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1 Introduction

In the last lecture we saw that cache oblivious models are I/O models that are not dependent on M (size

of the cache) or B (size of one block of consecutive addresses in the main memory). These models are also

called external memory models. The motivation for such models was that we wanted algorithms that

would work for any B and could deal with several layers of memory hierarchy. The goal is to minimize

the number of times the main memory is accessed.

2 Van Emde Boas Layout

Let T be the tree such that T0, T1, ..., TM are its various subtrees as shown below. The height of the

tree is logn, where n is the number of leaves. We know that m ≈
√
n. The idea is to store the subtrees

recursively.

vEB(T ) = vEB(T0) + vEB(T1) + ... + vEB(TM )

vEB(T0) = vEB(T00) + vEB(T01) + ... + vEB(T0M )... and so on.

The base case is until |T | ≤, then store explicitly.

The search procedure in vEB works like the generic search on T.

Claim 1. The search procedure runs in O(logBn) time. Here time is the number of main memory

accesses.

Proof. Consider the following vEB tree T and any subtree R.
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Here, |R| > B

Also, |R0|, |R1|, |R2|, ..., |Rk| < B, i.e. |R0|, |R1|, |R2|, ..., |Rk| ≥
√
B. R will have height of atleast logB.

Entire R0 is stored consecutively in memory. Once the search process touches R0, it passes through R0

using ≤ 2 I/O transfers.

For any tree of size > B, there are at most 4 I/O transfers.

So, the number of trees of the same type as R that we pass through is at most logn
logB .

So, the nunber of I/O transfers ≤ 4 lognlogB = O(logBn).

NOTE: vEB layout has numerous applications. One of them is predecessor search.

3 Parallel Algorithms

Parallel algorithms can be executed a piece at a time on many different processing devices, and then

combined together again at the end to get the correct result.

Consider the following ’circuit’ which can be represented as a DAG (Directed Acyclic Graph, where all

computation flows in one direction). It consists of input wires (X1, X2, ..., Xn), internal wires, gates(∨,∧,
etc) and output wire. Think of the inputs as binary inputs or bits.
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Let p-time be the parallel time i.e. the depth of the circuit (longest path from input to output). In the

figure above, the depth is 2. Let work done be equal to the number of gates. It can be thought of as the

amount of hardware required.

The Base of Gates can be: {AND,OR,NOT} or {NAND}. A gate is called universal if it can construct

any computational function.

Fan-in = # of wires that go into a gate.

Depending on these parameters a few complexity classes can be defined:

•ACi =problems solvable with p-time O((logn)i), unbounded fan-in and nO(1) work.

•NCi =problems solvable with p-time ((logn)i), O(1) fan-in and nO(1) work.

•AC = ∪iACi

•NC = ∪iNCi

Example 1. AND(X1, X2, ..., Xn) ∈ AC0 circuit because the p-time is 1 and the work done is O(n). It

/∈ NC0 but ∈ NC1.

Theorem 1. For computing XOR(X1, X2, ..., Xn) we need Ω( logn
loglogn) depth of AC circuits, # of gates

≤ nO(1) and unbounded fan-in.

Claim 2. ∀f : {0, 1}n− > {0, 1}∃ circuit with fan-in ≤ n, 2n gates and depth O(1).

4 PRAM: Parallel Random Access Machine

Let us assume that there are P processors, the size of memory is M and the computation is synchronous

(i.e. there is a shared clock amongst processors). Let p-time be the number of clock ticks (equivalent to

the synchronous steps) required to solve the problem.

When 2 CPUs attempt to read/write at the same memory location, this can either be disallowed by the

hardware or a decision is made regarding which processor wins (for example: the one with the smallest

id might win). Depending on this there are variations of this model:

•Concurrent Read Concurrent Write (CRCW) PRAM: Both simultaneous reads and both

simultaneous writes of the same memory cell are allowed.

•Exclusive Read Exclusive Write (EREW) PRAM: No two processors are allowed to read or

write the same shared memory cell simultaneously.

•Concurrent Read Exclusive Write (CREW) PRAM: Simultaneous reads of the same memory

cell are allowed, but only one processor may attempt to write to an individual cell.
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If we think of work as the energy being consumed, then it is equal to (# of processors) ∗ (p-time).

Theorem 2. Even on CRCW, XOR requires Ω( logn
loglogn) p-time.

5 MPC: Massively Parallel Computation

A large number of processors is used to perform a set of coordinated computations in parallel. Each

processor works on a chunk of its input and once in a while talks to other processors.

Let n be the input size, m be the number of machines/processors and let each machine have s space.

Remark 1. m ∗ s ≥ O(n)

Here we define p-time to be the number of rounds to solve the problem. We define each round to have

two steps: performing any computation on local information and then shuffling data and distributing to

other machines. The second step i.e. shuffling is an expensive operation and that is why we want to

minimise the number of rounds.

Remark 2. output traffic size ≤ s

input size ≤ s

If output size > s, also store in distributed fashion.

If s = nε, m = O(n1−ε)

If every machine stores a routing table, s ≥ m i.e. s ≥
√
n

Example 2. The p-time for XOR is 2 rounds if s =
√
n. In general O(logsn) rounds for an s-ary tree.
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