
Relaxations of Quadratic Programs
in Operator Theory and System Analysis

Alexandre Megretski

Abstract. The paper describes a class of mathematical problems at an inter-
section of operator theory and combinatorics, and discusses their application
in complex system analysis. The main object of study is duality gap bounds in
quadratic programming which deals with problems of maximizing quadratic
functionals subject to quadratic constraints. Such optimization is known to be
universal, in the sense that many computationally hard questions can be re-
duced to quadratic programming. On the other hand, it is conjectured that an
efficient algorithm of solving general non-convex quadratic programs exactly
does not exist.

A specific technique of ”relaxation”, which essentially replaces deter-
ministic decision parameters by random variables, is known experimentally
to yield high quality approximate solutions in some non-convex quadratic
programs arising in engineering applications. However, proving good error
bounds for a particular relaxation scheme is usually a challenging mathemati-
cal problem. In this paper relaxation techniques of dynamical system analysis
will be described. It will be shown how operator theoretic methods can be
used to give error bounds for these techniques or to provide counterexamples.
On the other hand, it will be demonstrated that some difficult problems of
operator theory have equivalent formulations in terms of relaxation bounds
in quadratic programming, and can be approached using the insights from
combinatorics and system theory.

1. Introduction

It is always intriguing to discover that interest in a specific class of difficult mathe-
matical problems is shared by seemingly distant fields of pure and applied research.
Usually there is also some hope that exchanging the ideas and open questions be-
tween the fields will eventually lead to new results. This paper is written exactly
with this idea in mind. It contains few new theorems, and is instead concentrated
on showing similarity between different problems.

The main object of study in this paper is duality gap bounds in quadratic
programming. Quadratic programming, which appears naturally in numerous ap-
plications, deals with problems of maximizing quadratic functionals subject to qua-
dratic constraints. Such optimization is known to be universal (even very special



2 Alexandre Megretski

settings lead to NP complete problems, [4]), which guarantees that many compu-
tationally hard questions can be reduced to quadratic programming. On the other
hand, it is conjectured that an efficient algorithm of solving general non-convex
quadratic programs exactly does not exist (P6=NP).

A specific technique of ”relaxation”, which essentially replaces deterministic
decision parameters by random variables, is known experimentally to yield high
quality approximate solutions in some non-convex quadratic programs arising in
engineering applications. The error induced by such relaxation can be interpreted
as duality gap in non-convex optimization. Proving good duality gap bounds for
a particular relaxation scheme (equivalent quadratic programs may lead to non-
equivalent relaxations) is usually a challenging mathematical problem. An im-
portant point to be made by this paper is that some well known problems from
operator theory can be formulated exactly as problems of proving some particular
relaxation error bounds.

As an application motivation, this paper describes relaxation techniques of
dynamical system analysis and design. It will be shown how the search for a
Lyapunov function, or for another type of stability certificate, leads naturally to
non-convex quadratic programming. In fact, a number of modern techniques in
system theory are primarily relaxation methods. Ideas from operator theory can
be used to give error bounds for these techniques or to provide counterexamples.

The paper is organized as follows. First, a general description of quadratic
programs and relaxation techniques is given, and some well known duality gap
estimation problems are formulated. Next, a more detailed account of the use of
quadratic programming and relaxations in system analysis is presented. Finally,
some proofs and counterexamples are given for special duality gap bounds.

Notation and Terminology

In this paper matrices with real entries are used to describe finite dimensional
vectors and their linear transformations. Rn denotes the set of single-column real
matrices of length n. Sn denotes the set of symmetric n-by-n matrices with real
entries. The prime ′ means transposition or Hermitian conjugation (for complex
matrices), so that σ(x) = x′Qx defines a real-valued quadratic form on Rn = {x}
for any Q ∈ Sn. For Q ∈ Sn, Q ≥ 0 means that x′Qx ≥ 0 for all x ∈ Rn. A
quadratic functional on Rn is any function σ : Rn → R defined by

σ(x) =
[
x
1

]′
Σ
[
x
1

]
,

where Σ ∈ Sn+1 is a constant matrix. A quadratic Sm-valued functional on Rn is
any function α : Rn → Sm such that σv(x) = v′α(x)v is a quadratic functional
on Rn for any fixed v ∈ Rm.

Vector-valued random variables will be used in this paper. Eη denotes the
expected value of an integrable vector random variable η.
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2. The Duality Gap Bound Problem

In this section, a general description of quadratic programs and relaxation tech-
niques is given, and some well known duality gap estimation problems are formu-
lated.

2.1. Relaxation and Duality Gap

This subsection gives specific definitions of quadratic programs, relaxed quadratic
programs, and duality gaps in quadratic programming.

2.1.1. Quadratic Programs. Let α, β be two symmetric Sm-valued quadratic
functions on Rn such that α(x) ≥ 0 and α(x) 6= 0 for all x. Any such pair (α, β)
defines a quadratic program – the problem of finding the supremum of the func-
tional

J(x) = sup{λ : β(x)− λα(x) ≥ 0} → sup . (1)

The variable x with respect to which the optimization is performed is called deci-
sion variable. The supremum of J is denoted by J∗.

Example 2.1. The problem of finding the maximum of x1x2 + x2x3 − x1x3 where
the real variables x1, x2, x3 range over the interval [−1, 1] can be viewed as a special
case of quadratic program (1) with n = 3, m = 4,

α =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , β =


x1x2 + x2x3 − x1x3 0 0 0

0 1− x2
1 0 0

0 0 1− x2
2 0

0 0 0 1− x2
3

 .
In this case the supremum J∗ of J(x) equals 1.

2.1.2. Quadratic Optimization on a Hypercube. Let u1, u2, . . . , un be given
vectors in a real Hilbert space. How large and how small can be the length of the
sum

u = x1u1 + x2u2 + · · ·+ xnun, xk = ±1

when the “sign” coefficients xk ∈ {−1, 1} can be selected arbitrarily? Note that
already the special case of this problem when uk are finite dimensional vectors
with integer coefficients, is known to be NP-complete.

Both questions (maximization and minimization) can be reduced to the same
problem of finding maximum of a quadratic form over the set of vertices of a
hypercube:

σ(x) = x′Qx→ max, subject to x ∈ {−1, 1}n, (2)

where Q ∈ Sn is a given symmetric matrix. Here Qij = 〈ui, uj〉 when the length
of u is maximized, and Qij = −〈ui, uj〉 when the length of u is minimized.

This problem is frequently referred to as the MAX-CUT problem, because of
the following interpretation. Let the indexes from 1 to n correspond to nodes on a
graph. Let −2Qij be the “value of the benefit” of “cutting off” the edge connecting
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nodes i and j. Any decision vector x ∈ {−1, 1}n defines a partition of the graph’s
nodes into two sets N+ and N−, the i-th node being in N+ if and only if xi = 1.
If any edge connecting a node from N+ and a node from N− must be “cut off”,
maximizing x′Qx maximizes the total benefit of dividing the graph’s nodes into
two groups and cutting the edges between the groups.

Let Q̄ denote the matrix obtained from Q by replacing all its diagonal terms
with zeros. Then

x′Qx = x′Q̄x+ tr[Q] ∀ x ∈ {−1, 1}n.

Therefore, the maximums of x′Qx and x′Q̄x on {−1, 1}n are achieved on the same
vectors x, and their difference is a known constant.

It is frequently more convenient to consider the equivalent problem of max-
imizing x′Q̄x rather than that of optimizing x′Qx, due to the following simple
observation.

Lemma 2.2. Any argument of maximum of x′Q̄x over the set {−1, 1}n of vertices
of the hypercube [−1, 1]n is also an argument of maximum in the optimization
problem

σ(x) = x′Q̄x→ max, subject to x ∈ [−1, 1]n, (3)

i.e. that of maximizing x′Q̄x over the whole hypercube [−1, 1]n. In particular, the
maximum of x′Q̄x over {−1, 1}n is always non-negative.

