
11

Lecture 11:

Nearest Neighbor Search

Plan

• Distinguished Lecture

– Quantum Computing

– Oct 19, 11:30am, Davis Aud in CEPSR

• Nearest Neighbor Search

• Scriber?

2

Sketching

• 𝑊:ℜ𝑑 → short bit-strings
– given 𝑊(𝑥) and 𝑊(𝑦), can distinguish between:

• Close: ||𝑥 − 𝑦|| ≤ 𝑟
• Far: ||𝑥 − 𝑦|| > 𝑐𝑟

– With high success probability: only 𝛿 = 1/𝑛3 failure
prob.

• ℓ2, ℓ1 norm: 𝑂(𝜖−2 ⋅ log 𝑛) bits

𝑊 𝑊

010110 010101

𝑦𝑥

Yes: close, ||𝑥 − 𝑦|| ≤ 𝑟
No: far, ||𝑥 − 𝑦|| > 1 + 𝜖 𝑟

Is ||𝑊 𝑥 −𝑊 𝑦 || ≤ 𝑡 ?

NNS: approaches
• Sketch 𝑊: uses 𝑘 = 𝑂(𝜖−2 ⋅ log 𝑛) bits

• 1: Linear scan++
– Precompute 𝑊(𝑝) for 𝑝 ∈ 𝐷
– Given 𝑞, compute 𝑊 𝑞
– For each 𝑝 ∈ 𝐷, estimate distance using
𝑊 𝑞 ,𝑊(𝑝)

• 2: Exhaustive storage++
– For each possible 𝜎 ∈ 0,1 𝑘

• compute 𝐴 𝜎 = point 𝑝 ∈ 𝐷 s.t. ||𝑊 𝑝 − 𝜎||1 < 𝑡

– On query 𝑞, output 𝐴[𝑊 𝑞]

– Space: 2𝑘 = 𝑛𝑂 1/𝜖2

4

Near-linear space and sub-linear query time?

Locality Sensitive Hashing

Random hash function ℎ on 𝑅𝑑

satisfying:

for close pair (when 𝑞 − 𝑝 ≤ 𝑟)

Pr[ℎ(𝑞) = ℎ(𝑝)] is “high”

for far pair (when 𝑞 − 𝑝′ > 𝑐𝑟)

Pr[ℎ(𝑞) = ℎ(𝑝′)] is “small”

Use several hash tables

5

𝑞

𝑝

𝑞 − 𝑝

Pr[ℎ(𝑞) = ℎ(𝑝)]

𝑟 𝑐𝑟

1

𝑃1

𝑃2

𝑞

𝑝′

[Indyk-Motwani’98]

𝑛𝜌, where

𝑃1 =

𝑃2 =

𝜌 =
log 1/𝑃1
log 1/𝑃2

“not-so-small”

LSH for Hamming space
• Hash function 𝑔 is usually a concatenation of

“primitive” functions:

– 𝑔 𝑝 = ℎ1(𝑝), ℎ2(𝑝), … , ℎ𝑘(𝑝)

• Fact 1: 𝜌𝑔 = 𝜌ℎ
• Example: Hamming space 0,1 𝑑

– ℎ 𝑝 = 𝑝𝑗 , i.e., choose 𝑗𝑡ℎ bit for a random 𝑗
– 𝑔(𝑝) chooses 𝑘 bits at random

– Pr ℎ 𝑝 = ℎ 𝑞 = 1 –
𝐻𝑎𝑚 𝑝,𝑞

𝑑

– 𝑃1 = 1 −
𝑟

𝑑
≈ 𝑒−𝑟/𝑑

– 𝑃2 = 1 −
𝑐𝑟

𝑑
≈ 𝑒−𝑐𝑟/𝑑

– 𝜌 =
log 1/𝑃1

log 1/𝑃2
=

𝑟/𝑑

𝑐𝑟/𝑑
=

1

𝑐

6

𝑞 − 𝑝

Pr[ℎ(𝑞) = ℎ(𝑝)]
1

𝑃1

𝑃2

𝑟 𝑐𝑟

Full Algorithm
• Data structure is just 𝐿 = 𝑛𝜌 hash tables:

– Each hash table uses a fresh random function
𝑔𝑖 𝑝 = ℎ𝑖,1(𝑝), … , ℎ𝑖,𝑘(𝑝)

– Hash all dataset points into the table

• Query:
– Check for collisions in each of the hash tables

– until we encounter a point within distance 𝑐𝑟

• Guarantees:
– Space: 𝑂 𝑛𝐿 = 𝑂(𝑛1+𝜌), plus space to store

points

– Query time: 𝑂 𝐿 ⋅ (𝑘 + 𝑑) = 𝑂(𝑛𝜌 ⋅ 𝑑) (in
expectation)

– 50% probability of success.

