
Sublinear Graph
Approximation Algorithms

Krzysztof Onak

IBM Research

Sublinear-Time Algorithms

BIG
DATA

Sublinear-Time Algorithms

Sublinear-time algorithms:

Fast answer based on inspecting
a tiny fraction of the input

Focus: Parameters of Graphs

Want to inspect only a small fraction of the graph and
learn something about it

Focus: Parameters of Graphs

Want to inspect only a small fraction of the graph and
learn something about it

Classical graph parameters:

the minimum vertex cover size

the maximum matching size

the independence number

the minimum dominating set size

Focus: Parameters of Graphs

Want to inspect only a small fraction of the graph and
learn something about it

Classical graph parameters:

the minimum vertex cover size

the maximum matching size

the independence number

the minimum dominating set size

Very fast algorithms!

Much faster then
computing a corresponding
approximate solution

The Model

A not very important assumption:

the maximum vertex degree ≤ d

easy to replace max degree with average degree

The Model

A not very important assumption:

the maximum vertex degree ≤ d

easy to replace max degree with average degree

Input access:

Can obtain a random vertex

The Model

A not very important assumption:

the maximum vertex degree ≤ d

easy to replace max degree with average degree

Input access:

Can obtain a random vertex

Can query the degree deg(v) of a specific vertex v

The Model

A not very important assumption:

the maximum vertex degree ≤ d

easy to replace max degree with average degree

Input access:

Can obtain a random vertex

Can query the degree deg(v) of a specific vertex v

For each vertex v and each i ∈ {1, 2, . . . , deg(v)},
can obtain the i-th neighbor of v

The Model

A not very important assumption:

the maximum vertex degree ≤ d

easy to replace max degree with average degree

Input access:

Can obtain a random vertex

Can query the degree deg(v) of a specific vertex v

For each vertex v and each i ∈ {1, 2, . . . , deg(v)},
can obtain the i-th neighbor of v

Essentially: query access to adjacency lists

Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge
has endpoint in S

Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge
has endpoint in S

Best polynomial time algorithm: 2-approximation

Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge
has endpoint in S

Best polynomial time algorithm: 2-approximation

Here:
VC− ǫn ≤ (computed value) ≤ 2 · VC+ ǫn

where VC = minimum vertex cover size
n = number of vertices

Essential Technique

We develop a local computation method

Essential Technique

We develop a local computation method

Multiple applications:

vertex cover approximation

maximum matching approximation

computing nice partitions of graphs

local distributed algorithms

approximate planarity verification

local computation algorithms

Essential Technique

We develop a local computation method

Multiple applications:

vertex cover approximation

maximum matching approximation

computing nice partitions of graphs

local distributed algorithms

approximate planarity verification

local computation algorithms

Will present and apply a less general version:

local computation of maximal independent set

Main Tool:

Constructing a Maximal

Independent Set Locally

Oracle for Maximal Independent Set

Want to construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Yes/No

v ∈ I?

Oracle O

Goal: Minimize the query processing time

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

?

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

??????

Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅
Consider vertices v one by one:

If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

??????

Our solution: consider vertices in random order

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?
?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?
?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27
?

??

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27
?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27
?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

E[#visited vertices] and query complexity of order 2O(d)

Bounding Expected Query Complexity

Pr[a given path of length k is explored] = 1/(k + 1)!

Bounding Expected Query Complexity

Pr[a given path of length k is explored] = 1/(k + 1)!

(number of vertices at distance k) ≤ dk

Bounding Expected Query Complexity

Pr[a given path of length k is explored] = 1/(k + 1)!

(number of vertices at distance k) ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

Bounding Expected Query Complexity

Pr[a given path of length k is explored] = 1/(k + 1)!

(number of vertices at distance k) ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤ ∑
∞

k=0 d
k/(k + 1)! ≤ ed/d

Bounding Expected Query Complexity

Pr[a given path of length k is explored] = 1/(k + 1)!

(number of vertices at distance k) ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤ ∑
∞

k=0 d
k/(k + 1)! ≤ ed/d

Expected query complexity = O(d) · ed/d = O(ed)

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36

.55

.42

.91

.77

.82

?

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36 .11

.55

.42

.91

.77

.82

?

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36 .11

.55

.42

.91

.77

.82

?

