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Abstract. The classical robust control deals with systems which can be approxi-
mated by �nite order linear time-invariant (LTI) models, uses integral constraints,
such as induced gain bounds, to assess robustness with respect to the error of
such approximation, and employs H-In�nity optimization to design robust lin-
ear controllers. In this paper1, a parallel approach is developed, in which �nite
state stochastic automata play the role of LTI models. Analogs of the Kalman-
Yakubovich-Popov Lemma, the S-procedure losslessness theorem, and H-In�nity
design are derived.

Introduction

Robustness analysis and optimization is a major source of eÆcient design
tools for the modern control engineer. The classical robust control deals with
systems which can be approximated by LTI models. The di�ernece between
such approximations and the true system dynamics is described by integral
constraints, such as induced gain bounds or Integral Quadratic Constraints
[1]. Constructively veri�able conditions of stability and performance, such as
the small gain theorem, are used to assess stability and performance of sys-
tems de�ned by nominal LTI dynamics and integral constraints. Ultimately,
the task of robust LTI feedback design is reduced to induced gain minimiza-
tion, such as H-In�nity optimization, which employs extensively quadratic
Lyapunov functions.

While being the dominant tool for computer-aided design and analysis of
systems modeled by near-linear di�erential equations, this framework fails to
provide adequate treatment in the case of hybrid systems, i.e. systems which
combine continuous and discrete state dynamics.

A major objective of the paper is creation of an alternative robust control
framework in which �nite state stochastic automata serve as a basic sys-
tem model. Systems under consideration are represented as interconnections
of \nominal" controlled �nite state automata and the \uncertain feedback"
systems described by integral constraints representing modeling error. Lya-
punov functions are used for analysis and design.

The theorems presented in this paper are quite elementary, and can be
viewed as simpli�ed versions of the standard results of dynamic programming
[2]. However, they highlight a potentially powerful framework for nonlinear
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feedback design. In this framework, one has to start with �nding a reduced
model of the original system.

1 System Models

In this section, basic principles of system modeling and design using �nite
state stochastic automata and integral constraints are introduced.

1.1 Finite Alphabet Feedback Design

This subsection contains motivation for using the uncertain �nite state au-
tomata models as de�ned later in the paper.

Observer-Based Feedback. Our ultimate goal is to develop tools for op-
timizing the controller K in the feedback loop shown on Figure 1, where P
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Fig. 1. General Feedback Design Setup

is a strictly causal discrete time system (possibly uncertain, in�nite dimen-
sional, and randomized) with control input u(t) 2 U , sensor output s(t) 2 S,
and cost output h(t) 2 R. We consider the case of discrete decision-making,
which means that the set U (the control alphabet) is �nite. The objective
is to design a causal system K (the feedback controller) with input s(t) and
output u(t) such that h(t) is non-negative \on average" on the trajectories
of the closed loop system, which is expressed by the inequality

inf
T>0

TX
t=0

Eh(t) > �1: (1)

The general task of designing and optimizing K is very diÆcult. However,
an important simplifying assumption will be made throughout the paper, that
K must be found in the observer-based form shown on Figure 2, where D
is the one step delay block, m(t) 2 M is the observer state, x(t) 2 X is the
observer output (the set X is �nite), function E : U �S �M ! X �M de-
�nes the observer dynamics, and function g : X �� ! U de�nes the control
decision randomized by an independent random number generator �(t) 2 �.
The challenging task of designing the observer function E is not discussed
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Fig. 2. Observer-Based Feedback

systematically in this paper. It is assumed that some preliminary e�ort (for
example, a model reduction and quantization algorithm) has already pro-
duced E. Our objective is to develope algorithms for design and analysis of
the randomized memoryless feedback part of the observer-based controller
represented by function g and by the probability distribution p� of �.

Uncertain Finite State Automata Models. For the purpose of designing
the randomized memoryless feedback de�ned by g and p�, the observer based
feedback system can be described by the diagram on Figure 3, where H
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Fig. 3. Closed Loop System

represents the combination of plant and observer. While the set of possible
values of v(t) and x(t) at given time is �nite, the exact dynamics of H can
be extremely complicated. We propose the use of uncertain stochastic �nite
state automata (FSA) with integral constraints (IC) as a tool for simpli�ed
representation (abstraction) of H , as shown on Figure 4, i.e.