Proof. Since the diagonal elements of Q̄ are zero, x′Q̄x is linear with respect to any
single component xi of x. Hence maximum of x′Q̄x over [−1, 1]n can be achieved
with all xi ∈ {−1, 1}. �

Just as in Example 2.1, problem (3) can be shown to be equivalent to a
quadratic program (1) with

α(x) =


1 0 0 0
0 0 0 0

0 0
. . . 0

0 0 0 0

 , β(x) =


x′Q̄x 0 0 0

0 1− x2
1 0 0

0 0
. . . 0

0 0 0 1− x2
n

 .

2.1.3. Semidefinite Programming. In the special case when α(x), β(x) are
affine functions of x problem (1) is called a semidefinite program. Semidefinite
programs are much easier to solve than general quadratic programs. An informal
explanation is that in this case the function J is quasi-convex, i.e. its level sets
are convex. In general, one would expect convex optimization problems to have
relatively simple solutions. At least, this turns out to be the case for semidefinite
programs, which admit polynomial time solution algorithms [7, 1].
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2.1.4. Relaxation. Due to their universality (NP completeness means that vir-
tually any optimization problem can be re-written as an equivalent quadratic pro-
gram) it is very unlikely that a “smart” way of solving finite dimensional quadratic
programs both accurately and efficiently can ever be found. For most quadratic
programs, efficient solution algorithms are not available. However, there exists a
simple way of finding efficiently an upper bound of J = J(x). This method is
based on replacing vector x by a random variable w with a finite second moment,
i.e. such that E|w|2 < ∞, and also replacing quadratic matrix-valued functionals
α(x), β(x) by their expected values:

Ĵ(w) = sup{λ : Eβ(w)− λEα(w) ≥ 0} → sup . (4)

Since w can be a random variable which takes a single value w = x with probability
1, where x ∈ Rn can be chosen arbitrarily, the supremum Ĵ∗ of Ĵ cannot be smaller
than the supremum J∗ of J .

For an arbitrary square integrable random n-vector w let its covariance and
mean value matrix W be defined by

W = E

[
w
1

] [
w
1

]′
.

Note that any W ∈ Sn+1 is a covariance and mean value matrix of some random
n-vector w if and only if the conditions

W ≥ 0, Wn+1,n+1 = 1 (5)

are satisfied. The expected value of a quadratic functional of w is a linear function
of W , according to

E

[
w
1

]′
Σ
[
w
1

]
= tr[ΣW ].

Hence the matrices Eα(w),Eβ(w) depends linearly on W , and the relaxed qua-
dratic program (4) is a semidefinite program with respect to W .

Example 2.3.

x1x2 + x2x3 − x1x3 → sup, subject to x2
k ≤ 1

will be “relaxed” to

W12 +W23 −W13 → sup, subject to Wkk ≤ 1, W ≥ 0,

where W = (Wij)4
i,j=1 is a symmetric matrix such that W44 = 1. In fact, the

last column and the last row of W do not have any effect on the relaxed problem
formulation, and hence W can be assumed to range over S3. The supremum in the
relaxed problem equals 3/2.
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2.1.5. Non-Uniqueness of Relaxations. An important observation is that
equivalent quadratic programs frequently define non-equivalent relaxations. As a
rule, equivalent quadratic programs are obtained by adding redundant constraints
to a quadratic program.

Example 2.4. Let Q ∈ Sn be a symmetric matrix. Consider the problem of max-
imizing J(x) = x′Qx over the unit cube {x} = [−1, 1]n. One way to pose this
problem as a quadratic program, as shown before, is by using diagonal α(x), β(x) ∈
Sn+1, where α11 = 1, αii = 0 for i > 1, β11(x) = x′Qx, and βii(x) = 1− x2

i−1 for
i > 1. The standard relaxation of this setup is equivalent to maximizing tr[QW ]
over those W ∈ Sn for which W ≥ 0 and Wii ≤ 1.

On the other hand, simple inspection shows that xixj +xjxk−xixk ∈ [−1, 1]
for all xi, xj , xk ∈ [−1, 1]. Let us define ᾱ(x), β̄(x) as diagonal matrices from SN ,
where N = n+ 1 + n(n− 1)(n− 2)/2, such that the first n+ 1 diagonal elements
of ᾱ(x), β̄(x) are same as those of α, β(x), and the remaining n(n − 1)(n − 2)/2
diagonal elements equal zero for ᾱ, and equal 1 − xixj − xjxk + xixk for β̄(x),
where (i, j, k) ranges over the set of all ordered triples with i > j and k 6∈ {i, j} (a
total of n(n− 1)(n− 2)/2 triples).

By construction, the quadratic program defined by ᾱ(x) and β̄(x) is equivalent
to the quadratic program defined by α(x) and β(x). However, it is easy to see that
the standard relaxation of the latter is equivalent to maximizing tr[QW ] over those
W ∈ Sn for which W ≥ 0, Wii ≤ 1, and Wij + Wjk −Wik ≤ 1. As it is shown
by Example 2.3, the maximum in the new relaxation can be strictly less than the
maximum in the original relaxation.

Given a quadratic program, usually there are numerous ways to improve
the quality of relaxation-based optimization by formulating equivalent quadratic
programs with redundant constraints. As a rule, such improvement comes at a
cost of solving larger semidefinite programs.

2.1.6. The Duality Gap. Another approach to finding an upper bound for the
supremum in (1) is based on introducing Lagrange multipliers and solving the
corresponding dual problem defined as

J̄(Z) = inf{λ̄ : tr[Z(λ̄α(x)− β(x))] > 0 ∀ x ∈ Rn} → inf
Z∈Sm,Z≥0

. (6)

Lemma 2.5. Assume there exists a bounded optimizing sequence in problem (1),
i.e. xi ∈ Rn, sup |xi| ≤ r <∞, and J(xi)→ J∗ = inf J . Then the infimum in (6)
equals the supremum in (4).

Proof. Let Z ∈ Sm, Z ≥ 0 and λ̄ ∈ R be such that tr[Z(λ̄α(x)−β(x))] > 0 for all
x. Then for any random vector w and λ ∈ R such that Eβ(w) ≥ λEα(w) it follows

λEtr[Zα(w)] ≤ Etr[Zβ(w)] < λ̄Etr[Zα(w)].

Since Etr[Zα(w)] ≥ 0, this implies Etr[Zα(w)] > 0 and hence λ < λ̄. Therefore
the infimum in (6) is not smaller than the supremum in (4). To prove the opposite
inequality, assume that the inequality Eβ(w) ≥ λ∗Eα(w) is impossible for some
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λ∗ ∈ R. Note that the set B of all expected values b = E(β(w)− λ∗α(w)), where
w is a square integrable random vector and E|w|2 ≤ r2, is convex and compact.
Hence there exists a hyperplane in Sm which separates B from the convex cone
of all positive semidefinite matrices. In other words, there exists Z ∈ Sm, Z ≥ 0,
Z 6= 0 such that tr[Zb] < 0 for any b ∈ B. Hence tr[Z(β(x)− λ∗α(x))] < 0 for any
x ∈ Rn, |x| ≤ r, i.e. J̄(Z) ≥ λ∗. Hence the infimum in (6) is not larger than the
supremum in (4). �

As a consequence of Lemma 2.5, the difference between the maxima in relaxed
and non-relaxed versions of the same quadratic program can be interpreted as a
duality gap in the original non-convex optimization problem.

