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1 Review

1. In last lecture, we give an algorithm [Gavril, Yannakakis] that approximates the minimum vertex

cover in polynomial time. The output M̂V C is a vertex cover and MVC ≤ |M̂V C| ≤ 2 ·MVC

where MVC is the size of the true minimum vertex cover. The idea is to relate minimum vertex

cover to maximal matching.

2. The result of [Nguyen, Onak’ 2008] shows that, suppose a given graph G(V,E), where |V | = n, is

represented as adjacency-list and has maximum degree ≤ d. Let ε be the error parameter, V̂ C be

the estimated size of the minimum vertex cover. There exists algorithm computes V̂ C such that:

1) MVC − εn ≤ V̂ C ≤ 2 ·MVC + εn.

2) The expected time complexity is O(d · 2d).

In this algorithm, d can be replaced by d = m
n . The expected time complexity implies it is a

sub-linear algorithm for graphs whose d� n.

3. The idea of the sub-linear algorithm is to reduce estimating the maximal matching size in G to

estimating the size of maximal independent set (MIS) in G′, where G′ is constructed by G in the

following way:

The vertices in G′ is the edges in G. Suppose e, e′ are two arbitrary vertices in G′, (e, e′) is an

edge in G′ if and only if e and e′ share a vertex in G.

4. We give an algorithm for finding MIS in G(V,E):

Algorithm 1: A Simple Greedy Algorithm for Finding MIS

Input : Graph G(V,E)

Output: A maximal independent set I

1 Initialize I = ∅.
2 Consider all v ∈ V in order, add v to I if and only if all neighbours of v are not in I.

3 Output I as MIS.

2 Estimating the MVC Size in Sub-linear Time

Note that, the goal is to estimate |I| in sub-linear time, so we cannot go through the whole graph to find

MIS. The high-level plan is to sample a portion of vertices, calculate the size of vertices that are sampled
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to be in some consistent I, and scale the result to the whole graph. To be able to do this, we need to

construct a local oracle O(v) to determine whether a specific vertex v ∈ I in sub-linear time.

More specifically, the oracle takes queries “Is v ∈ I?”, outputs answer in sub-linear time, answers “Yes”

if and only if v ∈ I with respect to some consistent I, and “No” otherwise. This consistent I is a random

maximal independent set of the graph, and is independent of the queries.

The oracle can be illustrated as below.

Let N(v) denote the set of all neighbours of a vertex v. The main challenge in designing the oracle O(v)

is the “long chain dependence”. That is, to determine whether v ∈ I, we need to determine whether

w ∈ I for all w ∈ N(v); and in order to determine whether w ∈ I we need to determine whether u ∈ I
for all u ∈ N(w); etc. The solution in [Nguyen, Onak’ 2008] is to assign each vertex v a random value

rv ∈ [0, 1] when O first explores v, and store rv for later use (so I is consistent).

Algorithm 2: Algorithm for Computing Oracle O(v):

Input : Graph G(V,E), a vertex v ∈ V
Output: “Yes” if v ∈ I where I is some MIS the oracle implicitly keeps; “No” otherwise

1 if rv is less than all rw where w ∈ N(v) then

2 Return v ∈ I (i.e. O(v) = “Yes”).

3 for all vertices w ∈ N(v) do

4 if rw < rv then

5 Check recursively if w ∈ I.

6 if None of w ∈ I then

7 Return v ∈ I (i.e. O(v) = “Yes”).

8 else

9 Return v 6∈ I (i.e. O(v) “No”).

Example: Suppose we want to determine whether the node (with “?”) in the figure is in a MIS, the

first step of the algorithm (i.e. assign r ∈ [0, 1] to v and w ∈ N(v)) is shown as below.

The final result is shown as below (The nodes in red are determined to be in MIS).

Analysis of Algorithm 2:

Claim 1. E [Number of visited vertices] = O(2d).

Proof:

1) Since rw is assigned at random, for a path of length k, the probability that the i-th vertex in the

path is explored equals to the probability that rwi is the smallest among the first i vertices, which

2



is 1
i . That is, in the path, the probability that the 1st vertex is explored is 1, ..., the probability

that the (k + 1)-th vertex is explored is 1
k+1 . Thus we have

Pr[Fixed path of length k is explored] =
1

(k + 1)!

2) Since the maximum degree is d, there are at most dk paths of length k.

3) To explore a vertex v, the expected number of vertices other than v explored is

E[Number of explored vertices] =

∞∑
k=1

[Number of paths of length k] · Pr[This path is explored]

≤
∞∑
k=1

dk · 1

(k + 1)!
=

1

d

∞∑
k=1

dk+1

(k + 1)!

≤ 1

d
· ed

So the total expected time is O(d · 1d · e
d) = O(ed).

2
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We can improve the algorithm with the heuristic: When considering neighbours wi ∈ N(v), we examine

wi in increasing order of rwi . That is, we sort all wi ∈ N(v) with respect to rwi , and examine wi in this

order. Once any wi where rwi < rv is in I, the algorithm stops and output v 6∈ I.

With this heuristic, an algorithm given by [Yoshida, Yamamoto, Ito’ 2009] has the result:

Epermutations, start vertex [Number of recursive calls] ≤ 1 +
m

n

where m
n ≤ d.

This gives the expected query complexity for random vertex = O(d2).