x(t+ 1) = f(x(t); u(t); w(t); �(t)); (2)

where w(t) 2 W is the uncertain input, representing possible mismatch
between H and the FSA model, �(t) 2 � is the output of an indepen-
dent random number generator with a given probability distribution p�,
f : X � U �W � � ! X is the function de�ning the FSA. The behav-
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Fig. 4. Uncertain FSA Model

ior of the uncertain input w(t) is constrained by a set of integral constraints

inf
T>0

TX
t=0

E�(x(t); u(t); w(t)) > �1; (3)

which are assumed to hold for all functions � : X � U � W ! R from
a given convex compact set ~� = f�g. In addition, a given function �0 :
X � U �W ! R is assumed to provide a lower bound for the averages of
h(t), in the sense that the performance inequality in (1) holds for every set of
input/output signals (u(t); x(t); h(t)) produced by H , as long as there exist
w(t); �(t) satisfying (2),(3), and

inf
T>0

TX
t=0

E�0(x(t); u(t); w(t)) > �1: (4)

Under these assumption, the design problem under consideration can be
formulated as that of �nding a function g and a random number generator
distribution p� such that the inequality (4) is satis�ed for all solutions of (2)
satisfying u(t) = g(x(t); �(t)) and (3).

1.2 FSA Models

In this paper, �nite state stochastic automata (FSA) are used to de�ne nom-
inal, i.e. precisely known, system models. Thus, they play the role of �nite
order LTI models of the classical robust control.

Random Variables. The set of all random variables � with values in a given
�nite set � (without loss of generality, � can be viewed as a measureable
function � : 
 7! �, where 
 = [0; 1] is the \set of elementary events") is
denoted by R(�). D(�) is the set of all probability distributions on �, i.e.
functions p : � ! [0; 1] such thatX

��2�

p(��) = 1:



The function � = �� maps every random variable � 2 R(�) into its distri-
bution p� = �(�) 2 D(�). In other words, p� = �(�) means that p�(��) =
P(� = ��) is the probability that the random variable � takes the value ��. In
particular, if h : Z ! R is a given function, and z 2 R(Z), then the expected
value Eh(z) is given by

Eh(z) =
X
�z2Z

h(�z)pz(�z):

For two random variables x 2 R(X) and y 2 R(Y ), their direct product � =
(x; y) is the random variable from R(X � Y ) de�ned by �(�) = (x(�); y(�))
for all � 2 
 = [0; 1]. x and y are called independent if

p�(�x; �y) = px(�x)py(�y) 8 �x 2 X; �y 2 Y;

where p�; px; py are the distributions of �; x; y respectively. We will write
x ? y when x and y are independent.

Finite State Automata. Let X;V; Z be three �nite sets. A function f :
X�V �Z 7! X and a probability distribution pz 2 D(Z) de�ne a �nite state
automata A = A(f; pz) as a relation between sequences of random variables
x(t) 2 R(X) and v(t) 2 R(V ) expressed by

x(t+ 1) = f(x(t); v(t); z(t)); z(t) ? (x(t); v(t)); �Z(z(t)) = pz: (5)

Here v(t) is the input of a discrete time dynamical system with state x(t)
and independent identically distributed random number generator z(t).

An equivalent expression of the FSA relation (5) is given by

pt+1
x (~x) =

X
~x=f(�x;�v;�z)

pt(x;v)(�x; �v)pz(�z);

where pt+1
x ; pt(x;v) are the distributions of x(t+1) and (x(t); v(t)) respectively.

In this paper, FSA are used as simpli�ed models of systems.

Memoryless Automata. Let U;X;� be three �nite sets. A function g :
X � � ! U and a probability distribution p� 2 D(�) de�ne a memoryless
automataM =M(g; p�) as a relation between sequences of random variables
x(t) 2 R(X) and u(t) 2 R(U) expressed by

u(t) = g(x(t); �(t)); �(t) ? x(t); ��(�(t)) = p�: (6)

Here x(t) is the input of a memoryless system with output u(t) and an in-
dependent identically distributed random number generator �(t). An equiv-
alent way of de�ning the memoryless automata is by specifying a function



pujx : X ! D(U), which de�nes the conditional distribution of u(t) for every
given value x(t) = �x. The relation between g; p�, and pujx is given by

pujx(�x; �u) =
X

��: g(�x;��)=�u

p�(��):

An equivalent expression of (6) is given by

ptu(�u) =
X

�x;��: �u=g(�x;��)

ptx(�x)p�(
��) =

X
�x2X

pujx(�x; �u)p
t
x(�x);

where ptu; p
t
x are the distributions of u(t) and x(t) respectively.

In this paper, memoryless automata are used as feedback laws.