2.1.7. The Duality Gap Estimation Problem. While the use of quadratic
programs and their relaxations is a critical issue in many applications, a large
class of difficult mathematical questions is associated with finding general a-priory
bounds for the relaxation gap. This paper is devoted to the problem, called the
duality gap estimation problem: find good upper bounds of the relaxation gap in
special classes of quadratic programs.

Let J∗ and Ĵ∗ be the maxima in a quadratic program and its semidefinite
program relaxation respectively. In a typical application, J∗ is unknown, while
Ĵ∗ is known and serves as an upper bound of J∗. An estimate of the duality gap
usually has the form of an inequality

J∗ ≥ ρ(Ĵ∗, α, β),

where ρ(·) is an easily computable function of its arguments (of course, J∗ itself is
a function of α, β, but it is presumed that J∗ is difficult to compute).

When J∗ is known to be non-negative, the duality gap bound frequently has
the form

J∗ ≥ ρ−1Ĵ∗

where ρ is a constant which is the same for a class of quadratic programs. By
the definition, ρ is a measure of success of the relaxation technique, applied to a
particular quadratic program. When ρ equals 1, the quadratic program is essen-
tially equivalent to its relaxed form. When ρ� 1, the relaxation technique is not
accurate.

Let N = n + m denote the “size” of quadratic program (1). An informal
evaluation of the difficulty of obtaining duality gap bounds ρ = ρ(N) is as follows:

• “No gap”. The case of no gap bound (ρ(N) = 1) is very rare, but usually
not difficult to prove, if true.
• “Bounded gap”. The cases when ρ(N) < c where c does not depend on n

are rare. The corresponding duality gap estimates are usually difficult to
prove.
• “Logarithmic gap”. The case when a logarithmic growth bound, such as
ρ(N) < c log(N), is available, is of interest when unboundedness of ρ(N)
can be proven.
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• “Power gap”. As a rule, a power law growth bound ρ(N) < c ·Nr, r > 0
can be established easily for many quadratic programs.

2.2. Polynomially Bounded Operators

A linear operator A : H → H on a Hilbert space H is called polynomially bounded
if there exists a constant M such that

‖p(A)‖ ≤M‖p‖∞

for any scalar polynomial p, where

‖p‖∞ = max{|p(z)| : |z| ≤ 1}

is the so-called infinity norm. If A is similar to a contraction, i.e. can be represented
in the form A = STS−1 where ‖T‖ ≤ 1 and ‖S‖, ‖S−1‖ <∞, then, due to a von
Neumann theorem, A is polynomially bounded withM ≤ ‖S‖·‖S−1‖. The problem
posed by P. Halmos in [3] and finally solved by G. Pisier in [9] asks whether any
polynomially bounded operator A is similar to a contraction.

The intention of this subsection is to show that a finite dimensional version
of the problem is equivalent to verifying boundedness of a relaxation gap in a
particular class of quadratic programs.

2.2.1. Finite Dimensional Formulation. Let A be an n-by-n matrix. A is
called marginally stable if the norms of Ak, k > 0, are bounded. While it appears
that any alternative definition of marginal stability for finite dimensional matrices
will lead to the same condition, there is a number of definitions of numerical degree
of stability which are far from being equivalent when n→∞.

The following measures of marginal stability will be studied in this subsection:

γpb(A) = sup{‖p(A)‖ : p ∈ P, ‖p‖∞ ≤ 1},

where P is the set of scalar polynomials,

γcb(A) = sup{‖p(A)‖ : p ∈ P∗, ‖p‖∞ ≤ 1},

where P∗ is the set of matrix polynomials,

γsc(A) = inf{‖S−1‖ : ‖SAS−1‖ ≤ 1, ‖S‖ ≤ 1}.

It is easy to show that all three quantities γpb(A), γcb(A) and γsc(A) are finite for
all marginally stable n-by-n matrices A.

Let the function φ = φ(M,n) be defined for M ≥ 1 and n = 1, 2, . . . by

φ(M,n) = sup{γsc(A) : γpb(A) ≤M}, (7)

where the supremum is taken over all n-by-n marginally stable matrices A.
The finite dimensional version of the Halmos problem studied here asks

whether φ(M,n) is bounded as n→∞ for any fixed M > 1.
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2.2.2. Schur Matrices and Lyapunov Equations. Note that it is sufficient to
consider the case when A in (7) is a strictly stable (Shur) matrix, i.e. all eigenvalues
lie strictly within the unit disc. Indeed, if A is marginally stable but not strictly
stable then for any r ∈ (0, 1) the matrix Ar = rA is strictly stable and polynomially
bounded. Hence ‖SrArS−1

r ‖ ≤ 1 for some matrices Sr such that ‖Sr‖ = 1, ‖S−1
r ‖ ≤

φ(M,n). As r → 1, Sr will converge to a matrix S such that ‖SAS−1‖ ≤ 1,
‖S‖ ≤ 1, and ‖S−1‖ ≤ φ(M,n).

Given an n-by-n Schur matrix A, for any X ∈ Sn there exists the unique
solution Q = LA(X) of the Lyapunov equation

Q−AQA′ = X.

An alternative way to define Q is by

LA(X) =
∞∑
k=0

AkX(A′)k.

In particular, Q ≥ 0 whenever X ≥ 0. The opposite is not true: there exist matrices
X which are not positive semidefinite such that LA(X) ≥ 0 for some Schur matrices
A.

2.2.3. Polynomial Boundedness and Lyapunov Equations. The following
statement relates positive semidefiniteness of solutions of Lyapunov equations to
polynomial boundedness and complete boundedness.

Lemma 2.6. Let A be a strictly stable n-by-n matrix, w1, . . . , wk, v1, . . . vm ∈ Rn.
Let v̄ ∈ Rmn be the column vector obtained by stacking vi’s one over the other. Let
w̄ ∈ Rkn be constructed similarly from wi’s:

v̄ =

 v1

...
vm

 , w̄ =

 w1

...
wk

 .
A sequence {pi} of polynomial k-by-m matrices pi ∈ P∗ such that ‖pi‖∞ ≤ 1 and
pi(A)v̄ → w̄ as i → ∞ exists if and only if Q ≥ 0 where Q is the solution of the
Lyapunov equation

Q−AQA′ = V −W, (8)

with

V =
m∑
i=1

viv
′
i, W =

k∑
i=1

wiw
′
i. (9)

Proof. Let l2+(Rr) denote the standard Hilbert space of one-sided sequences (xi)∞i=0

of vectors xi ∈ Rr. Let τ denote the backward shift operator on l2+(Rr). Let Hv
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be the (finite dimensional) τ -invariant linear subspace of l2+(Rm):

Hv =

xv = xv(z) = (xi) : xi =

 v′1(A′)iz
...

v′m(A′)iz

 , z ∈ Rn

 .

Consider the map Lw : Hv → l2+(Rk) defined by Lwxv(z) = xw(z) where xw(z)
is defined similarly to xv using vectors wj .

If w̄ = p(A)v̄ where p ∈ P∗ and ‖p‖∞ ≤ 1 then Lw = p(τ)|Hv is correctly
defined and contractive. Hence

‖xv(z)‖2 ≥ ‖xw(z)‖2 ∀ z ∈ Rn. (10)

Since by construction

‖xv(z)‖2 − ‖xw(z)‖2 = z′Qz,

the inequality Q ≥ 0 follows.
If Q ≥ 0 then (10) holds, and hence Lw is a correctly defined contraction

which commutes with τ . Hence Lw can be extended to the whole l2+(Rm) preserving
contractiveness and commutativity. The extension L̄w will have the form x →
h(τ)x where h is a rational matrix function with ‖h‖∞ ≤ 1. Now pi can be defined
as converging polynomial approximations of h. �

Lemma 2.6 allows one to express polynomial boundedness and complete
boundedness in terms of solutions of Lyapunov equations. According to Lemma 2.6
with k = m = 1, the number γpb(A) is the maximum in the quadratic program

γpb(A) = sup{|w|2 : LA(vv′ − ww′) ≥ 0, |v|2 ≤ 1}. (11)

Using Lemma 2.6 with arbitrary k,m shows that γcb(A) is the maximum in the
standard relaxation of (11) obtained by replacing the rank one matrices vv′ and
ww′ with arbitrary positive semidefinite matrices V,W :

γcb(A) = sup{tr[W ] : V ≥ 0, W ≥ 0, LA(V −W ) ≥ 0, tr[V ] ≤ 1}. (12)

2.2.4. Similarity to a Contraction and Lyapunov Equations. The fol-
lowing statement relates positive semidefiniteness of solutions of Lyapunov equa-
tions to similarity to a contraction.

