
COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 28, 2019

Lecture 12: Streaming for dynamic graph problems: connectivity

Instructor: Alex Andoni Scribes: Roland Maio

1 Triangle Counting

We continue triangle counting from the previous lecture and recall the set up. Let T be the number of

triangles in an undirected and unweighted graph G and we assume that T is bounded from below by

some t so that T ≥ t. Using the notion of triangles we define a measure of clusterability: F = 3T∑
i (deg(i)2)

1.

We defined a vector x where each coordinate xS is uniquely indexed by a size-3 subset S of vertices in

G, and the value of xS is the number of edges between vertices of S. The p-th moment of F is defined to

be Fp =
∑

S x
p
S .

Recall that in the last lecture we showed that:

T = F0 − 1.5F1 +
1

2
F2

The algorithm that we developed estimates each Fp, for p ∈ {0, 1, 2}, up to a (1 + γ)-factor using

space O(1
γ2

) words.

T̂ = F̂0 − 1.5F̂1 +
1

2
F̂2

We can use any Fp estimation algorithm as a black box. Unfortunately, the estimate T̂ is not a

(1+ ε)-approximation to T because of the sign and multiplicative factor approximations to F0 and F1 but

T̂ is still good. In particular we have an inequality on |T̂ − T |. Recall that F0 is the number of distinct

elements, that is, the number of sets S such that at least one edge is in G. If we start from an empty

graph and add an edge, then about m coordinates in x will be non-zero. So γF0 = O(γmn).

|T̂ − T | ≤ |F0 − F̂0|+ 1.5|F1 − F̂1|+
1

2
|F2 − F̂2

≤ γF0 + 1.5γF1 +
1

2
γF2

≤ O(γmn)

Our desired bound gives a condition on γ, specifically, we would like O(γmn) ≤ εt ≤ εT . Setting

γ = Θ(εt
mn) yields a (1± ε)-approximation to T using space O

(
1
γ2

)
= O((mn)

2

ε2t2
).

1Fun fact, from the theory seminar earlier in the day, the clusterability of Facebook per F is 0.16

1

2 Approach 2 to Triangle Count

We will now see another algorithm for triangle counting. The big idea is to take a different, more

“natural” approach to the problem from what we initially considered; we will try to estimate the number

of triangles by sampling.

The idea is to sample k sets S, |S| = 3, and keep xS1 , . . . , xSk
where the Si are the sampled sets S.

Algorithm: Keep xS1 , . . . xSk
.

Estimator: E = M
K |{i : xSi = 3}|,M =

(
n
3

)
Analysis: The space is clearly k. The analysis of this estimator will be similar to our analysis

of the Morris algorithm in the first lecture. The strategy will be to compute the expectation, bound

the variance from above, and apply Chebyshev’s inequality. We can take the expectation using the

characteristic function χ[·].

E[E] =
M

k
ES1,...,Sk

k∑
i=1

χ[xSi = 3] =
M

k

k∑
i=1

T

M
= T

The variance can be obtained by observing that the estimator is the sum of random variables.

Var[E] =
M2

k2

k∑
i=1

Var[χ[xSi = 3]] ≤ M2

k2
k
T

M
=
M

k
T

Now we can apply Chebshyev’s inequality, E ∈ T ± O(
√

Var) with probability 90% choosing k so as

to make the variance less than εT , O(
√

Var) < εT , implying that we have:

M

k
T < O(εT)2 =⇒ k > Ω(

M

ε2T
) ≥ Ω(

M

ε2t
) = Ω(

n3

ε2t
)

So depending on n and t the bound can be very small or large, so a priori it is not clear how good

this is. The problem is the space directly depends on M , where M is all possible sets of size 3, and this

seems very loose. If the graph is very sparse, then M will be much less than
(
n
3

)
. A random set in a

sparse graph is unlikely to be a triangle.

So the idea is to say, what if we can sample from a smaller set? Rather than sample all the sets,

sample instead from a bounded, more narrow set of sets of size 3.

