
#### $\mathsf{NEEXP} \subseteq \mathsf{MIP}^*$

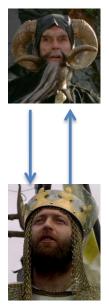
#### Anand Natarajan<sup>1</sup> and John Wright<sup>2</sup> <sup>1</sup>Caltech, <sup>2</sup>MIT

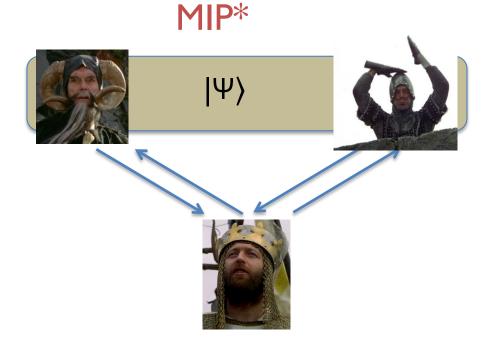


#### Interactive proofs

IP




### MIP


- Separately interrogate noncommunicating provers
- Upper bound: NEXP
   Witness is strategy
- Lower bound: NEXP
- [BFL'91]
  - Inspired probabilistically checkable proofs (PCPs)



### Quantum interactive proofs

QIP





#### Still = PSPACE ! [JJUW'09]

- $|\Psi\rangle$  is finite-dim but arbitrarily big
- Contained in RE (search over all  $|\Psi\rangle$ )

# Why MIP\*?

- A computational lens on a physical question: what types of correlations can we get from local measurements on a bipartite system?
  - Can we distinguish different notions of locality (tensor product vs commuting)?
- Applications:
  - Delegated computation, certifiable randomness, hardness of approximation?

### Entanglement can be used to cheat

- MIP\* could be weaker than MIP:  $\bigoplus$  MIP = NEXP [Hastad'97]  $\bigoplus$  MIP\*  $\subseteq$  EXP [CHTW'04]
- But it isn't!
  - $-NEXP \subseteq MIP [IV' | 2]$
  - Honest provers need no entanglement, and entanglement doesn't help dishonest provers cheat

### Can entanglement help? Self-testing

- Entangled provers can prove they possess a particular quantum state: a uniquely quantum power!
- [Bell'64, CHSH'69]: a simple game where optimal quantum players need IEPR pair
   – [Cir'80, SW'88]: near-optimal players
- Modern tests can certify many qubits
   [NV'18]: n EPR pairs with log(n) communication

#### Can entanglement help? Some hints

- Idea: self-test a quantum state that's computationally difficult to produce
- [NV'18]: QMA in MIP\* with log-sized messages
- [Ji'17, FJVY'19]: NEEXP and higher in MIP\* with shrinking completeness-soundness gap
- All these results use history states
  - Need more than two provers
  - Technically challenging to get constant soundness

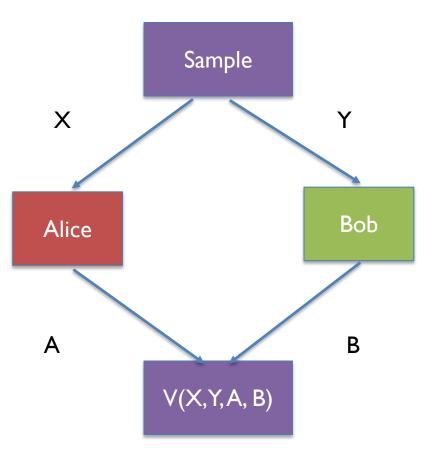
### Our result

**Thm:** There is a two-prover, one-round MIP\* protocol for NEEXP = NTIME[exp(exp(poly(n)))], with completeness I and soundness I- Ω(I)

- NEXP ≠ NEEXP (unconditionally), so MIP ≠ MIP\*
- No history states: honest provers only need EPR pairs