Lemma 2.7. Let A be a stable n-by-n matrix, r > 0. A matrix S such that

‖SAS−1‖ ≤ 1, ‖S−1‖ ≤ 1, ‖S‖ < r

does not exist if and only if there exist matrices V,W ∈ Sn such that

V ≥ 0, W ≥ 0, tr[V ] = 1, tr[W ] ≥ r2, LA(V −W ) ≥ 0. (13)

Proof. In terms of R = S′S the conditions imposed on S have the form

R−A′RA ≥ 0, R− I ≥ 0, (r2 − ε)I −R ≥ 0, (14)
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where ε > 0 is sufficiently small. If V,W satisfy (13) and Q = LA(V −W ) ≥ 0
then

0 ≤ tr[Q(R−A′RA) + V ((r2 − ε)I −R) +W (R− I)]
= tr[(Q−AQA′ − V +W )R+ r2V − εV −W ]
≤ 0 + r2 − ε− r2 = −ε,

which proves that (13) and (14) cannot hold simultaneously. On the other hand,
if conditions (14) cannot be satisfied then a separation argument similar to the
one used in the proof of Lemma 2.5 proves existence of V,W satisfying conditions
(13). �

Lemma 2.7 together with Lemma 2.6 prove that γcb(A) = γsc(A). Perhaps
more importantly, it is now shown that γsc(A) equals maximum in the standard
relaxation of the non-convex quadratic program (11) in which γpb(A) is the max-
imum. Therefore, the question of whether polynomial boundedness implies sim-
ilarity to a contraction can be viewed as a question about boundedness of the
standard relaxation gap in a specific non-convex quadratic program.

Due to the recent result by G. Pisier [9] the relaxation gap in (11) is not
bounded. Earlier, J. Bourgain has shown that the relaxation gap grows not faster
than log(n), according to

γsc(A) ≤ const · γpb(A)4 log(n+ 1).

2.3. Quadratic Optimization on a Hypercube

Recall that the problem of quadratic optimization on a hypercube is that of maxi-
mizing J(x) = x′Qx over x ∈ {−1, 1}n, where Q ∈ Sn is a given symmetric matrix.
When the diagonal entries Qii of Q are non-negative, an equivalent form is

J∗(Q) = max{J(x) = x′Qx : x ∈ [−1, 1]n} =?

The corresponding standard relaxed semidefinite program is

Ĵ∗(Q) = max{Ĵ(X) = tr[QX] : X = X ′ ≥ 0, Xkk ≤ 1} =?

It is possible to formulate a number of hypotheses about the gap between Ĵ∗ and
J∗.

2.3.1. Uniform Bounds of Duality Gap. Which conditions should be im-
posed on Q to guarantee that

J∗(Q) ≥ cĴ∗(Q) (15)

where c is a constant not depending on Q (in particular, on its size)?
For an arbitrary symmetric matrix Q ∈ Sn (possibly such that some Qii < 0),

conjecture (15) turns out to be false, though it can be shown that, as a function
of n, c would grow not faster than log(n). On the other hand, it was shown in
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[8] that(15) holds for any positive semidefinite Q ≥ 0 with c = 2/π. For the case
when Q is diagonally dominant, i.e. when

Qii ≥
∑
j 6=i

(|Qij |+ |Qji|) ∀ i,

it was shown in [2] that (15) holds with a better constant c ≈ 0.88. The so-called
Grothendieck inequality (see [5]) states that (15) is true with c ≈ 0.56 whenever
Q has the block form

Q =
[
Q11 Q12

Q21 Q22

]
,

where Q11 and Q22 are square zero matrices. The answer to the question of whether
there exists c > 0 such that (15) is true for all matrices Q with Qii = 0 is unknown
to the author.

Inequality (15) will also be discussed later.

2.3.2. Vector Sums with Bounded Coefficients. Let {uk}∞k=0 be a se-
quence of elements of a Hilbert space such that

J(x) =
∥∥∥∑ukxk

∥∥∥ ≤ γ <∞ whenever sup
k
|xk| ≤ 1. (16)

It is well known and easy to show that (16) implies∑
‖uk‖2 ≤ γ,

which corresponds to the trivial case c = 0 of inequality (15).
Indeed, if xk = 0 for k > n then

J(x) = x̄′nQ
nx̄n

where x̄n is the vector with components x0, . . . , xn, and Qn is the Gramm matrix
of u0, . . . , un. Since Qnkk ≥ 0, the maximum of x̄′nQ

nx̄n subject to |xk| ≤ 1 is
achieved at the extremal points xk ∈ {−1, 1}. Therefore

max{x̄′nQnx̄n : xk ∈ [−1, 1]} = tr[Qn] + max{x̄′nQnx̄n : xk ∈ {−1, 1}} ≥ tr[Qn].

Similarly, the result of [8] can be interpreted in the following way: (16) implies
existence of a sequence {dk} such that∑

dk ≤
π

2
γ, (17)

and

‖
∑

ukxk‖2 ≤
∑

dk|xk|2 (18)

for any xk (not only for those bounded by 1). Proving (15) for matrices Q with all
Qii = 0 would be equivalent to showing that (17) can be replaced by∑

dk +
1− c
c

∑
‖uk‖2 ≤

γ

c
.
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2.3.3. Gramm Matrices of Bounded Functions. A dual interpretation of
questions associated with duality gap estimation for quadratic optimization on a
hypercube is given in terms of Gramm matrices. Let V = {vk}∞k=1 be a sequence
of (real) scalar functions vk = vk(t) ∈ L2(0, 1) which is uniformly bounded by 1,
i.e.

|vk(t)| ≤ 1 ∀ k, t.

Which matrices W belong to the set W = {W} of Gramm matrices of such a
sequence? Obviously W must be a Gramm matrix of some set of vectors of length
not exceeding 1. However, this is not enough. The result of [8] is equivalent to
saying that for any Gramm matrix R with Rii ≤ 1 there exists W ∈W such that

R ≤ π

2
W.

Similarly, the Grothendieck inequality implies that if any such R is decomposed
as

R =
[
R11 R12

R21 R22

]
where R11 and R22 are square matrices then cR12 is equal to the corresponding
block element W12 of some W ∈ W, where c ≈ 0.56. Similarly, showing that for
any Gramm matrix R with Rii ≤ 1 there exists W ∈W such that

cR+ (1− c)I = W

would be equivalent to proving (15) for all Q with Qii = 0.

3. Relaxations in Dynamical System Analysis

Many questions in analysis and design of dynamical systems come in the form of
non-convex quadratic programs. As a consequence, techniques of system theory
are frequently based on relaxation and duality gap estimation.

3.1. Stability of Systems with Structured Uncertainty

Analysis of linear time invariant (LTI) systems with structured uncertainty is a
prominent example of the use of quadratic programming and its relaxations in
system analysis.

