
COMS E6998-9: Algorithms for Massive Data (Spring’19) April 9, 2019

Lecture 21: Large-scale Models (Continued) / Parallel Models

Instructor: Alex Andoni Scribes: Tim Randolph

1 Fast Binary Search in the Cache-Oblivious I/O Model

1.1 Recall: The Cache-Oblivous I/O Model

We have an input of size n, stored in main memory. When we access main memory, we receive a cache

block of size B. We measure “time” in terms of the number of cache blocks we have to access.

1.2 Van Emde Boas Tree

A Van Emde Boas tree is a binary tree, stored in memory according to a specific recursive procedure.

We store a binary tree T with n nodes in memory as follows:

1. If T has some small constant number of nodes (say, 8) we just store it explicitly. Otherwise:

2. Recursively store the tree T0 consisting of the approximately
√
n nodes at depth log(n)

2 or less in T .

3. Recursively store the trees T1, T2, ... Tm rooted at the leaves of T0.

Remark: the Van Emde Boas tree is static as described, but can be made dynamic.

1.3 Van Emde Boas Trees Allow Cache-Oblivious Binary Search in O(logB(n)) Ac-
cesses

Claim 1. Consider a Van Emde Boas tree T with n nodes. Running a binary search on T requires

O(logB(n)) memory accesses.

Proof. The Van Emde Boas procedure recursively divides T into smaller and smaller trees, breaking each

tree of size m into trees of size
√
m. Consider the smallest such tree R such that |R| > B. Letting

R0, R1, ..., Rk be the subtrees that constitute R, we have |R0| = |R1| = ... = |Rk| ≥
√
B. Accordingly, we

need to access memory at most twice to pass through a tree of size |R0|.
Consider the path that the binary search takes through T . This path has length log2(n), while trees

of size |R0| have depth at least log(
√
B). Thus the path passes through at most log2(n)/ log2(

√
B) such

trees, and the number of memory accesses we need is upper-bounded by

2
log2(n)

log2(
√
B)

= 4logB(n). (1)

1

2 Models for Parallel Computation: Circuits

A circuit consists of n input wires x1, x2, ..., xn which take binary input values. Wires meet at gates such

as AND (∧), OR (∨), and NOT (¬), which compute on their inputs and assign the result to their output

wire. Circuits have a single output wire, and thus each circuit C represents a function C : {0, 1}n → {0, 1}.
In this model, we define

ptime := circuit depth (length of the longest path from input wire to output wire.) (2)

work := total number of gates. (3)

fan− in := maximum number of wires that go into a gate. (4)

These metrics can vary slightly based on what base of gates we use: for instance, we could use

{AND,OR,NOT} or just {NAND}. However, both of these bases are universal, meaning they can be

used to construct circuits for any computable function and can simulate other gates/bases with constant

factor blowup.

Several complexity classes encompass the problems that can be computed by circuits with certain

restrictions. These classes are called non-uniform, meaning you’re allowed to construct a different circuit

for each size of input.

ACi := Problems solvable with ptime = O(logi(n)), unbounded fan-in, nO(1) work. (5)

AC =
⋃
i∈N

ACi. (6)

NCi := Problems solvable with ptime = O(logi(n)), O(1) fan-in, nO(1) work. (7)

NC =
⋃
i∈N

NCi. (8)

(9)

Example 2. Computing AND(x1, x2, ..., xn). This problem is in AC0, because we can just AND all

the inputs together with a single gate (fan-in is unbounded.) Intuitively, this problem is NOT in NC0,

because if our fan-in is bounded by c, we need at least logc(n) gates to incorporate all the information

from the input in the output wire. However, it IS in NC1 by the same intuition (just create a c-ary tree

of AND gates).

Theorem 3. Computing XOR(x1, x2, ..., xn) requires Ω(log(n)
log(log(n))) depth on AC circuits.

Claim 4. Any function f : {0, 1}n → {0, 1} can be computed by a circuit with fan-in at most n, 2n gates,

and depth O(1).

Proof sketch. Consider a circuit in which the first layer is O(n) input wires, the second layer contains

O(2n) gates which each accept a single string in {0, 1}n (encoded by input wires), and the third layer is

the AND of all gates corresponding to strings s ∈ {0, 1}n such that f(s) = 1.

2

3 Models for Parallel Computation: PRAM

In this model, we have p processors and a memory with size M (which stores input, output, and our

workspace). Time is synchronous, and every processor can access the memory once per time-step. In this

model, we define

ptime := number of ticks required to solve the problem. (10)

work := p · ptime (We can think of this as ‘energy consumed.’) (11)

It’s not immediately clear how we should resolve conflicts when two processors try to read or write

from the same location at the same time. This gives rise to several models:

• Exclusive-read exclusive-write (EREW): multiple processors are not permitted to read/write in the

same time step.

• Concurrent-read concurrent-write (CRCW): multiple processors ARE permitted to read/write in

the same time step. Conflicts are resolved randomly or by priority order of processors.

• Exclusive-read concurrent-write (ERCW) and Concurrent-read exclusive-write (CREW): defined

by analogy to the above.

Theorem 5. Even in the CRCW (most powerful) variety of PRAM, XOR(x1, x2, ..., xn) requires ptime =

Ω(log(n)
log(log(n))).

Remark: although the PRAM model was very popular in the 80s and 90s, it turned out to be easier

to make faster hardware and better algorithms than massively parallel hardware, so it has declined in

popularity over time.

4 Models for Parallel Computation: Massively Parallel Computation

Massively Parallel Computation (MPC) is a species of the Bulk Synchronous Parallel (BSP) model.

In particular, we have an input of size N and m machines (processors). Each machine has space s.

(Typically, we have ms = O(N), s = N ε, m = O(N1−ε).) Note that we must have ms ≥ N or else we

can’t even store all the input. The input to the problem is divided up between all the machines, and we

assume it’s distributed between machines in a worst-case manner. If the output size is greater than s, it

is also stored in a distributed fashion.

Time is divided into rounds. Each round consists of the following two steps:

1. Each machine performs an unlimited amount of local computation.

2. Each machine sends at most s bits of information to other machines, and receives at most s bits of

information in turn.

ptime := number of rounds required to solve the problem. (12)

Example 6. Computing XOR(x1, x2, ..., xN). Each machine can XOR its local bits, and then s ma-

chines can transfer their output bits to the same place. Repeating this procedure until we’re left with a

single bit takes logs(N) rounds.

3