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36 .11

.55

.42

.91

.77

.82

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36 .11

.55

.42

.91

.77

.82

Yoshida, Yamamoto, Ito (STOC 2009):

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60

.36 .11

.55

.42

.91

.77

.82

Yoshida, Yamamoto, Ito (STOC 2009):

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)

Algorithm for Vertex Cover

Vertex Cover

Goal: find smallest set S of nodes such that each edge
has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Vertex Cover

Goal: find smallest set S of nodes such that each edge
has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Vertex Cover

Goal: find smallest set S of nodes such that each edge
has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

maximal matching
≡

maximal independent set in the line graph

Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

maximal matching
≡

maximal independent set in the line graph

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

maximal matching
≡

maximal independent set in the line graph

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

This gives:

VC− ǫn ≤ (computed value) ≤ 2 · VC+ ǫn

Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

maximal matching
≡

maximal independent set in the line graph

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

This gives:

VC− ǫn ≤ (computed value) ≤ 2 · VC+ ǫn

Running time: 2O(d)/ǫ2

VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

Marko, Ron (2007): dO(log(d/ǫ)) queries

via Luby’s algorithm

VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

Marko, Ron (2007): dO(log(d/ǫ)) queries

via Luby’s algorithm

Nguyen, O. (2008): 2O(d)/ǫ2 queries

the algorithm and proof presented here

VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

Marko, Ron (2007): dO(log(d/ǫ)) queries

via Luby’s algorithm

Nguyen, O. (2008): 2O(d)/ǫ2 queries

the algorithm and proof presented here

Yoshida, Yamamoto, Ito (2009): O(d4/ǫ2) queries

the Nguyen, O. algorithm + analysis of the heuristic

VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

Marko, Ron (2007): dO(log(d/ǫ)) queries

via Luby’s algorithm

Nguyen, O. (2008): 2O(d)/ǫ2 queries

the algorithm and proof presented here

Yoshida, Yamamoto, Ito (2009): O(d4/ǫ2) queries

the Nguyen, O. algorithm + analysis of the heuristic

O., Ron, Rosen, Rubinfeld (2012): Õ(d/ǫ3) queries

further refinements of Nguyen, O. and YYI

sampling from the neighbor sets

near optimal: Ω(d) lower bound due to Parnas, Ron (2007)

Lower Bounds

Trevisan 2007:

(c, ǫn)-approximation requires Ω(
√
n) queries for c < 2

Parnas, Ron 2007:

(O(1), ǫn)-approximation requires Ω(d) queries

Better Approximation

for Maximum Matching

Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality

Review of Properties

Augmenting Path: a path that improves matching

Review of Properties

Augmenting Path: a path that improves matching

Review of Properties

Augmenting Path: a path that improves matching

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k+ 1 ⇒ |M | ≥ k

k+1 |M∗|

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k+ 1 ⇒ |M | ≥ k

k+1 |M∗|

To get (1 + ǫ)-approximation, set k = ⌈1/ǫ⌉

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Algorithm:
M := empty matching
for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i− 1
apply all paths to M

return M

Transformation
Standard Algorithm:

Constant−Time Algorithm:

augmenting
Eliminate

paths

of length 1

augmenting
Eliminate

paths

of length 3

augmenting
Eliminate

paths

of length 5

augmenting
Eliminate

paths

of length 7

⇒ M1 ⇒ ⇒ M2 ⇒ ⇒ M3 ⇒∅ ⇒ ⇒ M4

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Oracle Oi:

provides query access to Mi

simulates applying to Mi−1 a maximal set of disjoint
augmenting paths of length 2i− 1

Transformation

Sample graph considered by O2:

Oi’s graph has degree dO(i)

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1− δ

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1− δ

Query complexity: 2d
O(1/ǫ)

queries for (1, ǫn)-approximation

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1− δ

Query complexity: 2d
O(1/ǫ)

queries for (1, ǫn)-approximation

Yoshida, Yamamoto, Ito (2009)

Query complexity: dO(1/ǫ2)

uniform on higher level ⇒ close to uniform on lower

Local Graph Partitions
[Hassidim, Kelner, Nguyen, O. 2009]

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0

Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth
Polynomial

Growth

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

We can compute the partition without looking
at the entire graph

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

We can compute the partition without looking
at the entire graph

New Tool: Partitioning Oracles

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits

Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])

Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dO(log2(1/ǫ))

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

Improved by Levi and Ron (2013)

Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dO(log2(1/ǫ))