3.1.1. Models of Stable LTI Systems and their Interconnections. A
stable LTI system S with n inputs and n outputs can be represented mathe-
matically by a function H in the Hardy space H∞n (T) of n-by-n matrix-valued
analytical functions (H would be called transfer matrix of the system). For a pair
S1, S2 of such stable LTI systems with transfer matrices H1,H2, it is said that the
feedback interconnection S12 of S1 and S2 is stable if there exists

H12 = (I −H1H2)−1 ∈ H∞n (T),

in which case H12 can be regarded as the transfer matrix of a system S12 defined
by the interconnection of S1 and S2.
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3.1.2. Uncertain Models and Robust Stability. Feedback interconnections
can be used to represent systems with models which are not known precisely,
or uncertain systems. A rich class of such systems can be modeled as feedback
interconnections of a stable LTI system with a known transfer matrix H ∈ H∞n (T)
and a stable LTI system with an unknown transfer matrix ∆, assumed to belong to
the set ∆̄ of all diagonal matrix functions in H∞n (T), with H∞ norm not exceeding
1.

Such uncertain model U = U(H) (completely defined by H ∈ H∞n (T)) is
called robustly stable if there exists a constant c such that the inverse (I −H∆)−1

exists, belongs to the class H∞n (T), and satisfies the inequality

‖(I −H∆)−1‖∞ ≤ c
for all ∆ ∈ ∆̄.

3.1.3. Criteria of Robust Stability. It is easy to show that uncertain model
U(H) with H ∈ H∞n (T) is robustly stable if and only if there exists a constant c
such that

‖(I −MZ)−1‖ ≤ c ∀ Z ∈ Z̄ (19)

for any essential value M of H where Z̄ is the set of all diagonal complex n-by-n
matrices with norm not exceeding 1. In most applications, H is continuous and
a bound of its derivative is available. A common practice is to sample the values
M = Mk of H on a “dense” (in a practical, not mathematical, sense) grid in T
and check that each of the samples satisfies (19).

The main difficulty, however, lies in the fact that checking (19) for a given
n-by-n matrix M is computationally challenging. In particular, the problem is
known to be NP-hard [10]. As a result, one is forced to look for an easier-to-
verify condition on M which would imply (19), without being equivalent to it.
The frequently used sufficient condition for (19) is existence of a diagonal matrix
D > 0, D ≤ I and ε > 0 such that

D −M ′DM ≥ εI, (20)

which implies (19) with c = c(ε).
Indeed, let R = D1/2, T = RMR−1. Then D ≤ I implies ‖R‖ ≤ 1 while (20)

implies D ≥ εI, which means ‖R−1‖ ≤ ε−1/2. In addition, multiplying (20) by
R−1 on both sides yields I − T ′T ≥ εD−1 ≥ εI, hence ‖T‖ ≤ (1− ε)1/2 ≤ 1− ε/2.
Therefore

‖(I −MZ)−1‖ = ‖(R−1(I − TZ)R)−1‖ ≤ 2ε−3/2.

Since (20) can be considered as a semidefinite program with respect to D and
ε (with an objective to maximize ε to check whether it can be made larger than
zero), (20) is relatively inexpensive to verify.

In the field of robustness analysis, the notion of structured singular value
µ(M) of M is used to represent condition (19): the non-negative number µ = µ(M)
is defined in such a way that
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(a) (19) holds for some c if and only if µ(M) < 1;
(b) µ(rM) = |r|µ(M) for any r ∈ R.

The standard upper bound µ̂(M) of µ(M) is defined in such way that
(a) (20) holds for some ε > 0 if and only if µ̂(M) < 1;
(b) µ̂(rM) = |r|µ̂(M) for any r ∈ R.
Thus, robust stability of U(H) is equivalent to the inequality ess supµ(H) < 1

and is implied by the easier-to-verify inequality ess sup µ̂(H) < 1.

3.1.4. Quality of the Upper Bound of µ. The question about quality of the
upper bound µ̂(M) of µ(M) was posed about 20 years ago. It is known for a long
time that µ̂(M) = µ(M) for any matrix M of size 3-by-3, and less. In addition,
the equality µ̂(M) = µ(M) holds for any matrix M of rank 1. It is very difficult to
find matrices M for which the ratio µ(M)/µ̂(M) is small. It was conjectured that

µ(M) ≥ cµ̂(M) (21)

where the constant c does not depend on M (in particular, on the size of M).
It turns out that (21) is equivalent to existence of a constant duality gap

bound in an appropriately constructed non-convex quadratic program. Indeed, for
x ∈ Rn let α(x), β(x) be the diagonal (n+ 1)-by-(n+ 1) matrices

α =


|e′1x|2

. . .
|e′nx|2

1

 , β =


|e′1Mx|2

. . .
|e′nMx|2

|x|2

 , (22)

where {ei} is the standard basis in Cn. By construction, J∗ = supJ(x) = µ(M)2

and Ĵ∗ = sup Ĵ(w) = µ̂(M)2 for the quadratic program (1) and its relaxation (4)
with α, β defined by (22).

3.1.5. An Analog in Operator Theory. The “µ-gap” question of whether
the ratio µ̂(M)/µ(M) has a finite upper bound remained unanswered until recently
Treil [11] used an operator-theoretic analog of the original finite dimensional prob-
lem to show that the answer is negative. His construction is as follows.

Let A be a bounded operator on L2(ν). For any φ ∈ L∞(ν) let Mφ be the
operator of multiplication by φ, acting on L2(ν). Does there exist a ρ > 0 such
that, for any bounded operator A on L2(ν), we have

‖MψAM1/ψ‖ ≤ ρ for some ψ, 1/ψ ∈ L∞(ν)

whenever

I −MφA is invertible for all ‖φ‖∞ < 1?

When A is defined by the singular integral

(Af)(t) =
1
π

∫
Γ

f(s)
s− t

ds
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where dν = ds is the arclength on a smooth curve Γ with a large Ahlfors constant,
ρ is unbounded. Therefore, the infinite dimensional analog of the µ-gap problem
has a negative answer. A convergence argument is then used in [11] to show that
the original finite dimensional version must have a negative answer as well.

3.2. Analysis of Nonlinear Systems

The dominant idea of rigorous analysis of nonlinear systems is the use of the
so-called system invariants (for example, Lyapunov functions). However, finding
invariants of generic nonlinear system models is a difficult task. The use of re-
laxations in non-convex quadratic programming allows one to make substantial
progress in this direction.

3.2.1. System Analysis and System Invariants. Consider a nonlinear dy-
namical system model of the form

xt+1 = f(xt, vt), zt = g(xt, vt), t = 0, 1, 2, . . . , (23)

where xt, vt, zt are “hybrid” signal vectors, which means that the components of
x, v, z can be logical (i.e. ranging over the set {−1, 1}) and analog (i.e. ranging
over [−1, 1] or R) elements. Here xt is the system state, vt is the disturbance input,
modeling the environment, and zt is the performance output. System (23) is said
to meet the performance expectations if for any admissible initial condition x0

there exists a constant γ = γ(x0) such that
∞∑
t=0

g(xt, vt) ≥ −γ(x0), (24)

for all possible inputs v = vt.
It can be shown that many important system specifications, including those

representing stability, safety, and efficiency, can be expressed in terms of perfor-
mance expectations with an appropriate selection of function g in (23).

Proving rigorously that a given complex system meets performance expecta-
tions is usually very difficult. Chances for successful analysis are greatly improved
when a system invariant, or quasi-Lyapunov function V : {x} → R is available,
defined by the condition

V (xt+1)− V (xt) ≤ g(xt, vt) (25)

for all possible trajectories of (23). Designing efficient algorithms for finding such
functions V is a major problem in system analysis.

