Nearest Neighbor Search in high-dimensional spaces

Alexandr Andoni (Princeton/CCI \rightarrow MSR SVC)

Barriers II August 30, 2010

Nearest Neighbor Search (NNS)

 \bigcirc

- Preprocess: a set D of points in R^d
- Query: given a new point q, report a point p∈D with the smallest distance to q

Motivation

Generic setup:

- Points model objects (e.g. images)
- Distance models *(dis)similarity measure*

Application areas:

 machine learning, data mining, speech recognition, image/video/music clustering, bioinformatics, etc...

Distance can be:

Euclidean, Hamming, ¹/_∞,
 edit distance, Ulam, Earth-mover distance, etc...

Primitive for other problems:

○ find the closest pair in a set D, MST, clustering...

Plan for today

- 1. NNS for basic distances
- 2. NNS for advanced distances: embeddings
- 3. NNS via product spaces

2D case

- Compute Voronoi diagram
- Given query q, perform point location
- Performance:
 - OSpace: O(n)
 - OQuery time: O(log n)

High-dimensional case

All exact algorithms degrade rapidly with the dimension d

Algorithm	Query time	Space
Full indexing	O(d*log n)	n ^{O(d)} (Voronoi diagram size)
No indexing – linear scan	O(dn)	O(dn)

When d is high, state-of-the-art is unsatisfactory:
OEven in practice, query time tends to be linear in n

Approximate NNS

c-approximate
r-near neighbor: given a new
point q, report a point p∈D s.t.
||p-q||≤ cr
as long as there exists
a point at distance ≤r

Approximation Algorithms for NNS

A vast literature:

Owith exp(d) space or $\Omega(n)$ time:

[Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02],...

 With poly(n) space and o(n) time: [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98, '01], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [A-Indyk'06]...

The landscape: algorithms

Space: poly(n). **Query**: logarithmic

Space	Time	Comment	Reference
n ^{4/ɛ²} +nd	O(d*log n)	c=1+ε	[KOR'98, IM'98]

Space: small poly
(close to linear). $n^{1+\rho}+nd$ dn^{ρ} $\rho \approx 1/c$ [IM'98, Cha'02, DIIM'04]Query: poly
(sublinear). $p=1/c^2+o(1)$ [AI'06]

Query: poly $\rho = O(1/c^2)$ [Al'06]	Space: near-linear.	nd*logn	dn ^ρ	ρ=2.09/c	[Ind'01, Pan'06]
(sublinear)	Query: poly (sublinear)			ρ=O(1/c ²)	[Al'06]

Locality-Sensitive Hashing [Indyk-Motwani '98]

• Random hash function g: $\mathbb{R}^{d} \rightarrow \mathbb{Z}$ s.t. for any points p,q:

- Olf ||p-q|| ≤ r, then Pr[g(p)=g(q)] is "high" "not-so-small"
- OIf ||p-q|| >cr, then Pr[g(p)=g(q)]
 is "small"
- Use several hash tables: n^ρ, where p s.t.

$$\rho = \frac{\log 1/P_1}{\log 1/P_2}$$

Example of hash functions: grids

[Datar-Immorlica-Indyk-Mirrokni'04]

Pick a regular grid:

O Shift and rotate randomly

- Hash function:
 - \bigcirc g(p) = index of the cell of₁p
- Gives ρ ≈ 1/c

State-of-the-art LSH

[A-Indyk'06]

Regular grid → grid of balls

 p can hit empty space, so take more such grids until p is in a ball

 Need (too) many grids of balls

 Start by reducing dimension to t

• Analysis gives $\rho = 1/c^2 + o_t(1)$ • Choice of reduced dimension t? • Tradeoff between • # hash tables, nr, and • Time to hash, 900 • Total query time: dt (c2+0(1))

