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Lecture 22: MPC Model: Distinct Elements and Sorting

Instructor: Alex Andoni Scribes: Andrew Lee, Jonathan Zhang

1 Introduction

Today’s lecture presented some problems and corresponding algorithms in the massively parallel compu-

tation (MPC) framework that was inspired by Map-Reduce. In this lecture, we cover MPC algorithms

for:

• Sum of n integers

• Number of distinct elements (approximate)

• Prefix-sum

• Sorting

• Number of distinct elements (exact)

From the last class, we refer to the space per machine as s, the number of machines as m, the input

size as N . Typically, we want ms ≈ Θ(N). Our cost is measured in the number of rounds required for

computation (p-time).

2 Sum of n integers

In this problem, suppose s =
√
n. We have m machines that receive input directly from the stream.

Machine 1 will receive stream elements X1, ..., Xs, machine 2 will receive Xs+1, ..., X2s, and so on. Each

machine mi computes a local sum based on the stream elements it receives, and then passes the sum up

to another machine (computation goes bottom up):

Output:
∑n

i=1Xi

M1 :
∑s

i=1Xi M2 :
∑2s

i=s+1Xi . . . Mm :
∑n

i=n−s+1Xi

The amount of input to the machine in the second round has input m =
√
n = s. This algorithm thus

solves sum of n integers in the case that s =
√
n in O(1) p-time.

In the case that s <<
√
n, we employ a similar strategy, except we build a tree of arity s and depth

lgs n = O(1). Thus the p-time is still constant since O(lgs n) = O(1). Such a tree can be seen as a circuit,

as the maximum arity is analogous to an upper bound on the fan-in of a circuit.
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3 Counting Distinct Elements

Suppose we have n items from a universe {1, ..., U}. We can compute the number of distinct elements

in X1, ..., Xn and the 2nd moment of the frequency vector to a factor of (1 + ε) with probability at least

99% in O(1) rounds using linear sketches. Like in the previous problem, machine 1 will receive stream

elements X1, ..., Xs, machine 2 will receive Xs+1, ..., X2s, and so on.

Output

M0

M1 M2 . . . Mm

∑m
j=1 SF2

(X1, ..., Xn)

SF2
(X1, ..., Xs) SF2 (Xn−s+1, ..., Xn)

The size of each sketch SF2(Xks+1, ..., X(k+1)s) is O( 1
ε2

lg n). Thus, the input size from each machine

in the first round to the machine in the 2nd round is ≤M ∗O( 1
ε2

lg n) ≤ s if s ≥
√
n lg n.

Again, in the case that s <
√
n lg n, do the same thing as before, where we construct a tree of arity

ε2s/ lg n, resulting in a depth and p-time of O(lgε2s/ lgn n) = O(1). Note that this algorithm gives an

approximation of factor (1 + ε). The exact algorithm, which occurs at the end of this lecture, requires

the sorting algorithm.

4 Prefix-Sum

The input comes as integers X1, ..., Xn. The output will be in the form σ1, ..., σn where σi =
∑i

j=1Xj .

One obstacle in the framing of this problem is that the numbers do not necessarily come in order, and

come on with indices instead: (1, X1), ..., (n,Xn). Thus, the right numbers may not be initially stored in

the correct machines (using the mapping of elements to machines we used in the previous to problems).

Thus, the algorithm will proceed as follows (with s =
√
n and the Mi responsible for X(i−1)s+1, ..., Xis):

1. Each Mi sends all its input (i,Xi) To the machines that are responsible for each input.

2. Each Mi computes a local sum γi =
∑

j@Mi
Xj

3. Mi sends γi to M1

4. M1 sends to each Mi the quantity σs(i−1) =
∑i−1

j=1 γj

5. Mi computes all σi(s−1)−j = σi(s−1) +
∑j

k=1Xi(s−1)+k where j ∈ {1, ..., s}.

M0

M1 M2 M2 . . . Mm

γ1 γ2 (γ1 + γ2)
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If s <<
√
n, use s− ary trees in steps 2 and 3, where the γi values must traverse the entire depth of

the s-ary tree (up the tree for step 2 and down the tree for step 3).

5 Sorting

We discuss the problem of sorting integers across multiple machines. In this problem, suppose s =

O(n2/3 log n) and m = O(n1/3/ log n). We have the following setup:

input: x1, ..., xn

output: (x1, z1), ..., (xn, zn) where zi is the rank of xi

We will use Quicksort with m pivots as described below:

Algorithm:

0. Every item is marked as ‘pivot’ with probability δ = n1/3 logn
n

1. All machines send their chosen pivot candidates to a master machine M1. M1 needs to pick a pivot

for each each length n2/3 interval.

option 1:

2. M1 sends all received pivots to all machines. The output size is O(n1/3 log n).

3. For each pivot p received from Mi, every machine Mi computes Cip = number of items less than

pivot p on machine Mi.

4. Each machine sends Cip to M1. M1 computes the corresponding ranks for each pivot and proceeds

to choose a pivot pi in each range [(i − 1)n2/3, in2/3]. We claim that each range will have a pivot

with high probability.

E[number of pivots in a range] = n2/3δ = log n

Using Chernoff bounds, we can bound that at least one pivot exists in each range with high prob-

ability.

5. M1 sends final chosen pivots p1, ..., pn1/3 to each machine.

6. Each machine, for input xi sends xi to machine Mj for j such that

pj−1 ≤ xi ≤ pj

and

p0 = −∞
pn1/3+1 ,∞

Note that since s = O(n2/3 log n), there is enough space on each machine to store the respective

data. Namely the fan in is 2n2/3.
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7. Each Mi then sorts it’s data locally and assigns rank(xi) = rank(pj−1) + local rank(xi)− 1 and we

are done.

option 2: compute ranks within pivots

2 M1 chooses pivots p1, ..., pn2/3 which have ranks k i
n1/3 where k = number of pivots. Requires more

complicated proof not covered in class

Remark: If s < n2/3 log n then we apply an s-ary tree strategy to sort recursively.

Algorithm:

1. mark n
s log n items as pivots

2. sort the chosen items recursively

• n′ = n
s log n

• n′′ = (ns log n)(1s log n)

. . .

• n(j) = n
(
logn
s

)j
If j ≈ logs n then chosen pivots fit on a machine.

6 Number of Distinct Elements (exact)

We can exploit the sorting algorithm

Algorithm:

1. sort x1, ..., xn

2. Each Mi sends to M1

• number of distinct elements (can be found with linear scan)

• first item

• last item

3. M1 then counts the total number of distinct elements, subtracting one when the first and last item

of adjacent machines Mi and Mi+1 match. We need this final step to prevent double counting

repeated elements that cross multiple machines (e.g. half the input is 7).
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