3.2.2. Analysis Using Partial Invariants. An approach to automatic search
for system invariants can be based on the notion of partial Lyapunov functions.
Assume that an auxiliary variable wt is defined by wt = φ(xt, vt) in such a way
that the total range of possible values of wt is a subset of

Ω = {(v, u) ∈ Rp × {−1, 1}q : |hiv| ≤ 1} , (26)

where {hi} is a finite set of linear functionals on Rp. In other words, Ω is a direct
product of a polytope in Rp (symmetric with respect to the origin) and a complete
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set of vertices of a cube. A function Vk : {x} → R is called a partial Lyapunov
function (for system (23), with respect to the auxiliary variable w) if there exists
a quadratic functional

σk(w) = w′Qkw + 2Lkw + Ck

such that

Vk(xt+1)− Vk(xt) ≤ σk(wt) (27)

for any possible trajectory of (23). The inequality (27) in that case is called an
Integral Quadratic Constraint (IQC).

Typically, partial Lyapunov functions can be derived for the simple building
blocks (elementary logic, delay elements, integrators, uncertainty bounds etc.) in
terms of which the whole system (23) can be described. Usually, more useful partial
Lyapunov functions can be obtained after the state of the system is re-defined to
include some past history (for example, by concatenating the original state xt with
a stable LTI transformation of the past states xt−τ ).

Once available, partial Lyapunov functions can be used in an automatic
search for a quasi-Lyapunov function in the form

V (xt) = V0(xt) +
N∑
k=1

τkVk(xt), τk ≥ 0, (28)

provided that V0 satisfies the inequality

V0(xt+1)− V0(xt) ≤ σ0(wt) + g(xt, vt), (29)

where σ0 is a quadratic functional, for any possible trajectory of (23).
The set of the coefficients τ = τk for which (28) yields a function V satisfying

(25) is convex. Therefore, an efficient algorithm for finding τ will be available,
as soon as one can find an acceptable “feasibility oracle”, i.e. an algorithm which
quickly checks the inequality in (25) for a particular V from (28) (and, in particular,
presents t, xt, vt such that (25) is not valid, if this is the case). This is where partial
Lyapunov functions can help, because, due to (27), the inequality in (28) will be
implied whenever

σ(w) ≤ 0 ∀ w ∈ Ω, (30)

for

σ(w) = σ0(w) +
∑

τkσk(w).

In contrast with (25), the inequality in (30) is relatively easy to verify. In the
standard theory of IQC analysis [6] this is done by simply checking that σ(w) ≥ 0
for all w (i.e. not only those from Ω). This is good enough when absolute stability
and performance of nonlinear and time-varying perturbations of linear systems
are analyzed, as long as the general behavior remains similar to the linear one.
However, analysis of essentially nonlinear behavior of hybrid systems requires a
more accurate treatment of (30).
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3.2.3. Relaxation. The task of checking (30) is essentially equivalent to verify-
ing that maximum of the quadratic functional

σ̃(w) = w′Qw + 2L′w,

on Ω does not exceed −C where

Q = Q0 +
N∑
k=1

τkQk, L = L0 +
N∑
k=1

τkLk, C = C0 +
N∑
k=1

τkCk.

As usually, one can assume without loss of generality that the quadratic form w′Qw
does not contain any terms qkku2

k, where uk are those components of w = (v, u)
that range over the binary set uk ∈ {−1, 1}. Indeed, any such term can be replaced
by the constant qkk. When the coefficients at u2

k are zero, allowing uk to range
over [−1, 1], rather than {−1, 1}, will not change the maximum of σ(w). Therefore,
optimization of σ̃(w) over Ω is equivalent to optimization of σ̄(w, θ) over

Ω̄ = {(v, u, θ) ∈ Rp × [−1, 1]q × [−1, 1] : |hkv| ≤ 1},

where

σ̄(w, θ) = w′Qw + 2θL′w.

Finally, we can conclude that verifying (30) reduces to finding the maximum in
the MAX-CUT quadratic program (generally non-convex):

J(x) = x′Px→ max subject to |a′kx| ≤ 1 (k = 1, . . . , n). (31)

The optimization problem in (31) can be “relaxed” to a semidefinite program
in several ways, the simplest (and presumably the roughest) of which is

Ĵ(X) = tr(PX)→ max subject to a′kXak ≤ 1, X = X ′ ≥ 0. (32)

In order to construct a quasi-lyapunov function V in (25), it is be sufficient to find
τk ≥ 0 such that

tr

(
X

([
Q0 L0

L′0 0

]
+

N∑
k=1

τk

[
Qk Lk
L′k 0

]))
≤ C0 −

N∑
k=1

τkCk ∀ X ∈ Ωr, (33)

where

Wr =

{
X = X ′ ≥ 0 :

[
hk
0

]′
X

[
hk
0

]
≤ 1,

[
0
ek

]′
X

[
0
ek

]
≤ 1

}
. (34)

(Here ek, k = 1, . . . , q is the coordinate basis in Rq.)
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3.2.4. Quasi-Linear Models. A major obstacle in using partial invariants for
system analysis is derivation of a sufficiently large and representative set of partial
invariants. While partial invariants can be derived for simple subsystems, and
are “inherited” when such subsystem is included in a complex interconnection,
the success of the analysis may well depend on the partial invariants describing
interaction between subsystem. At this point, the number of partial invariants to
consider begins growing exponentially, which makes the whole analysis process
inefficient.

A different approach to automatic search for system invariants can be pro-
posed, based on the notion of a quasi-linear model. For simplicity, consider system
(23) where

(xt, ft) ∈ Ω0 = [−1, 1]p × {−1, 1}q

is a quasi-cube. System (23) is said to be quasi-linear if there exist matrices D,F,L
of appropriate size, a quadratic functional

σ0(w) =
[
w
1

]′
Σ0

[
w
1

]
,

and a quasi-cube

Ω = [−1, 1]a × {−1, 1}b,

such that

{(w0, f(w0), g(w0)) : w0 ∈ Ω0} = {(Dw,Fw, σ0(w)) : Lw = 0, w ∈ Ω}. (35)

In other words, a quasi-linear model is defined by a set of linear equations and a
quadratic “cost” on a quasi-cube.

When b = 0 in the definition of Ω (i.e. when Ω is a hypercube in the usual
sense), the only functions f, g that can be defined by (35) are respectively linear
and quadratic (it is also possible to produce some multi-valued mappings f, g).
However, it is well known that, when some components of w ∈ Ω are allowed to
be “bits” (modeled as elements of {−1, 1} in this case), the set of functions (f, g)
which one can define by (35) is dense in the uniform metric. In other words, an
arbitrary system model (23) defined by continuous functions f, g on a quasi-cube
can be approximated arbitrarily well by quasi-linear models.

For example, the operation of quantization of a scalar x0 ∈ [−1, 1] can be
defined by the linear equations

xk−1 = 0.5(xk + wk), k = 1, 2, . . . ,

where the variables xk range over the interval [−1, 1], while the variables wk (which
represent a binary expansion of x0) range over {−1, 1}. Similarly, the logical oper-
ation “AND” (i.e. w3 = φ(w1, w2) = 1 if and only if w1 = w2 = 1) can be defined
by the single equation

w1 + w2 − 2w3 + w4 = 1,
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where wi ∈ {−1, 1} for i = 1, . . . , 4. Using the operations of quantization, logical
operations, and digital-to-analog conversion (which is simply a weighted summa-
tion of the corresponding bits), one can define a rich set of transformations.

