NEEXP \subseteq MIP*

Anand Natarajan' and John Wright ${ }^{2}$
'Caltech, ${ }^{2}$ MIT

Interactive proofs

MIP

- Separately interrogate non-

MIP communicating provers

- Upper bound: NEXP
- Witness is strategy
- Lower bound: NEXP [BFL'9I]
- Inspired probabilistically checkable proofs (PCPs)

= NEXP
[BFL‘9I]

Quantum interactive proofs

MIP*

- $|\Psi\rangle$ is finite-dim but arbitrarily big

Still = PSPACE ! [JUUW'09]

Why MIP*?

- A computational lens on a physical question: what types of correlations can we get from local measurements on a bipartite system?
- Can we distinguish different notions of locality (tensor product vs commuting)?
- Applications:
- Delegated computation, certifiable randomness, hardness of approximation?

Entanglement can be used to cheat

- MIP* could be weaker than MIP: \oplus MIP = NEXP [Hastad'97] \oplus MIP* $^{*} \subseteq E X P$ [CHTW'04]
- But it isn't!
- NEXP \subseteq MIP [IV' 12$]$
- Honest provers need no entanglement, and entanglement doesn't help dishonest provers cheat

Can entanglement help? Self-testing

- Entangled provers can prove they possess a particular quantum state: a uniquely quantum power!
- [Bell'64, CHSH'69]: a simple game where optimal quantum players need IEPR pair - [Cir'80, SW'88]: near-optimal players
- Modern tests can certify many qubits
- [NV' 18$]$: n EPR pairs with $\log (\mathrm{n})$ communication

Can entanglement help? Some hints

- Idea: self-test a quantum state that's computationally difficult to produce
- [NV'I8]: QMA in MIP* with log-sized messages
- [Ji' I7, FJVY' 19$]$: NEEXP and higher in MIP* with shrinking completeness-soundness gap
- All these results use history states
- Need more than two provers
- Technically challenging to get constant soundness

Our result

Thm: There is a two-prover, one-round MIP* protocol for NEEXP = NTIME[exp(exp(poly(n)))], with completeness I and soundness I- $\Omega(\mathrm{I})$

- NEXP \neq NEEXP (unconditionally), so MIP \neq MIP*
- No history states: honest provers only need EPR pairs

Proof outline

- Start with a classical protocol with an exponential verifier
- Scale up NEXP \subseteq MIP
- Question reduction
- Answer reduction

NEEXP

- NP = NTIME[poly(n)]. Complete problem is 3Sat
- NEXP = NTIME[exp(poly(n))]. Complete problem is Succinct-3Sat
- Instance is a circuit C that generates exponentially large 3Sat formula
- NEEXP = NTIME[$\exp (\exp (p o l y(n)))]$. Complete problem is Succinct-Succinct-3Sat
- Instance is a circuit C that generates a circuit C^{\prime} that generates a doubly exponentially large 3Sat formula

Starting point: a classical protocol

- NEEXP \subseteq

MIP[$\exp (n), \exp (n)]$

- Scaled-up MIP in NEXP
- Verifier needs $\exp (\mathrm{n})$ time to sample questions, and $\exp (n)$ time to check answers
- Need to delegate these steps to provers!

Question reduction

- NEEXP \subseteq MIP*[poly(n), exp(n)]
- Introspection:

Ask Alice and Bob to generate X, Y by measuring shared state

Interlude: testing Pauli measurements

- Using NV'I8 self-test, can command provers to use register strategy:

- O(I) registers of $\exp (\mathrm{n})$ EPR pairs each, with Pauli basis measurements

The point-plane distribution

- Pick X a random affine plane in $\mathbf{F}_{q}{ }^{m}$ $\left\{u+a v_{1}+b v_{2}: a, b\right.$ in $\left.F_{q}\right\}$ - Intercept u, slopes v_{1}, v_{2}
- Pick Y a random point on X

Sampling from EPR pairs: attempt I

- Alice sets

$$
X=\operatorname{plane}\left(u, v_{1}, v_{2}\right) \quad u
$$

- Bob sets $Y=u$
- Not sound!
- Alice learns Y
- Bob can learn X

Data hiding

- Heisenberg: measuring momentum erases position!
- Hide v_{1}, v_{2} from Bob by

\mathbf{U}
 measuring in X basis
- What about u?

Partial data hiding

- Alice should learn plane (u, v_{1}, v_{2}), but not location of u on plane
- "Scramble" u by $\mathbf{v}_{\mathbf{1}}$ partially measuring in X basis

$$
|u\rangle \xrightarrow{\text { measure } X\left(v_{1}\right)} \frac{1}{\sqrt{q}} \sum_{\lambda \in \mathbb{F}_{q}} \omega^{\alpha \cdot \lambda}\left|u+\lambda v_{1}\right\rangle
$$

Answer reduction: PCPs

- NEEXP \subseteq MIP*[poly(n), poly(n)]
- Delegate checking exp(n)-long answers A, B to provers using PCP - "PCP
composition"

Answer reduction: oracularization

- To use a PCP, one player must know X,Y,A, B
- Oracularization of MIP*
- Always preserves soundness
- Preserves
completeness for EPR strategies

Future directions

- Better lower bounds?
- NEEXP \subseteq ??? \subseteq MIP* \subseteq RE
- By iterating our protocol, can we get NEEEXP, NEEEEXP, ...?
- [FJVY' 19]: if a compression theorem for all MIP* exists, then MIP* contains undecidable promise problems
- Would separate tensor-product and commutingoperator entanglement, solving Tsirelson's problem, Connes' embedding conjecture

THANKS!