Proof idea

• Claim:
$$ho \approx 1/c^2$$
, where $ho = rac{\log 1/P(r)}{\log 1/P(cr)}$

O P(r)=probability of collision when ||p-q||=r

- Intuitive proof:
 - Let's ignore effects of reducing dimension

G

X

- \bigcirc P(r) = intersection / union
- P(r)≈random point u beyond the dashed line
- The x-coordinate of u has a nearly Gaussian distribution
 - \rightarrow P(r) \approx exp(-A·r²)

$$\rho = \frac{A \cdot r^2}{A \cdot (cr)^2} = \frac{1}{c^2}$$

The landscape: lower bounds

Challenge 1:

Design space partitioning of R^t that is
 Oefficient: point location in poly(t) time
 Oqualitative: regions are "sphere-like"

[Prob. needle of length 1 is cut]^{C²} ≥ [Prob needle of length c is cut]

Plan for today

- 1. NNS for basic distances
- 2. NNS for advanced distances: embeddings
- 3. NNS via product spaces

What do we have?

Classical ^ℓ_p distances:
 Hamming, Euclidean, ^ℓ_∞

Hammi ed(x,y) = number of substitutions/insertions/ deletions to transform string x into y

Euclidean (₂)

l ₂)		ρ≈1/c²	[Al'06]
		ρ≥1/c²	[MNP06,OZW10,PTW'08'10]

08'10[']

ℓ∞	n ^{1+ρ} O(d log n) c≈log _ρ log d		[l'98]	
	optimal for decision trees			[ACP'08]

NNS via Embeddings

An *embedding* of M into a host metric (H,d_H) is a map f : M→H
 has distortion A ≥ 1 if ∀ x,y ∈ M
 d_M(x,y) ≤ d_H(f(x),f(y)) ≤ A*d_M(x,y)

Why?

If H is Euclidean space, then obtain NNS for the original space M !

• Popular host: $H = \ell_1$

Embeddings of various metrics

Embeddings into ¹/₁

Metric	ric Upper bound				
Edit distand	ce over $\{0,1\}^d$ $2^{\tilde{O}(\sqrt{\log d})}$				
		[OR05]			
Ulam (edit permutatio	Challenge 2:				
Block edit o	Improve the distortion of embedding				
Earth-move	nove edit distance into l ₁				
(<mark>s</mark> -sized se	ed sets in 2D plane) [Cha02, IT03]				
Earth-move	rth-mover distance O(log s*log d)				
(s-sized sets in {0,1} ^d) [AIK08]					

OK, but where's the barrier?

A barrier: l_1 non-embeddability

Embeddings into l₁

Metric	Upper bound	Lower bound
Edit distance over {0,1} ^d	$2^{\tilde{O}(\sqrt{\log d})}$	Ω(log d)
	[OR05]	[KN05,KR06]
Ulam (edit distance between	O(log d)	Ω̃(log d)
permutations)	[CK06]	[AK07]
Block edit distance	Õ(log d)	4/3
	[MS00, CM07]	[Cor03]
Earth-mover distance	O(log s)	$\Omega(\log^{1/2} s)$
(<mark>s</mark> -sized sets in 2D plane)	[Cha02, IT03]	[NS07]
Earth-mover distance	O(log s*log d)	Ω(log s)
(s-sized sets in {0,1} ^d)	[AIK08]	[KN05]

Other good host spaces?

• What is "good":

is algorithmically tractableis rich (can embed into it)

 $(l_2)^2$ = real space with distance: $||x-y||_2^2$

Metric	Lower b	ound into	$(\ell_2)^2$, host with v. good LSH
Edit distance over {0,1} ^d	$\tilde{\Omega}(\log d)$		communication complexity
		[KN05,KR06]	[AK'07]
Ulam (edit distance	Ω̃(log d)		
between orderings)		[AK07]	[AK'07]
Earth-mover distance	Ω(log s)		
(s-sized sets in {0,1} ^d)		[KN05]	[AIK'08]

Plan for today

- 1. NNS for basic distances
- 2. NNS for advanced distances: embeddings
- 3. NNS via product spaces

edit distance between permutations

Because we can...

