
COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 19, 2019

Lecture #9: Compressed Sensing: Restricted Isometry Property

Instructor: Alex Andoni Scribes: Derrick Liu, Jie Li

1 Review

During the last two lectures, we focused on randomized numerical linear algebra and sped up numerical

linear algebra computations through sketching. We’ve seen two versions of linear regression: l1 and

l2. There are many other problems where we can use this kind of techniques. For example in matrix

multiplication where we have to compute C given some matrix A and B. such that ||C − AB|| is small

(minimizes the distance between the approximate product). This can be for different norms (2 norm,

etc). Another problem is to approximate single value decomposition (SVD), where given matrix A, we

want to compute U, V of rank k s.t. ||A− UV || is minimized. Solving this exactly and naively is trivial,

however, the approaches discussed involved speeding up these computations.

2 Compressed Sensing

• Goal Today we will talk about compressed sensing. The problem stems from the engineering field,

signal processing in particular. We are given x ∈ Rn which can be interpreted as being the ’signal’.

We also think about this signal as being very large. The goal is to perform m measurements, and

from the measurements we observe y. We define y = Ax and hope to recover the signal x after

observing y. Often times signals may have a particular structure. In our particular case, we focus

on a structure x as being well approximated by a k-sparse vector. For example, you can think

of a image where x is the signal in wavelet domain for Fourier domain. We know that images

are sparse in a well established basis, this is why we are able to compress images. To summarize,

y = Ax where A is an m × n matrix, and m corresponds to the m measurements where m � n.

We will show how to recover the signal with much fewer measurements through compressed sensing.

• Motivation To give some motivation for this type of problem, a particular interesting application

for compressed sensing is the single pixel camera[?]. Traditionally, cameras such as a 10 mega pixel

camera will have 10 million photodiodes to capture the light. Each photodiode may represent a

single pixel. When you try to take an image, light will pass through the lens and photons will hit

all 10 million photodiodes. The photons will then excite electrons in the photodiode, and these

electrons will then be collected by the photodiodes to extract the color. The single pixel camera

takes advantage of compressed sensing using a single photodiode. By taking m measurements com-

bined with compressed sensing, it is possible to recover the image with a single photodiode, in turn

saving power.
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Hence, let us formalize this problem statement. Recall, we assumed that our signal x takes on a

particular structure which is approximately k-sparse.

Formal problem statement:

L0-min: minx∗∈Rn ||x∗||0 (This is number of nonzeros.)

s.t. Ax∗ = y (= Ax)

Alternative approach:

L1-min: minx∗∈Rn ||x∗||1
s.t. Ax∗ = y

The issue here is that the L0-norm problem is known to be NP hard and getting the absolute

minimum would require brute-force search. Instead of minimizing the L0-norm, we will minimize

the L1-norm. This approach similarly is used in field of machine learning. We’d like to find a model

that has fewest non-zeros, this is not computationally feasible, so we do the next possible thing

which is minimizing the L1 norm. Whereas minimizing L0-norm is a non-convex problem, L1 is the

smallest convex relaxation, which can be solved as a linear program.

So we want to recover x∗ (the best approximation of signal x) from y (the measurement). y = Ax.

This gives us the best k-approximation. Let us define this formally. Ideally, we want:

x∗ = arg min
x′∈Rn,k−sparse

||x− x′||1.

x∗ is the best approximation of signal x. The solution to this arg min will be the k largest coordinates

of x and zero otherwise. Similar to what we examined earlier in numerical linear algebra, we want

some approximation. What we would like to see is that the relaxation x∗ approximates

min
x′∈Rn,x′∈k−sparse

||x− x′||1 = Errk1(x)

• Some Intuition Let us provide some intuition to understand how minimizing L1-norm might yield

solutions similar to the L0-norm. Assume n = 2, we have measurement m = 1, lets say signal is

sparse with k = 1. The set of possible solutions we’re looking for is on the axis (see Figure 1).

The dotted lines represents points with the same L1. Let’s assume we have a x that does not fall

somewhere on the axis. It must lie on some line, where y1 = Ax′. (See Figure 1). By finding the

sparsest possible vector that lies on this line. It will be on the axis. The point that lies on this line,

will still be the same x. In higher dimensions this breaks down, so it doesn’t necessarily work in

higher dimensions. this is purely meant to give you an intuitive sense. It is interesting to note that

solving the L1 norm here also promotes sparsity given that you are confined to the axis.

The main theorem we will be discussing[?, ?, ?] basically states L1-min problem solution recovers

L0-min problem solution if A is ’nice’, in other words, ((k, ε)−RIP) where RIP stands for Restricted

Isometry Property. Hence, understanding RIP becomes important towards compressed sensing.
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Figure 1:

Theorem 1. Fix k; if A is i.i.d N(0, 1), m = O(k lg n
k ), then with probability ≥ 90%:

∀x ∈ Rn, if x∗ is the solution to the L1 problem, then ||x∗ − x||1 ≤ C · Errk1(x).