Of all possible sets of size 3, we are actually only interested in a much smaller set. The first idea

is basically doing a naive, brute force, Monte Carlo experiment. Clearly, we want many samples to fall

inside T . So what if we can prune the size of the set from which we sample so that it still contains all

the triangles? Then the set of triangles should be relatively larger compared to the pruned set. Let’s call

this set M ′.

Define M ′ = {S ∈ [n]3 : xS ≥ 1}, to be the set of all S such that xS ≥ 1. In a sparse graph this set

should be much smaller than the universe. In particular, note that the size of M ′ is bounded above by a

constant, that is: |M ′| = F0 ≤ mn.

Algorithm: Sample S1, . . . , Sk from M ′; Keep xSi .

Estimator: E = M ′

k

∑k
i=1 χ[xSi = 3]

Claim: k = O(M
′

ε2T
) ≤ O(mn

ε2t
)

In our previous analysis, the only thing that we really used was the dependence on M , so the exact

same proof for the first idea works here too. We simply substitute the size of M ′ to obtain the new bound

2

and see the improvement.

So this is a better algorithm, but we must now figure out how to sample from M ′. It is not possible

to know what is M ′ before we observe the stream, so we need some kind of tool.

3 Tool (dynamic sampling)

We require the following to apply the tool:

1. There is a vector x ∈ Rn that is maintained via a stream of updates.

2. A sketch such that at the end of the stream, it can sample i ∈ [n] such that xi ≥ 1 and additionally

outputs xi

Once we build a tool, we may as well build one to solve more general problems, so think about this

tool in the General Turnstile Streaming Model (GTSM).

We would also like the space of the tool to be polylogarithmic: (log(N))O(1).

Note that this tool is weird in that its output is not deterministic, but rather a distribution. The

tool observes the stream, does something, and spits out a coordinate saying: I promise you that this

coordinate has been sampled uniformly at random from all non-zero coordinates.

Clearly, this is what we need for the triangle counting algorithm we have developed. We keep k i.i.d.

dynamic sampling sketches where each sketch samples from M ′ by the construction of both M ′ and the

tool.

Note that this tool is more powerful than what we need because it is in the GTSM. It returns a

coordinate with absolute value greater than 0 which is more general than the triangle counting problem

in which we know all coordinates are 0, 1, 2, or 3.

This version of the tool is called the `0-sampler. In general the `p-sampler will return (i, xi) for fixed

i with probability |xi|p∑
j |xj |p

.

We will also use this tool for another graph streaming problem. We further desire that the sketch S

be a linear random map, S : Rn 7→ Rk and that when the estimator E is applied to the sketch, E(S(x)),

it produces (i, xi) where i ∈r {i : xi 6= 0}.
This is not necessary for triangle counting, but it will be for the next problem. In general, the idea is

that if you design a sketch for the GTSM, it helps to make it linear.

We assume that x ∈ {−1, 0, 1}n. This assumption is not too strong, because once we have a linear

sketch it can be dropped.

Let D = {i : xi 6= 0} and now for the intuition, consider the coordinates that are non-zero. Suppose

we know that at the end of the stream there are only 3 non-zero coordinates. This appears to be very

difficult because a lot can go on in between, for a given coordinate, it may be that in the beginning there

are a lot of adds, and toward the end there are a lot of subtracts, and the result is that it is zero. How

can we find a non-zero coordinate?

The insight is to observe that we can use a count-min sketch. Observe that every i ∈ D is a (1/4)-

Heavy Hitter. Therefore, we can simply use the count-min sketch algorithm for φ ≥ 1/4 and ε = 0.01.

Recall that count-min sketch will return precisely the set D when D is very small. But what if D

is large? If the size of D is polynomial in n, then the space of count-min sketch becomes polynomial in

n as well. The solution is to downsample the coordinates. Let I ⊂ [n] be a random subset such that

Pr[i ∈ I] = 10√
n

. Now restrict our attention in the stream only to those coordinates of x in I, denoted

3

x|I . Then the expected number of elements of D also in I is constant, specifically E[|D ∩ I|] = 10, and

this returns us back to the case of small D.