3.2.5. Quadratic Stability of Quasi-Linear Models. Let (23) be a quasi-
linear system defined by (35). A quadratic functional σ : Ω → R is a system
invariant if there exists r > 0 such that

ρ(σ, r) = max
w∈Ω
{σ(Fw)− σ(Dw)− σ0(w)− r|Lw|2} ≤ 0. (36)

To find σ, r such that (36) holds, one can try to minimize ρ as a function of σ, r.
Note that ρ(·) is a maximum of a family of linear functionals, and hence is a
convex function of its arguments. Therefore, minimization of ρ can be performed
efficiently, assuming that ρ(σ, r) can be evaluated for any fixed σ, r. The task of
calculating the maximum in (36) is equivalent to the MAX-CUT optimization
problem.

The procedure can be used to search automatically for quadratic invariants of
systems with quasi-linear models. Moreover, while the invariants searched for are
limited to quadratic functions of the “extended” system state w ∈ Ω, the resulting
system invariant will in general be non-quadratic as a function of w0. Still, it is
not clear that a system invariant in this specific form can be found whenever a
system invariant exists.

To increase flexibility of the approach, the search for a quadratic invariant
can be applied to a “lifted” model of system (35). Indeed, if (23) can be represented
in the form of (35) then the “lifted” system with

x̄k =


xmk+1

xmk+2

...
xm(k+1)

 , v̄k =


vmk+1

vmk+2

...
vm(k+1)


can be represented in the “lifted” form as well, according to

w̄ =

 w1

...
wm

 ∈ Ωm, D̄w̄ = Dw1, F̄ w̄ = Fwm, L̄w̄ =



Lw1

...
Lwm

Fw1 −Dw2

...
Fwm−1 −Dwm


.

In general, one can expect that a combination of quasi-linear modeling with
the use of partial invariants on a lifted system model will be most convenient for
automatic generation of system invariants.
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4. Gaussian Proofs of Duality Gap Bounds

In this section, the technique of Gaussian randomization is used to prove some old
and new duality gap bounds for the problem of quadratic optimization over the
hypercube.

4.1. Using Signs of Gaussian Vectors

Several duality gap bounds in the MAX-CUT problem can be proven by working
with the signs of Gaussian vectors.

4.1.1. The Idea of Goemans and Williamson. The idea of working with the
signs vi = sgn(wi) of a set {wi} of jointly Gaussian random variables was originally
used by Goemans and Williamson in [2] to prove the following uniform bound of
the duality gap in the MAX-CUT problem.

Theorem 4.1. (Goemans, Williamson [2]) Let Q ∈ Sn be a matrix such that

Qii ≥
∑
j 6=i

(|Qij |+ |Qji|).

Then J∗ ≥ cĴ∗ where

J∗ = max{J(x) = x′Qx : x ∈ {−1, 1}n},

Ĵ∗ = max{Ĵ(W ) = tr[QW ] : W ∈ Sn, W ≥ 0, Wii = 1},

c = min
{

2
π

t

1− cos(t)
: t ∈ (0, π)

}
≈ 0.8786.

Moreover, if w is a Gaussian random vector such that Ew = 0 and Eww′ = W̄ is
the argument of the maximum of Ĵ(W ) (i.e. Ĵ(W̄ ) = Ĵ∗, W̄ = W̄ ′ ≥ 0, W̄ii = 1)
then

Esgn(w)′Qsgn(w) ≥ cĴ∗,
where in sgn(w) the sign function is applied to w component-wise.

Proof. Following [2] let us prove first that if f and g are two jointly Gaussian
random variables such that

Ef = Eg = 0, E|f |2 = E|g|2 = 1, Efg = cos(t)

then

Esgn(f)sgn(g) = φ(t) = 1− 2t
π
. (37)

Indeed, let f − g cos(t) = h sin(t) where Eh = 0 and E|h|2 = 1. Then Efh = 0
and hence the random variables f and h are independent. Therefore the vector
random variable

z =
[
z1

z2

]
=

1
|f |2 + |h|2

[
f
h

]
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is uniformly distributed on the unit circle in R2, which implies that

Esgn(f)sgn(g) = Esgn(z1)sgn(z1 cos(t) + z2 sin(t)) = φ(t)

is an affine function of t. Since φ(0) = 1 and φ(π) = −1, the conclusion is that
φ(t) = 1− 2t/π.

Now let vi = sgn(wi). Since E|vi|2 = 1, (37) shows that

Evivj = 1− 2
π

arccos(Wij).

Hence, for tij = arccos(Wij) ∈ [0, π],

1− Evivj =
2tij
π
≥ c(1− cos(tij)) = c(1− Ewiwj).

Since

min
t∈(0,π)

2
π

t

1− cos(t)
= min
t∈(0,π)

2
π

π − t
1 + cos(t)

,

it is also true that

1 + Evivj =
2
π

(π − tij) ≥ c(1 + cos(tij)) = c(1 + Ewiwj).

Therefore, for

r = tr[Q]−
∑
j 6=i

(|Qij |+ |Qji|),

it follows that

Ev′Qv = r +
∑
i 6=j

|Qij |(1 + sgn(Qij)Evivj)

≥ cr + c
∑
i 6=j

|Qij |(1 + sgn(Qij)Ewiwj)

= c tr[QW ].

Since J∗ ≥ v′Qv, this proves the theorem. �

4.1.2. A Remark on Orthogonality. Other duality gap bounds can be proven
using an orthogonality feature of the sign of a Gaussian variable. The constant

ν =
(

2
π

)1/2

,

which equals E|w| for a Gaussian random variable w with zero mean and unit
variance, will play an important role.

Lemma 4.2. Let f, g be two jointly Gaussian random variables with zero mean. Let
v = (Eg2)1/2sgn(g). Then Ef(νg − v) = 0.

Proof. A direct calculation shows that Eg(νg − v) = 0. On the other hand, f can
be written in the form f = f0 + ag where a ∈ R and f0 is independent of g. Hence
f0 and νg − v are independent as well, and therefore Ef0(νg − v) = 0. �
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4.1.3. The Nesterov-Ye Theorem. An immediate consequence of Lemma 4.2
is the following theorem proven by Nesterov [8] and Ye [12].

Theorem 4.3. For Q ∈ Sn let

J+ = max{J(x) = x′Qx : x ∈ [−1, 1]n},

Ĵ+ = max{Ĵ(W ) = tr[QW ] : W ∈ Sn, W ≥ 0, Wii ≤ 1},

Ĵ− = min{Ĵ(W ) = tr[QW ] : W ∈ Sn, W ≥ 0, Wii ≤ 1}.

Then

J+ ≥
2
π
Ĵ+ + (1− 2

π
)Ĵ−.

Moreover, if W̄ is the argument of maximum of Ĵ(W ) subject to W = W ′ ≥ 0 and
Wii ≤ 1 then

Ev′Qv ≥ ν2Ĵ+ + (1− ν2)Ĵ−, (38)

where

vi = (Ew2
i )

1/2sgn(wi)

and w is a Gaussian random vector with Ew = 0, Eww′ = W̄ .

Proof. By Lemma 4.2

Ew′F (νw − v) = 0

for any constant matrix F . Note also that since

E(νwi − vi)2 = (1− ν2)Ew2
i ≤ 1− ν2,

for all i, the inequality

E(νw − v)′Q(νw − v) ≥ (1− ν2)Ĵ−

takes place. Hence

Ev′Qv = E(νw + (v − νw))′Q(νw + (v − νw))
= ν2Ew′Qw + E(νw − v)′Q(νw − v)

≥ ν2Ĵ+ + (1− ν2)J−.

�

Theorem 4.3 was proven in [8] for the case Q ≥ 0 and in [12] for the general
case. In [12], the following implication of (38) is formulated as the main result:

J+ − Ev′Qv

J+ − J−
≤ π

2
− 1, (39)

where

J− = min{J(x) = x′Qx : x ∈ [−1, 1]n}.
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To derive (39) from Theorem 4.3, note first that applying the Theorem with
Q replaced by −Q yields

J− ≤ ν2Ĵ− + (1− ν2)Ĵ+.

