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Abstract

An observation is made that a polynomial time algorithm exists for

the problem of optimal model order reduction of �nite order systems

in the case when the approximation error measure to be minimized is

de�ned as maximum of the real part of the model mismatch transfer

function over a certain set of frequencies. Applications to H-In�nity

model reduction and comparison to the classical Hankel model reduc-

tion are discussed.

I am grateful for the opportunity to present this paper to honor Profes-
sor Anders Lindquist who was a profound positive inuence in my reserach
career.

1 Introduction

This paper deals with problems of model order reduction for linear time-
invariant (LTI) systems. Reduced order transfer functions are frequently
used in modeling, design, and computer simulation of complex engineering
systems. Despite signi�cant research e�orts, several fundamental questions
concerning LTI model reduction remain unsolved.

A mathematical formulation of a model reduction problem can be given in
terms of �nding a stable transfer function Ĝ (the reduced model) of order less
than k such that kG� Ĝk (the approximation error measure quantifying the
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size of the model mismatch � = G� Ĝ) is minimal. Here G is a given stable
LTI system (the non-reduced model), and k � k is a given norm (or sometimes
a semi-norm) on the vector space of stable transfer functions. While G is
not rational in many applications, it is usually reasonable to assume that a
high order high quality �nite order approximation G0 of G is available, and
therefore the optimal model reduction problem is formulated as

kG0 � Ĝk ! min; (order(Ĝ) < k); (1)

entirely in terms of �nite order transfer functions.
Based on the wisdom of modern robust control, the most desirable norms

k � k to be used in optimal model reduction are the so-called weighted H-
In�nity norms

k�k = kW�k1; (2)

where W is a given rational transfer function. However, to the author's
knowledge, no polynomial time algorithms are known for solving (1) in the
case of a non-zero weighted H-In�nity norm k � k (even when W � 1). (It is
also not known whether the problem is NP-hard or not.)

The case when
k�k = k�kh = min

Æ
k�+ �Æk1 (3)

(Æ ranges over the set of stable transfer functions) is the so-called Hankel
norm appears to be the only situation in which a polynomial time algorithm
for solving (1) is commonly known. The theory of Hankel model reduction is
the main concentration of rigorous results on model reduction. Since

k�kh � k�k1 (4)

for every stable transfer function �, solving the Hankel model reduction prob-
lem provides a lower bound in the (unweighted) H-In�nity model reduction
problem. In addition, there is some evidence, both formal and experimental,
that, for \reasonable" systems, the H-In�nity model matching error delivered
by the Hankel optimal reduced model is not much larger than the optimal
Hankel model reduction error.

The positive statements concerning Hankel model reduction and its rela-
tion to H-In�nity model reduction do not cover the case of weighted Hankel
norms

k�k = kDkhjW = min
Æ
kW (� + �Æ)k1:
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The theory also does not extend to the case of G being de�ned by a �-
nite number of frequency samples. The main point of this paper is that
an alternative class of system norms k � k, called weighted maximal real part
norms, yields most of the good properties known of the Hankel model re-
duction, while providing the extra bene�ts of using sampled data and fre-
qency weighted modeling error measures. For the weighted maximal real
part model reduction, the paper provides a polynomial time optimization al-
gorithm, and states a number of results concerning its relation to H-In�nity
and Hankel model reduction. Outcomes of some numerical experiments are
also presented.

2 Maximal Real Part Model Reduction

For convenience, model reduction of discrete-time systems will be considered.
Thus, a stable transfer function will be de�ned as a continuous function
f : T! C for which the Fourier coeÆcients

f̂ [n] =

Z �

��

f(ejt)e�jntdt

are all real and satisfy the condition

f̂ [n] = 0 8 n > 0:

Here C is the set of all complex numbers, and

T = fz 2 C : jzj = 1g

is the unit circle centered at z = 0. The set of all stable transfer functions
will be denoted by A. The set of all rational stable transfer functions of
order less than k will be denoted by Ak.

2.1 The Unsampled Setup

The unsampled version of the maximal real part model reduction problem is
de�ned as the task of �nding Ĝ 2 Ak which minimizes kG0 � ĜkrjW , where
W = jHj2,

k�krjW = kWRe(�)k1;
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G0; H 2 A are given rational transfer functions, and

kfk1 = max
z2T

jf(z)j

for every continuous function f : T! C.
It is easy to see that

0:5k�khjW � k�krjW � kW�k1 8 � 2 A;

where the �rst inequality takes place because of

kDkhjW = min
Æ
kW (� + �Æ)k1 � kW (� + ��)k1 = 2k�krjW :

Therefore k�krjW is a norm which relaxes the corresponding weighted H-
In�nity norm and is stronger than the associated weighted Hankel norm.

