog is the ratio of correspond-
ing max likehood values gf; andp, (from the middle col-
umn). The conservative is the ratio of lowest estimate of
p1 from the confidence interval to the highest estimatg,of

The performance of the resulting LSH scheme dependsin the confidence interval.

heavily on the choice of the lattice. Intuitively, we would
like a lattice that lives if?* for hight, is “dense*, and has

4A measure of “density” is, for example, the density of hyphere
packing induced by the lattice. The density of hyperspheckipg is the
percent of the space that is covered by non-overlapping balhtered at
lattice points.

For the case whed < 24, the collision probabilities
are summarized in table 3. The method for computing the
probabilities is as before, except for the generation of the
pointgq. In this case, the vectar— p is a random vector of
fixedlength. The resulting values @fare summarized in
Table 4.

Radius| Est. collision prob. Confidence interva

07 0.0853465] [0.0853409, 0.0853521] Radius| Est. collision prob. Confidence interva

0.7 0.0744600| [0.0744548,0.0744653]
0.8 0.0525858| [0.0525813, 0.0525903]

0.8 0.0424745| [0.0424705,0.0424786]
0.9 0.0311720| [0.0311685,0.0311755]

0.9 0.0223114| [0.0223084,0.0223144]
1.0 0.0177896| [0.0177869,0.0177923] 10 0.0107606] [0.0107585, 0.0107627]
1.1 0.0097459| [0.0097439, 0.0097479] 11 00046653 [0.0046639,0.0046667]
1.2 0.0051508| [0.0051493,0.0051523] 15 00017847 [0.0017838'0.0017856]
1.3 0.0026622| [0.0026611, 0.0026633] 1.3 0.0005885 [0.0005880,0.0005890]
1.4 0.0013332| [0.0013324,0.0013340] 14 0.0001602 [0.0001599'0.0001605]
1.5 0.0006675| [0.0006670, 0.0006681] 15 0.0000338 [0.0000337,0.0000340]
1.6 0.0003269 [0.0003265, 0.0003273] 1.6 0.0000073 [0.0000072'0.0000074]
1.7 0.0001550| [0.0001547,0.0001553] 17 0.0000009 [0.0000008,0.0000010]
1.8 0.0000771| [0.0000769, 0.0000773] 18 0.0000000] [0 0000000'00000001]
1.9 0.0000368| [0.0000366, 0.0000370] - - - -
2.0 0.0000156| [0.0000155, 0.0000157]

Table 3. Probabilities of collision of two
points, for d < 24, under the hash function de-
scribed in figure B.1 with bounded-distance
Leech decoder. The values were obtained
through Monte-Carlo simulation for 107 trials.
Confidence interval corresponds to 95% ac-
curacy.

Table 1. Probabilities of collision of two
points, for d > 24, under the hash func-
tion described in figure B.1 with bounded-
distance Leech Lattice decoder. The values
were obtained through Monte-Carlo simula-
tion for 107 trials. Confidence interval corre-
sponds to 95% accuracy.

¢ | Max likelihood ofp | Conservativep | RadiusR ¢ | Maxlikelihood ofp | Conservative | Radiusk

15 0.4402 0.4405 1

15 0.5563 0.5565 1.2 50 02671 02674 08
2.0 0.3641 0.3643 1.0 : : : :

Table 4. The values of p = {gfg; correspond-

ing to the collision probabilities in table 1

(d < 24). Probabilites p; and p, are the col-

lision probabilities corresponding to radii R

and cR respectively.

Table 2. The values of p = % correspond-

ing to the collision probabilities in Table 1

(d > 24). Probabilites p; and ps are the col-

lision probabilities corresponding to radii R

and cR, respectively.