4 Dynamic Sampling-Basic

We now build the tool, and do so in two steps, starting with the basic one. The difference between the

two steps will be that the basic tool, DS-Basic, will fail sometimes. We will see that the failure will come

when the expectation of the intersection of D and I is low or 0.

Let g : [n] 7→ [n] be a 2-wise independent random hash function. Let h : N 7→ N be a function that

given an integer i, returns the number of zeroes in g(i) in binary. For example, if g(i) = 101000, then

h(i) = 3. In particular we note that Prg[h(i) = j] = 2−j−1, for j ∈ [L] and L = log n. Observe that the

bounds on j are similar in principle to downsampling. We will use this approach because it will give a

slightly cleaner estimator.

So we partition the full stream into L streams where the jth stream cares only about x|Ij where

Ij = {i : h(i) = j}. So this means that we first bifurcate the coordinates by feeding them through the

hash function g, and then we group them so that the groups correspond to the sets Ij . In particular,

note that E[|Ij |] = n2−j−1 and E[|D ∩ Ij |] = |D|2−j−1. So all the coordinates are split between L levels,

and the different levels correspond to different levels of downsampling.

Sketch: for j = 0, . . . , L:

1. Store CSj : Count-min Sketch on stream for x|Ij , φ, ε = 0.01.

2. Store Nj : `1-norm estimation for x|Ij , ε = 0.01

Run both with success probability 1− 1
n .

Operationally this amounts to routing the observation (i, δ) into the appropriate sketches CSj , Nj

where j = h(i).

Estimator:

• Find some j such that EN (Nj) ∈ [1, 20].

• If no such i exists, then report FAIL.

• Fetch all φ-Heavy Hitters from CSj .

• Pick one at random.

Analysis

For the analysis, we need to prove that if the tool succeeds, that the output is in fact a random

element of D, and that if it fails, then it will do so with small probability.

We begin with the case that D is small, say 1 ≤ |D| ≤ 10. Because the Ij partition the coordinates,

there must be some partition that contains an element of D, and the count-min sketch associated with

that partition will recover that element. Formally, ∃j such that |D∩ Ij | ≥ 1 =⇒ CSj will recover this j.

Now, in the case that D is large, say |D| > 10, we want to prove that there will be a level with the

right downsampling probability that the condition EN (Nj) ∈ [1, 20] will be true. Let k be such that

|D| ∈ [10× 2k, 10× 2k+1], then we have:

4

E[|D ∩ Ik|] = |D|2−k−1 ∈ [5, 10]

and

Var[|D ∩ Ik|] ≤ |D|2−k−1 ∈ [5, 10] ≤ 10

so by Chebyshev’s inequality we have:

PrIk [
∣∣|D ∩ Ik|∣∣− E[|D ∩ Ik|] ≥ 5] ≤ 10

52
=

2

5

So with probability at least 3/5 we will have that |D ∩ Ik| ∈ [1, 14]. But the overall probability that

the basic estimator fails is slightly bigger than this because the count-min sketch and `1-norm estimators

may fail, specifically, Pr[FAIL] ≤ 2
5 +O(1

n).

Now consider j such that EN (Nj) ∈ [1, 20]. This implies that |x|Ij | ≤ 20|D| =⇒ ∀i ∈ D ∩ Ij that i

is a (1/40)-Heavy Hitter and therefore will be recovered by CSj .

By symmetry, the output of the Dynamic Sampling-Basic algorithm is a random element of D.

5 Dynamic Sampling-Full

We conclude with the full algorithm, DS-Full. Run k = O(log n) i.i.d copies of DS-Basic using any one

that does not FAIL. Thus, Pr[DS-Full fails] ≤ O(25)O(logn) < 1
n2 .

For the space requirements we consider:

• k = O(log n)

• L = O(log n) substreams I0, . . . , IL.

• Each uses CSj , which requires O(log2 n) space, and Nj which requires O(log n) space.

The total space requirements are therefore O(log4 n).

Next time we will see how to use dynamic sampling to do connectivity in the case that the graph is

dynamic, where edges can be inserted and deleted. And we will use this to get an algorithm that uses

space O(log n).

5