7

Choice of parameters 𝑘, 𝐿 ?
• 𝐿 hash tables with 𝑔 𝑝 = ℎ1(𝑝), … , ℎ𝑘(𝑝)

• Pr[collision of far pair] = 𝑃2
𝑘

• Pr[collision of close pair] = 𝑃1
𝑘

– Success probability for a hash table: 𝑃1
𝑘

– 𝐿 = 𝑂 1/𝑃1
𝑘 tables should suffice

• Runtime as a function of 𝑃1, 𝑃2 ?

– 𝑂
1

𝑃1
𝑘 𝑡𝑖𝑚𝑒𝑇𝑜𝐻𝑎𝑠ℎ + 𝑛𝑃2

𝑘

• Hence 𝐿 = 𝑂(𝑛𝜌)

8

co
lli

si
o

n
 p

ro
b

ab
ili

ty

distance 𝑐𝑟

𝑃1

𝑃2

𝑃1
2

𝑃2
2

𝑘 = 1
𝑘 = 2

𝑟

set 𝑘 s.t.
= 1/𝑛

= 𝑃2
𝜌 𝑘

= 1/𝑛𝜌

Analysis: correctness

• Let 𝑝∗ be an 𝑟-near neighbor
– If does not exists, algorithm can output anything

• Algorithm fails when:
– near neighbor 𝑝∗ is not in the searched buckets
𝑔1 𝑞 , 𝑔2 𝑞 , … , 𝑔𝐿 𝑞

• Probability of failure:
– Probability 𝑞, 𝑝∗ do not collide in a hash table: ≤
1 − 𝑃1

𝑘

– Probability they do not collide in 𝐿 hash tables
at most

1 − 𝑃1
𝑘 𝐿

= 1 −
1

𝑛𝜌

𝑛𝜌

≤ 1/𝑒

9

Analysis: Runtime

10

• Runtime dominated by:
– Hash function evaluation: 𝑂(𝐿 ⋅ 𝑘) time

– Distance computations to points in buckets

• Distance computations:
– Care only about far points, at distance > 𝑐𝑟
– In one hash table, we have

• Probability a far point collides is at most 𝑃2
𝑘 = 1/𝑛

• Expected number of far points in a bucket: 𝑛 ⋅
1

𝑛
= 1

– Over 𝐿 hash tables, expected number of far
points is 𝐿

• Total: 𝑂 𝐿𝑘 + 𝑂 𝐿𝑑 = 𝑂(𝑛𝜌 log 𝑛 + 𝑑) in
expectation

LSH in practice

• If want exact NNS, what is 𝑐?

– Can choose any parameters 𝐿, 𝑘

– Correct as long as 1 − 𝑃1
𝑘 𝐿

≤ 0.1

– Performance:

• trade-off between # tables and false positives

• will depend on dataset “quality”

11

𝐿

𝑘
safety not

guaranteed

fewer tables
fewer false

positives

LSH Algorithms

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98, DIIM’04]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝜌 ≈ 1/𝑐2 𝜌 = 1/4 [AI’06]

Table does not include:

• 𝑂(𝑛𝑑) additive space

• 𝑂(𝑑 ⋅ log 𝑛) factor in query time

LSH Zoo (ℓ1)

• Hamming distance [IM’98]
– ℎ: pick a random coordinate(s)

• ℓ1 (Manhattan) distance [AI’06]
– ℎ: cell in a randomly shifted grid

• Jaccard distance between sets:

– 𝐽 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

– ℎ: pick a random permutation 𝜋 on
the universe

ℎ 𝐴 = min
𝑎∈𝐴

𝜋(𝑎)

min-wise hashing [Bro’97]

Claim: Pr[collision]=J(A,B)

13

To be or

not to be

To sketch or

not to sketch

…21102…

b
e too
r

n
o

t

s
k
e

tc
h

…01122…

b
e too
r

n
o

t

s
k
e

tc
h

…11101… …01111…

{be,not,or,to} {not,or,to,

sketch}

1 1

n
o

t

n
o

t

𝜋=be,to,sketch,or,not

be to

LSH for Euclidean distance

• LSH function ℎ(𝑝):

– pick a random line ℓ, and quantize

– project point into ℓ

– ℎ 𝑝 =
𝑝⋅ℓ

𝑤
+ 𝑏

• ℓ is a random Gaussian vector

• 𝑏 random in [0,1]

• 𝑤 is a parameter (e.g., 4)

• Claim: 𝜌 = 1/𝑐

14

𝑝

ℓ

[Datar-Immorlica-Indyk-Mirrokni’04]