It will be shown later in this section that the unsampled maximal real part
optimal model reduction problem can be reduced to a semide�nite program
of the size which grows linearly with k and the orders of G0 and H. This
extends signi�cantly the set of model reduction setttings for which a solution
can be found eÆciently.

2.2 The Sampled Setup

Applications of model reduction often deal with the situation in which the
order of G0 (hundreds of thousands) is so large that it becomes not practical
to handle the exact state-space or transfer funcion representations of G0. In
such cases it may be useful to work with sampled frequency domain values
of G.

The sampled version of the maximal real part model reduction problem
is de�ned as the task of �nding Ĝ 2 Ak which minimizes kG0� ĜksjV , where
V = f(Wi; ti)g

N
i=1 is a given sequence of pairs of real numbers ti 2 [0; �],

Wi > 0,
k�ksjV = max

1�i�N
WijRe(�(e

jti))j;

and G0 is a stable transfer function which is given (incompletely) by its
samples G0;i = G(ejti).

Note that kG0� ĜksjV is completely determined by Ĝ, V = f(Wi; ti)g
N
i=1,

and the samples G0;i = G(ejti). Practical use of the sampled setup usually
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relies on an assumption that G(ejt) does not vary too much between the
sample points ti.

It is possible to propose various modi�cations of the sampled modeling
error measure k � ksjW . For example, assuming that 0 = t0 � t1 � t2 � � � � �
tN � tN+1, one can use the mixed cost

J(G0; Ĝ) = max
1�i�N

Wi max
t2[ti�1;ti+1]

jG(ejti)� Ĝ(ejt)j:

The main point, however, is the possibility to reduce the model reduction
setup to an equivalent semide�nite program, to be shown in the next subsec-
tion.

2.3 The Convex Parameterization

By a trigonometric polynomial f of degree m = deg(f) we mean a function
f : T! R of the form

g(ejt) =
mX
k=0

gk cos(kt);

where gk 2 R and gm 6= 0.
The following simple observation is a key to the convexi�cation of maxi-

mal real part optimal model reduction problems.

Lemma 1 For every f 2 Am there exist trigonometric polynomials a; b such
that

deg(a) < m; deg(b) < m; a(z) > 0 8 z 2 T; (5)

and

Re(f(z)) =
b(z)

a(z)
8 z 2 T: (6)

Conversely, for every pair (a; b) of trigonometric polynomials satisfying (5)
there exists f 2 Am such that (6) holds.

Proof. If f 2 Am then

f(z) =
p(z)

q(z)
8 z 2 T;
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where p; q are polynomials of degree less than m, with real coeÆcients, and
q(z) 6= 0 for jzj � 1. Hence (6) holds for a; b de�ned by

a(z) = q(z)q(1=z); b(z) =
1

2
(q(z)p(1=z) + q(1=z)p(z)) (z 6= 0); (7)

or, equivalently, by

a(z) = jq(z)j2; b(z) = Re(p(z)q(�z)) (jzj = 1):

It is easy to see that a; b de�ned by (7) are trigonometric polinomials satis-
fying (5).

Conversely, let a; b be trigonometric polinomials satisfying (5). Let r =
deg(a). Then h(z) = zra(z) is an ordinary polynomial of degree 2r. Since
a(z) > 0 for all z 2 T, h(z) has no zeros in T[ f0g. Since a(z) = a(1=z), all
zeros of h(z) can be arranged in pairs (zi; 1=zi), where jzij < 1, i = 1; : : : ; r,
i.e. h(z) = q0z

rqr(z)qr(1=z) where q0 is a constant, and

qr(z) = (z � z1)(z � z2) � � � � � (z � zr)

is a polynomial with no zeros in the region jzj � 1. Moreover, since h has
real coeÆcients, the non-real zeros of h come in conjugated pairs, and hence
qr has real coeÆcients as well, and q0 2 R. Equivalently, we have

a(z) = q0jqr(z)j
2 8 z 2 T:

Since a(z) > 0 for all z 2 T, we have q0 > 0. Let

q(z) = q
1=2
0 zm�r�1qr(z):

Then q is a polinomial of degree m � 1 with no zeros in the region jzj � 1,
and jq(z)j2 = a(z) for all z 2 T.