Hence
J+ − Ev′Qv

J+ − J−
≤ J+ − (ν2Ĵ+ + (1− ν2)Ĵ−)

J+ − (ν2Ĵ− + (1− ν2)Ĵ+)

≤ Ĵ+ − (ν2Ĵ+ + (1− ν2)Ĵ−)
Ĵ+ − (ν2Ĵ− + (1− ν2)Ĵ+)

= ν−2 − 1.

Note that the second inequality is valid since the function

x 7→ x− (ν2Ĵ+ + (1− ν2)Ĵ−)
x− (ν2Ĵ− + (1− ν2)Ĵ+)

is non-decreasing for x ≥ ν2Ĵ+ + (1− ν2)Ĵ−, and J+ ≤ Ĵ+.

4.1.4. Subtraction of Even-Cyclic Matrices. Inequality (38) implies

J+ ≥ (4/π − 1)Ĵ+

whenever it can be proven that Ĵ− ≥ −Ĵ+. An interesting case when this can be
done easily is associated with matrices with even cycles only.

Definition 4.4. Let us call a symmetric matrix C ∈ Sn even-cyclic if its diago-
nal entries equal zero and the graph ΓC formed by connecting those nodes i, j ∈
{1, . . . , n} for which Cij 6= 0 contains no cycles of odd length.

Theorem 4.5. If Q−C ≥ 0 for some even-cyclic matrix C then J+ ≥ (4/π−1)Ĵ+.

Proof. Without loss of generality assume that the graph ΓC is connected. For any
n-vector x and an even-cyclic matrix C let z = xC be the vector defined as follows:
zi = xi whenever node i of ΓC is connected to node 1 through an even number of
edges, and zi = −xi otherwise. Since ΓC is even-cyclic, the definition of z = xC
is correct. By construction, x′Cx = −x′CCxC for any x. Hence Ĵ− ≥ −Ĵ+ for any
Q ≥ C. �

4.1.5. The Grothendieck Inequality. Theorem 4.5 can be considered as
a “generalized” Grothendieck inequality. However, for the original Grothendieck
inequality, the resulting constant 4/π − 1 is far from being the best known.

Theorem 4.6. The inequality

J∗ ≥ (4/π − 1)Ĵ∗
holds for all matrices

Q =
[

0 Q12

Q′12 0

]
,
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where the diagonal blocks are of square form.

Proof. Q is an even-cyclic matrix. �

4.2. Slowly Increasing Duality Gap

Some slowly increasing duality gap bounds can be derived using the fast decay of
the Gaussian density away from the origin.

4.2.1. A Logarithmic Upper Bound for Duality. Taking into account dif-
ficulty of finding good duality gap bounds, it is surprising to see that the following
theorem is true.

Theorem 4.7. For n > 60, Ĵ∗ ≤ 2 log(n)J∗ for any problem data P, ak, n in
(31),(32).

Proof. Let X = X ′ ≥ 0 be any matrix satisfying the constraints a′kXak ≤ 1. Let
us show that then there exists a vector x satisfying the conditions |a′kx| ≤ 1 such
that 2 log(n)x′Px ≥ tr[XP ].

Indeed, let w will be a Gaussian random vector with E[w] = 0 and E[ww′] =
X. Let q = maxk{|a′kw|}, v = w/q. Then v is a random variable satisfying the
constraints |a′kv| ≤ 1 with probability 1. Moreover, we have

tr[XP ] = E[w′Pw]
= E[q2(v′Pv)]
≤ E[v′Pv]E[q2].

Hence, in order to complete the proof, it is sufficient to show that E[q2] ≤ 2 log(n).
For r ≥ 0 let f(r) be the probability that q2 ≥ r. Since f(r) does not exceed

the sum of probabilities fk(r) that |a′kw|2 ≥ r, and since a′kw are Gaussian random
variables with zero mean and variance not exceeding 1,

f(r) ≤ nν
∫ ∞
√
r

e−t
2/2dt. (40)

Since f(r) ≤ 1 for all r, for any λ > 0 we have∫ ∞
0

f(r)dr ≤ λ+
∫ ∞
λ

f(r)dr.

Hence

E[q2] ≤ λ+ nν

∫ ∞
λ

f(r)dr = λ+ nν

∫ ∞
λ

∫ ∞
√
r

e−t
2/2dtdr.

Changing the order of integration and integrating over r yields∫ ∞
λ

∫ ∞
√
r

e−t
2/2dtdr =

∫ ∞
√
λ

(t2 − λ)e−t
2/2dt.

Substituting t = (s+ λ)1/2 into the last integral yields∫ ∞
√
λ

(t2 − λ)e−t
2/2dt =

1
2

∫ ∞
0

se−(s+λ)/2(s+ λ)−1/2ds.
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Replacing (s+ λ)−1/2 with its upper bound λ−1/2 yields∫ ∞
0

se−(s+λ)/2(s+ λ)1/2ds ≤ λ−1/2e−λ/2
∫ ∞

0

se−s/2ds = 4λ−1/2e−λ/2.

Hence

E[q2] ≤ λ+ 4n

√
1

2π
exp(−λ/2)λ−1/2.

Taking λ = 2 log(n)− 1 yields E[q2] ≤ 2 log(n) for n > 60. �

4.2.2. A Lower Bound for the Duality Gap. The following theorem shows
that it is not possible to replace the logarithmic relaxation gap bound of Theo-
rem 4.7 with a constant bound which does not grow with n.

Theorem 4.8. There exists a sequence of matrices P = Pn of size n× n, n→∞,
such that, for ai = ei being the standard basis vectors, Ĵ∗(Pn)/J∗(Pn)→∞.

Proof. For a fixed positive integer m and an arbitrarily small ε > 0 let U =
{uk}Nk=1 ⊂ Rm be an ε-dense subset of the unit sphere, i.e. |uk| = 1 for all k and

max
k
|u′kx|2 ≥ (1− ε)|x|2 ∀ x ∈ Rm. (41)

Let U be the m-by-N matrix whose k-th column is uk. Let X = (u′iuj)ij = U ′U
be the Gramm matrix of U.

First, let us show that X does not belong to the set Λ of all convex combi-
nations of rank one matrices θiθ′i, where ‖θi‖∞ <

√
m(1− ε).

Indeed, if

X = U ′U =
∑

ciθiθ
′
i, ci > 0,

∑
ci ≤ 1 (42)

, then all θi satisfy the inequality c−1
i U ′U ≥ θiθ

′
i, and hence belong to the image

of U ′, i.e. θi = U ′vi for some vi ∈ Rm. According to (41)

|vi|2 ≤ (1− ε)−1 max |u′kvi|2 = (1− ε)−1‖θi‖2∞ < m.

On the other hand, since U ′ is left invertible, identity (42) implies

Im =
∑

civiv
′
i.

Comparing traces on both sides yields a contradiction

m =
∑

ci|vi|2 < m.

Now let P = P ′ 6= 0 define the linear functional separating X from Λ. By
construction, Ĵ∗(P ) ≥ m(1− ε)J∗(P ). �
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4.2.3. Discussion. Existence of a logarithmic gap bound for the relaxation of
(31) into (32) appears to be a consequence of convexity of all constraints in (31).
In contrast, quadratic programs derived in most of the classical robustness analy-
sis techniques typically have the relaxation gap growth according to a power law.
Thus, boundedness of signals subject to linear constraints is expected to be easier
to exploit in the analysis than the usual “sector inequalities”. Therefore, modeling
of nonlinear systems in terms of signals subject to linear equations and ampli-
tude constraints, though more difficult than the canonical approach of the “gain
bounds”, should be considered as a promising research direction.
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