Note 1: C = 1 + ε, then m will depend on 1/ε

Note 2: if x is k-sparse, x∗ = x

Note 3: x∗ that is recovered from L1 min may not be k-sparse (this is important!). However, it

still is the best vector to recover. In other words, x∗ does as well as any other vector to approximate.

• Analogy to Heavy Hitters This is basically related to count-sketch or heavy hitters in general.

Remember that count-sketch was used to find heavy hitters. Heavy hitters, are finding items that

occur with sufficient frequency or ”heaviness”, which is an approximation, for getting the most

frequent items beyond a specific threshold. In the table below, we show a quick comparison to

count-sketch.

Algorithm Count-sketch L1 min CS

m linear measurements O(k log n) O(k log (n/k))

recovery time O(n log n) Linear Program. nO(1) time

probability of success ≥ 1− 1/n ”deterministic”

guarantee comparison x∗ : |x∗i − xi| ≤ CErrk1(x)/k x∗ : ||x∗ − x||1 ≤ CErrk1(x)

(1)

Count-sketch can be thought of as a poormans compressed sensing algorithm. In practice, the

number of measurements are actually better in compressed sensing. For heavy hitters, we typically

think of k as being a small value, roughly 10, for example. But here k is defined as the sparsity

of the signal. This is usually the use case of compressed sensing, then log n vs log (n/k) starts to
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matter. Next, we introduce the Restricted Isometry Property (RIP), which plays a key role to show

that solving L1 is a good solution to L0.

Definition 2. k ∈ N , ε ∈ (0, 1/3), A is (k, ε) - Restricted Isometry Property (RIP)

if ∀x ∈ Rn k-sparse, ||Ax||2 = (1± ε)||x||2

To explain this definition in normal terms, what RIP desires is that we want matrix A to be-

have like an isometry/orthonormal matrix. If A was purely orthogonal it would be size n× n, but

what we want matrix A to be m× n, where m� n and still behave like it is orthonormal.

From here we will utilize two theorems to try to prove Theorem 1 we introduced earlier. The

first part is to show that we can get a matrix A that satisfies the RIP with high probability. The

second part is to show that once we have a matrix with this RIP property, we can solve the L1

min problem with high probability. Hence, proving that we can recover the signal with much fewer

measurements.

Theorem 3. If A is Oblivious Subspace Embedding (O.S.E) for subspace dimension = k, with

probability ≥ 1− δ, where δ < 0.1
((nk))

, then A is (k, ε)−RIP

Proof. A is O.S.E⇐⇒ ∀U ⊂ Rn is k dim: PrA[∀x ∈ U : ||Ax||2 = (1±ε)||x||2] ≥ 1−δ ≥ 1−0.1/
(
n
k

)
Consider U1 ... U(nk)

, all k-dimensional linear subspaces on k-sparse vectors.
(
n
k

)
ways to choose k

nonzero coordinates out of n. We can take a linear subspace, which is k dimensional, the rest are

0. Any k-sparse vectors must belong to one of these spaces. By union bound and by the fact that

A is O.S.E:

Pr[∀ x ∈ U1 ∪ U2 ∪ ... ∪ U(nk)
: ||Ax||2 = (1± ε)||x||2] ≥ 1− δ ·

(
n

k

)
= 0.9

=⇒PrA[A is(k, ε)−RIP ] ≥ 0.9

Remark: We can construct a random A with m = Oε(k+ lg(1/δ)) = O(k+ lg(
(
n
k

)
)) = O(k lg(n/k))

Theorem 4. If A is a (2k, ε)-RIP matrix, then x∗ = L1 min solution satisfies ||x∗ − x||1 ≤
C · Errk1(x), where C = 1 +O(ε)

Definition 5. Matrix A satisfies null-space property of order k, with constant C, if ∀η ∈ Rn s.t.

Aη = 0, ∀T ⊂ [n] of size k, we have the following:

Denote ηT = η restricted to coord T and η−T = η restricted to [n]\T
||η||1 ≤ C · ||η−T ||1 =⇒ ||ηT || ≤ (C − 1) · ||η−T ||1 since ||η||1 = ||ηT ||1 + ||η−T ||1

Lemma 6. If matrix A satisfies ((r + 2)k, ε)-RIP, r > 1, then A satisfies null-space property of

order 2k with constant C = 1 +
√

2
r ·

1+ε
1−ε
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Proof. For η and T with |T | = 2k. We define sets

T1 = r · k largest coordinates of η−T
T2 = r · k next largest coordinates

... Ts = last ≤ rk remaining coordinates

η̂ = ηT + ηT1

Since Aη = 0

=⇒ A(ηT + ηT1 + ...) = 0

=⇒ Aη̂ = A(ηT2 + ηT3 + ...+ ηTs))

=⇒ ||ηT ||2 ≤ ||η̂||2

≤ 1

1− ε
· ||Aη̂||2, (applying RIP)

=
1

1− ε
· ||A(ηT2 + ...ηTs)||2 (triangle inequality)

≤ 1

1− ε
∑
j=2

||AηTj ||2 (using RIP)

≤ 1 + ε

1− ε
∑
j=2

||ηTj ||2

There are a few more steps that we need to finish this proof, covered in the next lecture.
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