It is left to show that a polynomial p(z) of degree less than m with real
coeÆcients can be found such that

2b(z) = p(z)q(1=z) + p(1=z)q(z):

Indeed, the set V of all real polynomials p of degree less than m forms an
m-dimensional real vector space. The map

Mq : p(z) 7! p(z)q(1=z) + p(1=z)q(z)
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is a linear transformation from V into the m-dimensional real vector space
of trigonometric polinomials of degree less than m. Moreover, kerMq = f0g,
since

p(z)q(1=z) = �p(1=z)q(z)

would imply that p and q have same set of zeros (here we use the fact that
all zeros of q are in the open unit disc jzj < 1), hence p(z) = cq(z) and c = 0,
i.e. p = 0. Therefore Mq is a bijection.

Using Lemma 1 it is easy to convexify the maximal real part optimal
model reduction problems. In particular, the unsampled version originally
has the form

y ! min subject to jH(z)j2j(Re)(G0(z)� Ĝ(z))j � y 8 z 2 T; Ĝ 2 Am:

Replacing Re(Ĝ(z)) by b(z)=a(z) where a; b are the trigonometric polynomi-
als from Lemma 1, we obtain an equivalent formulation

y! min subject to jH(z)j2ja(z)Re(G0(z))� b(z)j � ya(z) 8 z 2 T;

where the decision parameters a; b are constrained by (5). Since, for a given
y, the constraints imposed on a; b are convex, the optimization problem is
quasi-convex, and can be solved by combining a binary search over y with a
convex feasibility optimization over a; b for a �xed y. For practical implemen-
tation, using an interior point cutting plane algorithmwith a feasibility oracle
utilizing the Kalman-Yakubovich-Popov lemma is advisable here. Another
option would be to use the Kalman-Yakubovich-Popov lemma to transform
the frequency domain inequalities

a(z) > 0; �jH(z)j2(a(z)Re(G0(z))� b(z)) � ya(z) 8 z 2 T;

(which de�nes an infnite set of inequalities which are linear with respect to
the coeÆcients of a; b but in�nitely parameterized by z 2 T) into a set of
three matrix inequalities, linear with respect to the coeÆcients of a; b, and
three auxiliary symmetric matrix variables P0; P+; P�. If n denotes the sum
of m and the orders of H and G0, the matrix inequalities will have sizes
m + 1,n + 1 and n + 1 respectively, and the sizes of P0; P� will be m-by-
m and n-by-n. Therefore, the model reduction problem will be reduced to
semide�nite programming.

Similarly, the sampled version of the maximal real part optimal model
reduction problem can be reduced to the convex optimization problem

y ! min subject to Wija(e
jti)Re(G0;i)� b(ejti)j � y (1 � i � N);
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where the decision parameters a; b are constrained by (5).
Note that the complexity of this quasi-convex optimization grows slowly

with N , which can be very large. The complexity grows faster with m, but
this does not appear to be a signi�cant problem, since m, the desired reduced
order, is small in most applications.

3 H-In�nity Modeling Error Bounds

In this section, H-In�nity approximation quality of maximal real part optimal
reduced models is examined. For a given stable transfer function G 2 A let

d�m(G) = min
Ĝ2Am

kG� Ĝk�;

Ĝ�
m = arg min

Ĝ2Am

kG� Ĝk�;

denote the minimum and the argument of minimum in the corresponding
optimal model reduction problems, where � 2 f1; h; rg indicates one of the
unweighted norms: H-In�nity, Hankel, or maximal real part. In the case
when the optimal reduced model is not unique, the model delivered by a
particular optimization algorithm can be considered. Let

~G�
m = Ĝ�

m + argmin
c2R

kG� Ĝ�
m � ck1:

In other words, let ~G�
m be the result of an adjustment of Ĝ�

m by an additive
constant factor (which obviously does not change the order) to further op-
timize the H-In�nity model reduction error. Practically, the modi�ed ~G�

m is
easy to calculate. Obviously, Ĝ1m = ~G1m .

Since
k�k1 � k�kh; k�k1 � k�kr

for all � 2 A, the quantities dhm(G) and drm(G) are lower bounds of d
1
m (G).