By Chernoff/Hoeffding bound, to get a ±εn MIS size estimation, check O( 1
ε2

) vertices is enough. So we

have the following algorithm for ±εn MIS size estimation.

Algorithm 3: Algorithm for ±εn MIS Size Estimation

Input : Graph G(V,E)

Output: An estimation of MIS size

1 Pick k = O( 1
ε2

) vertices v at random. For all the vertices picked, ask O(v) “Is v ∈ I?”

2 Estimate MIS size = n
k · [Number of ‘Yes’]

Note that, in this algorithm MIS is implicitly defined by the oracle.

At last, we return to the high-level plan. The goal is to estimate the size of minimum vertex cover in G

by constructing G′ and estimating the size of maximal independent set in G′. To determine a vertex v

in G is matched or not, we need to examine all its O(d) adjacent edges (i.e. O(d) vertices in G′). Thus,

to estimate the size of MVC in G, we need O( d
ε2

) oracle queries to G′. The total time complexity is

O( d
ε2
· 2d).

More Results:

[Yoshida, Yamamoto, Ito’ 2009][2]: There exists algorithm that can compute size of maximum match-

ings up to ±εn factor in time O(d
4

ε2
). The method is based on [Nguyen-Onak’ 2008] and analysis of the

heuristic.

[Onak, Ron, Rosen, Rubinfeld’ 2012][3]: There exists algorithm that can compute size of minimum

vertex cover up to ±εn factor in time O( d
ε3
· log3(dε )) and makes O( d

ε3
· log2(dε )) queries. The method is

based on further refinements of [Nguyen, Onak’ 2008] and [Yoshida, Yamamoto, Ito’ 2009] and sampling

from the neighbor sets.

Lower Bound:

Ω(d) queries is necessary for estimating MVC such that

MVC − εn ≤ Output ≤ 2 ·MVC + εn

due to [Parnas, Ron’ 2007] [4].

3 Linearity Testing

Until above is all our discussion on sub-linear algorithm for graphs. Now we turn to another topic of

linearity testing. It is in some sense quite similar to monotonicity testing.
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3.1 Introduction

Definition. A function f : {0, 1}n → R is linear if f(x+ y) = f(x) + f(y).

To admit the special group structure, i.e. f : Zn2 → (R,+), we may write linearity condition as

f(x
⊕

2 y) = f(x) + f(y), which is testing if the function is a homomorphism. In our context, linear

and group homomorphism are really interchangeable. Or more conveniently, through group isomorphism,

f : ({−1,+1}n, ·)→ (R,+), linearity condition is f(xy) = f(x) + f(y).

To know if a function is linear surely takes linear time. Again, we relax to distinguish between

· f is linaer

· f is ε-far from linear

Note that the ε-far is the same familiar notion from monotinicity testing. More precisely, ∀g linear, f is

different from g on at least ε fraction of the entries.

3.2 Motivation

In ’90, Blum-Luby-Rubinfeld (RBL) proposed a testing scheme of linearity. A special thing about their

method is that it corrects a function in the “blurred” region, i.e. a function that is not linear but ε-near,

to a linear function. Before we dive into the theorem, we take a look at an important motivation for

linearity testing.

Probabilistically Checkable Proof. PCP is a special type of proofs that admits a special property.

Informally, we can think of this as:

· ϕ is a CNF formula.

· We can transform it into ϕ′.

· ϕ is satisfiable ⇐⇒ ϕ′ is satisfiable.

· ϕ′ is not much larger

· ϕ′ satisfiability can be checked by reading O(1) entries.

It is of important use in proving inapproximability. For example, we can show it is NP-hard to get an

approximation upto
√
n factor of the clique problem.

3.3 Problem

This somehow motivates us to ask, if linearity testing is possible in O(1) time? A naive canonical

algorithm is easily as:

· Pick k random point. Check if f(xy) = f(x) + f(y)

· If any of the test fails, we say f is ε-far from linear.

· If none fails, we say f is linear.

Note that each time we check the linearity at that point we need 3 queries to f .

Remark.

· If f is linear, it obviously passes the test.

· If f is ε-far, Prx,y[f(xy) 6= f(x) + f(y)] > ε.

Counterexample [Coppersmith].

It is crucial to note that the above paragraphs are not true in general for any mapping between groups.

Consider f : Z3k → Z3k−1 and f(3h+ d) = h, where h ∈ Z3k−1 and d = {−1, 0,+1}. Easily, 3h+ d covers

all elements in the domain, i.e. we can split the domain into Z3k = S−1 ∪S0 ∪S+1. Of course, restriction

of f on each of the set is linear, but f itself is 2/3-far from linear, as d really ruins all the linear structure.
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On the other hand, Pr[above algo fails on this f ] = 2/9. To see why, say we picked x = 3h1 + d1 and

y = 3h2 + d2. Hence f(x) + f(y) = h1 + h2. But f(xy) = f
(
3(h1 + h2) + d1 + d2

)
. This equals h1 + h2 if

d1 + d2 ∈ {−1, 0,+1}. Among 9 possibilities, (−1) + (−1) = −2 and 1 + 1 = 2 makes it fails to be linear.

The thing to note is the discrepency between ε-far and the probability of failure. Indeed we need some

special structure and technique to two things consistent. In the next lecture, we shall see how Fourier

Analysis can be applied to our scheme.
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