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)

Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dO(log2(1/ǫ))

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Constant Treewidth:

Query complexity: poly(d/ǫ)

Edelman, Hassidim, Nguyen, O. (2011)

Two Applications

1. Approximately learning hyperfinite graphs

Then solve an arbitrary problems on
almost the same graph

Two Applications

1. Approximately learning hyperfinite graphs

Then solve an arbitrary problems on
almost the same graph

2. Testing minor-closed properties

Simpler proof of the result due to Benjamini,
Schramm, and Shapira (2008)

Much faster tester

Application 1: Learning

Input graphs can be decomposed into constant size
components by cutting few edges

Algorithm:

sample large constant number of vertices

query their components

approximately learn the distribution of components

Application 1: Learning

Input graphs can be decomposed into constant size
components by cutting few edges

Algorithm:

sample large constant number of vertices

query their components

approximately learn the distribution of components

component size ≤ k ⇒ ≤2k
2

different component types

Can learn a graph close to the input by sampling

2k
2 ·O(1/ǫ2) vertices

Application 1: Learning

Input graphs can be decomposed into constant size
components by cutting few edges

Algorithm:

sample large constant number of vertices

query their components

approximately learn the distribution of components

component size ≤ k ⇒ ≤2k
2

different component types

Can learn a graph close to the input by sampling

2k
2 ·O(1/ǫ2) vertices

Application: solve any testing or approximation problem
on almost the same graph

First proof: Newman and Sohler (2011)

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 22
2poly(1/ǫ)

time

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 22
2poly(1/ǫ)

time

Via partitioning oracles: 2polylog(1/ǫ) and simpler proof

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Why it works:

planar: few edges cut in the partition

ǫ-far: either many edges cut
or many copies of K3,3 or K5

Simplest Oracle

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Iterative Procedure

Global procedure:

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened to close vertices
with lower numbers

if v still in graph, try to construct a component

Open Questions

Open Questions

Is there a poly(d/ǫ)-time algorithm for approximating
maximum matching size up to ±ǫn?

Open Questions

Is there a poly(d/ǫ)-time algorithm for approximating
maximum matching size up to ±ǫn?

Can planarity be tested in poly(d/ǫ) time?

	Sublinear-Time Algorithms
	Sublinear-Time Algorithms

	Focus: Parameters of Graphs
	Focus: Parameters of Graphs
	Focus: Parameters of Graphs

	The Model
	The Model
	The Model
	The Model
	The Model

	Example: Vertex Cover
	Example: Vertex Cover
	Example: Vertex Cover

	Essential Technique
	Essential Technique
	Essential Technique

	Oracle for Maximal Independent Set
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality
	Challenge of Locality

	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method

	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity

	Improvement
	Improvement
	Improvement
	Improvement
	Improvement
	Improvement

	Vertex Cover
	Vertex Cover
	Vertex Cover

	Sublinear-Time Algorithm
	Sublinear-Time Algorithm
	Sublinear-Time Algorithm
	Sublinear-Time Algorithm
	Sublinear-Time Algorithm

	${
m VC} - eps n le mbox {output} le 2cdot {
m VC} + eps n$
	${
m VC} - eps n le mbox {output} le 2cdot {
m VC} + eps n$
	${
m VC} - eps n le mbox {output} le 2cdot {
m VC} + eps n$
	${
m VC} - eps n le mbox {output} le 2cdot {
m VC} + eps n$
	${
m VC} - eps n le mbox {output} le 2cdot {
m VC} + eps n$

	Lower Bounds
	Maximum Matching
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties

	Standard Algorithm
	Standard Algorithm

	Transformation
	Transformation
	Query Complexity
	Query Complexity
	Query Complexity
	Query Complexity

	Hyperfinite Graphs
	Hyperfinite Graphs

	Taxonomy
	Using a Partition
	Using a Partition

	Using a Partition
	Using a Partition

	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle

	Oracle Implementations
	Oracle Implementations
	Oracle Implementations
	Oracle Implementations
	Oracle Implementations

	Two Applications
	Two Applications

	Application 1: Learning
	Application 1: Learning
	Application 1: Learning

	Application 2: Testing
	Application 2: Testing
	Application 2: Testing

	Application 2: Testing
	Application 2: Testing
	Application 2: Testing

	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure

	Local simulation
	Local simulation

	Open Questions
	Open Questions