One can argue that a maximal real part modi�ed optimal reduced model
~Gr
m (or, alternatively, a Hankel optimal modi�ed reduced model ~Gh

m) is an
acceptable surrogate of Ĝ1m when kG � ~Gr

mk1 is not much larger than drm
(respectively, when kG� ~Gh

mk1 is not much larger than dhm). For the Hankel
optimal reduced models, a theoretical evidence that this will frequently be
the case is provided by the inequality

kG� ~Gh
mk1 �

X
k�m

dhm(G): (8)
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Since for a \nice" smooth transfer function G the numbers dhm(G) converge
to zero quickly, (8) gives some assurance of good asymptotic behavior of
H-In�nity modeling errors for Hankel optimal reduced models.

Since 2k�kr � k�kh for all � 2 A, one can argue that the maximal
real part norm is \closer" to the H-In�nity norm than the Hankel norm.
However, the author was not able to prove a formal statement con�rming the
conjectured asymptotic superiority of maximal real part reduced models over
the Hankel reduced models. Instead, a theorem demonstrating asymptotic
behavior roughly comparable to that of the Hankel reduced models is given
below.

Theorem 1 For all G 2 A and m > 0

kG� ~Gr
mk1 � 12

1X
k=0

2kmdr2km(G): (9)

Proof. From (8), for every f 2 An

kf � ~fh0 k1 �
1X
k=0

dhk(f) � ndh0(f) = nkfkh � 2nkfkr:

Note that ~fh0 is a constant transfer function. We have

kĜr
n � Ĝr

2nkr � kĜr
n �Gk+ kĜr

2n �Gkr � 2drn(G):

Hence
kĜr

n � Ĝr
2n � cnk1 � 12ndrn(G)

for an appropriately chosen real constant cn. Hence

kĜr
m �G� ck1 � 12

1X
k=0

2kmdr2km(G)

for an appropriately chosen constant c, which in turn implies (9).

It may appear that (8) is a much better bound than (9), since dm(G) is
not being multiplied by m in (8). However, the calculations for dm � 1=mq

as m ! 1, where q > 1, result in the same rate of asymtotic convergence
for the two upper bounds:

1X
k=m

1

kq
�

c1
mq�1

;

9



1X
k=m

2km
1

(2km)q
�

c2
mq�1

:

4 Minor Improvements and

Numerical Experiments

There is a number of ways in which the H-In�nity quality of the maximal
real part optimal reduced models can be improved. One simple trick is to re-
optimize the numerator p of Ĝr

m = p=q with the optimal q being �xed (this is
partially used in Hankel model reduction when Ĝh

m is being replaced by ~Gh
m).

A further improvement of the lower bound drm(G) can be achieved when, in a
weighted H-In�nity model reduction setup kW (G� Ĝm)k1 ! min Ĝm will
be replaced by

Ĝe
m =

b(z) + (z � �z)c(z)

a(z)
;

where a; b are constrained by (5), and c is an arbitrary trigonometric poly-
nomial of degree less than m � 1. Then optimization with respect to a; b; c
is convex, and the optimal a can be used to get the denominator q of the
reduced model, after which the numerator p is to be found via a separate
optimization round. Note that, since

jG(z)� Ĝe
m(z)j � jRe(G(z))� b(z)=a(z)j;

where the equality is achieved for c � 0, the original maximal real part model
reduction is a special case of the general scheme.

With these improvements implemented, the maximal real part model re-
duction performs reasonably well, as demonstrated by the following examples.
The software used to produce the data (requires MATLAB and CPLEX) can
be obtained by sending a request to ameg@mit.edu.

4.1 Functions With Delay

Here G is the in�nite dimensional transfer function

G =
1

(1� :9e�s)(1 + :3s)
:
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Figure 1: functions with delay

For a 10th order approximation, a lower bound dr10(G) � 0:35 was found.
The resulting reduced 10th order model ~Gr

10 satis�es

kG� Ĝr
10k1 < 1:4:

4.2 Focus Servo of a DVD Player

59 frequency samples obtained as an experimental data were provided. For
a 10th order �t, the lower bound of about 1:6 was obtained. The actual
H-In�nity error on the sampled data was approximately 6:2.

4.3 Fluid Dynamics Control

A jet engine outlet pressure is to be controlled by regulating a discharge valve
in midstream. The complete dynamical model of the actuator dynamics is
given by partial di�erential equations. Computational uid dynamics simu-
lations provided a 101 sample of the transfer function. A 5th order reduced
model was sought for the system. The lower bound of achievable H-In�nity
quality is 0.0069. A reduced model of quality 0.009 was found.
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Figure 2: DVD focus servo
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Figure 3: uid dynamics control
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