1.3 Integral Constraints

Most systems of practical interest cannot be represented exactly as �nite state
automata. However, they can frequently be approximated to a reasonable
degree of accuracy by FSA, just as many mildly nonlinear systems can be
approximated by LTI models. Integral constraints (IC) serve as indicators
of accuracy of such approximations, playing the role of L2 gain bounds or
Integral Quadratic Constraints in the classical robust control. In addition, IC
can express the objectives for feedback design, in the same way as L2 gain
bounds serve as design objectives of the standard H-In�nity optimization.

De�nition of Integral Constraints. A sequence fy(t)g of real-valued in-
tegrable random variables y(t) such that

inf
T>0

TX
t=0

Ey(t) > �1

is said to satisfy the integral constraint I[y(t)] � 0.
Let X;V be two �nite sets, and let � : X � V ! R be a function. Two

sequences of random variables x(t) 2 R(X) and v(t) 2 R(V ) are said to
satisfy the integral constraint (IC) de�ned by � if

inf
T>0

TX
t=0

E�(x(t); v(t)) > �1; (7)

in which case we will write I[�(x(t); v(t))] � 0.
An equivalent way to express the IC in (7) is given by

inf
T>0

TX
t=0

X
�x;�v

�(�x; �v)pt(x;v) > �1;

where pt(x;v) is the distribution of (x(t); v(t)).
In this paper, integral constraints are used for de�ning performance cri-

teria and for constraining undermodeled behavior of uncertain models.



Integral Constraints as Performance Speci�cations. In this case the
IC in (7) is a hypothesis to be veri�ed by a system analysis procedure, or a
design criterion to be satis�ed by a design choice.

For example, assume that certain elements x0 2 X , v0 2 V are designated
as zero values. If the input v = v(t) of FSA (5) represents a control decision,
the informal performance criterion may require that x(t), v(t) take zero values
x(t) = x0, v(t) = v0 with probability 1 as t!1. If � is de�ned in such way
that �(x0; v0) = 0 and �(�x; �v) < 0 for (�x; �v) 6= (x0; v0), then (6) implies that
P(x(t) = x0; v(t) = v0) ! 1 as t ! 1. In this case (6) plays a role similar
to that of a quadratic performance criterion in the classical linear-quadratic
optimization.

Another example of a performance speci�ed by an IC is as follows. Assume
the input v models a disturbing noise, and one has to verify that x(t) is not
very sensitive to v(t), which means that, on average, x(t) will take a \non-
zero" value x(t) 6= x0 with a frequency not exceeding 
 times the frequency
of v(t) taking non-zero values v(t) 6= v0, where 
 > 0 is a given number
quantifying the degree of sensitivity. In this case, � can be de�ned by

�(�x; �v) =

8>><
>>:
�1; �x 6= x0; �v = v0;

; �x = x0; �v 6= v0;

 � 1; �x 6= x0; �v 6= v0;
0; �x = x0; �v = v0:

(8)

and then (7) plays a role similar to that of a L2 gain bound in H-In�nity
optimization.

Integral Constraints as Uncertainty Bounds. In this case the IC in (7)
is a constraint limiting the behavior of uncertain signals within the system.

For example, v(t) may represent the output of an undermodeled subsys-
tem � with input x(t). Assume that � satis�es a \low sensitivity" condition
which means that on average its output v(t) takes non-zero values v(t) 6= v0
with a frequency smaller than 1=
 times the frequency at which its input x(t)
takes non-zero values x(t) 6= x0. This condition can be represented by the IC
I[��(x; v)] � 0, where � is the function de�ned in (8).

2 Analysis and Design of FSA/IC Models

This section presents general results on analysis and design of systems de�ned
as �nite state automata with integral constraints.

2.1 Analysis of FSA/IC Models

Analogs of the Kalman-Yakubovich-Popov Lemma and the S-procedure loss-
lessness theorem will be formulated and proven here for FSA/IC models.



First, existence of a storage function is shown to be a necessary and suÆcient
condition for an integral constraint to be satis�ed for all trajectories of a
given �nite state automata model. Second, it is shown that a �nite set of
IC I[�k(x; v)] � 0, k = 1; 2; :::; n, imposed on the set of all trajectories of a
given FSA implies IC I[�0(x; v)] � 0 if and only if there exist nonnegative
coeÆcients ck � 0 such that, for

�(�x; �v) = �0(�x; �v)�
nX

k=1

ck�k(�x; �v);

the IQC I[�(x; v)] � 0 is satis�ed for all trajectories of the FSA.

Integral Constraints and Storage Functions. The following statement
can be used to check whether a given integral constraint is satis�ed for all
trajectories of a given �nite state automata.