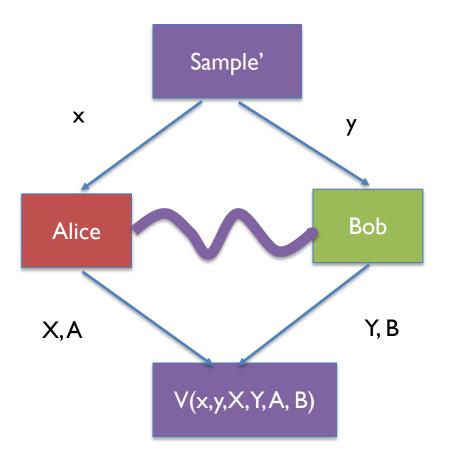
### Proof outline

- Start with a classical protocol with an exponential verifier


   Scale up NEXP ⊆ MIP
- Question reduction
- Answer reduction

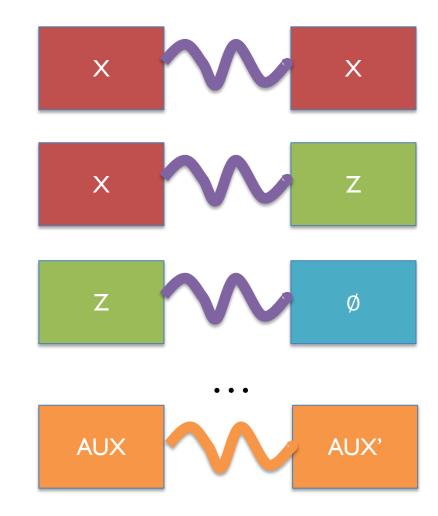
#### NEEXP

- NP = NTIME[poly(n)]. Complete problem is 3Sat
- NEXP = NTIME[exp(poly(n))]. Complete problem is Succinct-3Sat
  - Instance is a circuit C that generates exponentially large 3Sat formula
- NEEXP = NTIME[exp(exp(poly(n)))]. Complete problem is Succinct-Succinct-3Sat
  - Instance is a circuit C that generates a circuit C' that generates a doubly exponentially large 3Sat formula


## Starting point: a classical protocol

- NEEXP ⊆
   MIP[exp(n), exp(n)]
   Scaled-up MIP in NEXP
- Verifier needs exp(n) time to sample questions, and exp(n) time to check answers
  - Need to delegate these steps to provers!



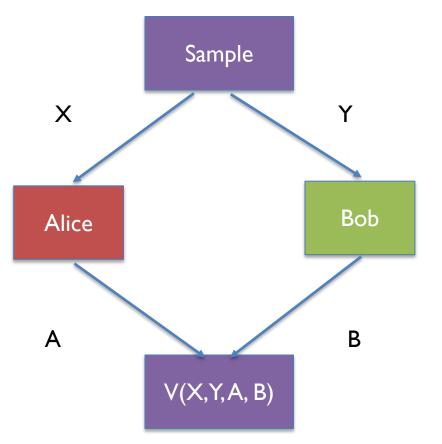

### Question reduction

- NEEXP ⊆ MIP\*[poly(n), exp(n)]
- Introspection: Ask Alice and Bob to generate X,Y by measuring shared state



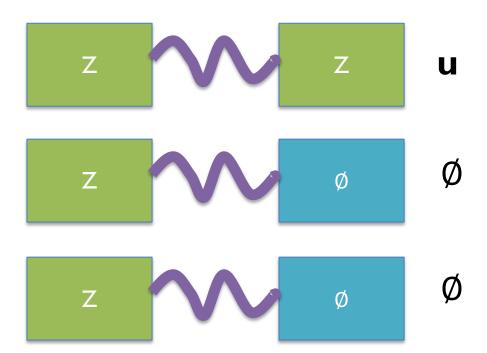
#### Interlude: testing Pauli measurements

- Using NV'18 self-test, can command provers to use register strategy:
  - O(I) registers of
     exp(n) EPR pairs each,
     with Pauli basis
     measurements




### The point-plane distribution

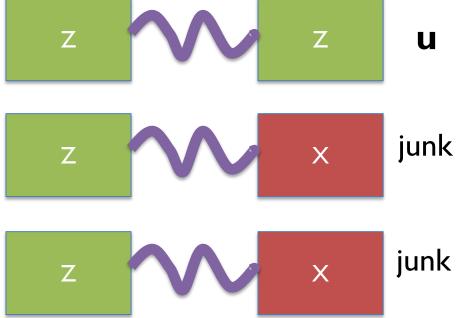
Pick X a random affine
 plane in F<sub>q</sub><sup>m</sup>
 {u + a v<sub>1</sub> + b v<sub>2</sub>: a, b in F<sub>q</sub>}