[A-Indyk-Krauthgamer'09, Indyk'02]

- Embedding: ...embed Ulam into P_{22,∞,1} with constant distortion
 - (small dimensions)

Why $\bigoplus_{(\ell_2)^2}^{\gamma} \bigoplus_{\ell_{\infty}}^{\beta} \ell_1^{\alpha}$?

- NNS: Any t-iterated product space has NNS on n points with
 - ○(lg lg n)^{O(t)} approximation
 - Onear-linear space and sublinear time
- Corollary: NNS for Ulam with O(lg lg n)² approximation

○cf. each ℓ_p part has logarithmic lower bound!

Embedding into $\bigoplus_{(\ell_2)^2}^{\gamma} \bigoplus_{\ell_{\infty}}^{\beta} \ell_1^{\alpha}$

 Theorem: Can embed Ulam metric into *P*_{22,∞,1} with constant distortion
 Oimensions: α=β=γ=d

Proof intuition

OCharacterize Ulam distance "nicely":

• "Ulam distance between x and y equals the number of characters that satisfy a simple property"

• "Geometrize" this characterization

Ulam: a characterization

 Lemma: Ulam(x,y) approximately equals the number characters a satisfying:

Othere exists K≥1 (prefix-length) s.t.

Othe set of K characters preceding a in x differs much from

the set of K characters preceding a in y

E.g., a=5; K=4 X[5;4] x=123456789 y=123467895

Y[<mark>5</mark>;4]

Ulam: the embeddingx[5;4]123456789• "Geometrizing" characterization: $Ulam(x,y) \approx \sum_{a=1}^{d} \left(\max_{K=1...d} \frac{\|\mathbf{1}_{X[a;K]} - \mathbf{1}_{Y[a;K]}\|_1}{2K} \right)^2$

Gives an embedding

 $f(x) = \left(\left(\frac{1}{2K} \mathbf{1}_{X[a;K]} \right)_{K=1...d} \right)_{a=1...d} \in \bigoplus_{(\ell_2)^2}^d \bigoplus_{\ell_\infty}^d \ell_1^d$

A view on product metrics: $\bigoplus_{(\ell_2)^2}^{\gamma} \bigoplus_{\ell_{\infty}}^{\beta}$

- Give more *computational* view of embeddings
- Ulam characterization is related to work in the context of property testing & streaming [EKKRV98, ACCL04, GJKK07, GG07, EJ08]

Challenges 3,...

Embedding into product spaces? Of edit distance, EMD...

• NNS for any norm (Banach space) ?

○Would help for EMD (a norm)

A first target: Schatten norms (e.g., trace of a matrix)

Other uses of embeddings into product spaces?

Related work: sketching of product spaces [JW'09, AIK'08, AKO]

Some aspects I didn't mention yet

• NNS for spaces with low intrinsic dimension:

- [Clarkson'99], [Karger-Ruhl'02], [Hildrum-Kubiatowicz-Ma-Rao'04], [Krauthgamer-Lee'04,'05], [Indyk-Naor'07],...
- Cell-probe lower bounds for deterministic and/or exact NNS:
 - [Borodin-Ostrovsky-Rabani'99], [Barkol-Rabani'00], [Jayram-Khot-Kumar-Rabani'03], [Liu'04], [Chakrabarti-Chazelle-Gum-Lvov'04], [Pătraşcu-Thorup'06],...
- NNS for average case:
 - [Alt-Heinrich-Litan'01], [Dubiner'08],...
- Other problems via reductions from NNS:
 - [Eppstein'92], [Indyk'00],...
- Many others !

Summary of challenges

- Design qualitative, efficient space partitioning
- 2. Embeddings with improved distortion: edit into ¹/₁
- 3. NNS for any norm: e.g. trace norm?
- 4. Embedding into product spaces: say, of EMD $\bigoplus_{(\ell_2)^2}^{\gamma} \bigoplus_{\ell_{\infty}}^{\beta} \ell_1^{\alpha}$