Theorem 1. Let X;V; Z be �nite sets, pz 2 D(Z). Let f : X �V �Z ! X
and � : X �V ! R be two functions. Then the following two conditions are
equivalent.

(a) The IC I[�(x; v)] � 0 from (7) holds for all sequences of random variables
x(t); v(t); z(t) satisfying (5).

(b) There exists a function H : X ! R such that

�(�x; �v) +H(�x) �
X
�z2Z

H(f(�x; �v; �z))pz(�z) 8 �x 2 X; �v 2 V: (9)

Essentially, (9) means that

E�(x(t); v(t)) � EH(x(t+ 1))�EH(x(t)) (10)

for all solutions of the FSA equation (7), i.e., using the terminology by
J.C.Willems, that the function H = H(x) can serve as a storage function
for (7) with supply rate � = �(x; v).

Proof of Theorem 1. Taking into account (10), the implication (b))(a) is
straightforward: taking a sum of such inequalities with t = 0; 1; : : : ; T yields

TX
t=0

E�(x(t); v(t)) � EH(x(T + 1))�EH(x(0)):

Since X is �nite, EH(x(T + 1)) is uniformly bounded, and hence

inf
T�0

TX
t=0

E�(x(t); v(t)) > �1:



To prove that (a) implies (b), consider the case when there exists no
function H : X ! R satisfying (9). This means that the minimum of the
convex function

f(H) = max
�x2X;�v2V

(
�H(�x)� �(�x; �v) +

X
�z2Z

H(f(�x; �v; �z))pz(�z)

)
(11)

over the vector space H = fHg of all functions H : X ! R is positive.
In terms of the dual linear program, this means existence of a probability
distriution r 2 D(X � V ) such thatX

�x2X;�v2V

r(�x; �v)�(�x; �v) = c < 0; (12)

X
�v2V

r(~x; �w) =
X

�x2X;�v2V;�z2Z: f(�x;�v;�z)=~x

r(�x; �v)pz(�z) 8 ~x 2 X: (13)

Let
�r(�x) =

X
�w2W

r(�x; �w):

We will use the following (obvious) observation.

Lemma 1. For any random variable x̂ 2 R(X) such that �X (x̂) = �r there
exists a random variable v̂ 2 R(V ) such that �X�V ((x̂; v̂)) = r.

Lemma 1 can be used to construct sequences of random variables x = x(t),
v = v(t) satisfying (5) and such that

E��(x(t); v(t)) = c < 0 8 t = 0; 1; 2; : : : ; (14)

which contradicts assumption (a). Indeed, let x(0) be a random variable with
values on X and probability distribution �r. Using Lemma 1 with x̂ = x(0),
de�ne v(0) by v(0) = v̂. Then, by (12), the inequality in (14) holds, and, by
(13), the probability distribution of x(1) is the same as that of x(0). Now
the process can be repeated by applying Lemma 1 with x̂ = x(t) and using
v(t) = v̂ for t = 1; 2; : : :.

Calculation of Storage Functions Formally speaking, checking validity
of a given IC on the trajectories of a given FSA using Theorem 1 amounts
to solving a linear program with respect to H . However, the following obser-
vations may help in reducing complexity of the analysis.

Theorem 2. Let M > 0 be a given number. The following conditions are
equivalent:

(a) inequality (9) has a solution H with

max
�x2X

H(�x)�min
�x2X

H(�x) �M ;



(b) for all n = 1; 2; : : : the functions Hn : X ! R de�ned by

Hn+1 = �(Hn); H0 = 0;

where �H = �(H) is given by

�H(�x) = max

(
0;max

�v

(
��(�x; �v) +

X
�z2Z

H(f(�x; �v; �z))pz(�z)

))
;

satisfy the conditions

0 = min
�x2X

Hn(�x); max
�x2X

Hn(�x) �M:

Moreover, if conditions (a),(b) are satis�ed then one such H is given by

H(�x) = H�(�x) = lim
n!1

Hn(�x);

and H(�x) � H�(�x) for any other non-negative solution of (9).

Proof.
(a))(b) If H : X ! R is a solution of (9) then for every constant c 2 R
the function Hc(�x) = H(�x) + c is also a solution. Therefore, it is suÆcient to
look only for those solutions of (9) which satisfy

min
�x2X

H(�x) = 0: (15)

Note that � is a monotonically non-decreasing transformation, in the sense
that

�+(H1)(�x) � �+(H2)(�x) 8 �x 2 X whenever H1(�x) � H2(�x) 8 �x 2 X:

Hence H� � 0 = H0 implies H� = �(H�) � �(H0) = H1, and, further by
induction, M � H� � Hn.
(a)((b) Since H1 � 0 = H0 and � is monotonically non-decreasing, we
have Hn+1 � Hn for all n. Hence for every �x 2 X the sequence Hn(�x) is
monotonically non-decreasing and bounded, and thus converges to a limit
H� such that H� = �(H�) and 0 � H�(�x) � M for all �x 2 X . Therefore
H = H� satis�es (9) as well.