- Intercept u, slopes  $v_1, v_2$ 

Pick Y a random point on X



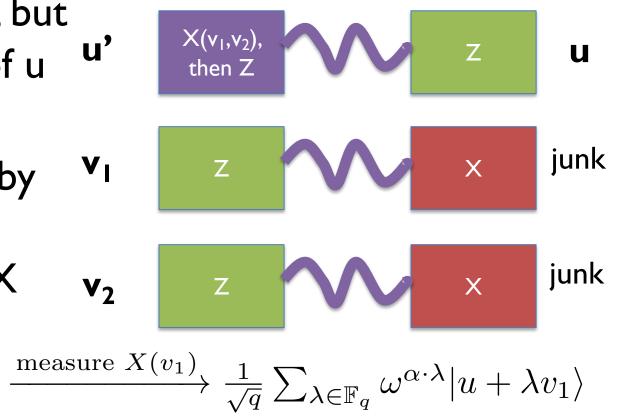
# Sampling from EPR pairs: attempt 1


- Alice sets
   X = plane(u, v<sub>1</sub>, v<sub>2</sub>) u
- Bob sets Y = u
- Not sound! VI
  - Alice learns Y
  - Bob can learn X  $V_2$



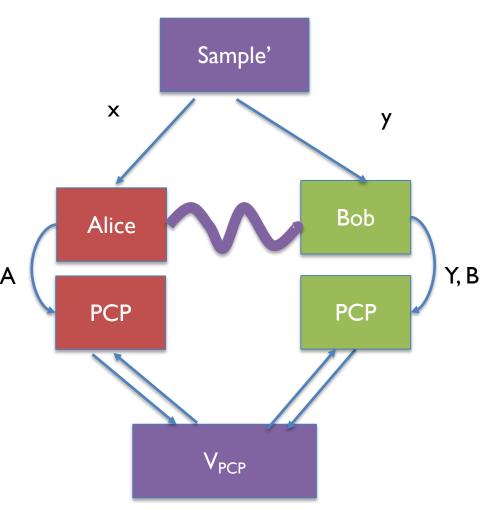
### Data hiding

- Heisenberg: measuring momentum u erases position!
- Hide v<sub>1</sub>, v<sub>2</sub> from v<sub>1</sub>
   Bob by measuring in X
   basis v<sub>2</sub>
- What about u?



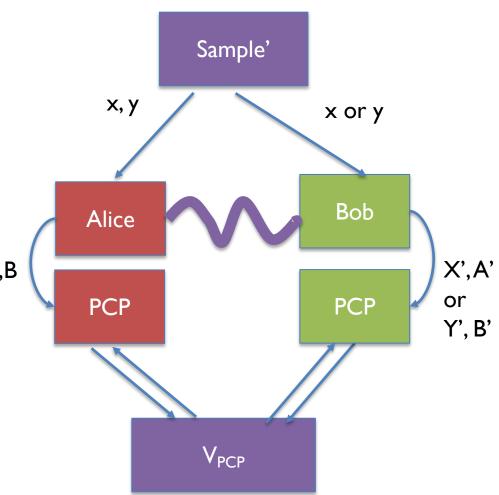



### Partial data hiding


- Alice should learn plane (u,v<sub>1</sub>,v<sub>2</sub>), but not location of u
   u'
   on plane
- "Scramble" u by VI
   partially
   measuring in X V2
   basis

 $|u\rangle$ 




### Answer reduction: PCPs

- NEEXP ⊆ MIP\*[poly(n), poly(n)]
- Delegate checking exp(n)-long answers A, B to X,A provers using PCP - "PCP composition"



### Answer reduction: oracularization

- To use a PCP, one player must know X,Y,A, B
- Oracularization of MIP\*
  - Always preserves X,Y,A,B soundness
  - Preserves
     completeness for
     EPR strategies



### Future directions

- Better lower bounds?  $- NEEXP \subseteq ??? \subseteq MIP^* \subseteq RE$
- By iterating our protocol, can we get NEEEXP, NEEEXP, ...?
- [FJVY'19]: if a compression theorem for all MIP\* exists, then MIP\* contains undecidable promise problems
  - Would separate tensor-product and commutingoperator entanglement, solving Tsirelson's problem, Connes' embedding conjecture