S-Procedure Losslessness. The following statement can be used to check
whether a given integral constraint is satis�ed for all of those trajectories of
a given �nite state automata which satisfy integral constraints from a given
set.

Theorem 3. Let X;V; Z be �nite sets, pz 2 D(Z). Let f : X�V �Z ! X,
�0 : X � V ! R be two functions. Let ~� = f��g be a convex compact set of
functions �� : X � V ! R such that



(*) for each �� 2 ~� the IQC I[���(x(t); v(t))] � 0 does not hold for at least
one random sequence (x(t); v(t)) satisfying (5).

Then the following two conditions are equivalent.

(a) The IC I[�0(x; v)] � 0 holds for all sequences of random variables x(t),
v(t), z(t) satisfying (5) and every IQC I[��(x(t); v(t))] � 0 with �� 2 ~�.

(b) There exists a function H : X ! R, � � 0 and �� 2 ~� such that

�0(�x; �v)� ���(�x; �v) +H(�x) �
X
�z2Z

H(f(�x; �v; �z))pz(�z) 8 �x 2 X; �v 2 V:

(16)

Proof. The proof of Theorem 3 follows the lines of the proof of Theorem 1,
with some minor modi�cations. The implication (b))(a) is obvious. To prove
that (a) implies (b), assume that (b) is false. Then, by assumption (*), (9)
does not have a solution H; �, where � = ��0�(1��)� with � 2 [0; 1] ranges
over the convex hull �̂ of �0 and �~�. In other words, the maximum f =
f(H; �) in (11), which is now a convex function onH�ŝ, has a strictly positive
minimum. Applying standard duality yields existence of r 2 D(X � V ) such
that (13) holds, and (12) holds for all � 2 �̂. Hence the sequence (x(t); v(t))
constructed as in the proof of Theorem 1, will satisfy the conditions

E�(x(t); v(t)) = c < 0; E�(x(t); v(t)) = �c > 0;

which contradicts (a).

2.2 Feedback Design for FSA Models

This subsection is devoted to the problem of designing randomized full state
feedback for uncertain FSA.

Randomized Feedback in Uncertain FSA. Finite sets X;U;W;�, a
probability distribution p� 2 D(�), and a function f : X �U �W �� ! X
de�ne a FSA A = A(f; p�) in which the input variable v(t) = (u(t); w(t)) 2
R(U �W ) is partitioned into control u(t) 2 R(U) and disturbance w(t) 2
R(W ). A randomized feedback for the FSA is de�ned by a memoryless au-
tomata u(t) = g(x(t); �(t)) with input x(t) and random number generator
�(t) with a �xed probability distribution p� 2 D(�). Here �(t) ? (x(t)). An
alternative way to de�ne a randomized memoryless feedback is by specifying
the conditional distribution pujx : X ! D(U), where

pujx(�x; �u) =
X

��: g(�x;��)=�u

p�(��):

By the meaning of the FSA model as an approximation of a complex
dynamical system with input u(t), it is not reasonable to assume indepen-
dence of w(t) and �(t). Therefore, to represent the resulting feedback system



F = F(f; p�; g; p�) in the form (5), let us de�ne xc(t) = (x(t); u(t)) 2 X �U
as the state of F , z(t) = (�(t); �(t+1)) as its random number generator with
distribution pz(��; ��) = p�(��)p�(�t), w(t) as the disturbance input, and

fcl

��
�x
�u

�
; �w;

�
��
��

��
=

�
f(�x; �u; �w; ��)

g(f(�x; �u; �w; ��); ��)

�
:

A typical objective of feedback design is to satisfy an integral constraint
I[�(x(t); u(t); w(t))] � 0, where � is either a given function (when w plays
the role of external disturbance, and optimization of nominal performance is
the goal) or can be selected from a given convex set �̂ = f�g of functions
(in the case when some components of w model dynamical uncertainty, and
hence robust performance is to be optimized).

Design Feasibility of Integral Constraints. The following result gives
necessary and suÆcient conditions of feasibility in a feedback optimization
problem for FSA with a single integral constraint de�ning the design objec-
tive.

Theorem 4. Let �nite sets X;U;W;�, a distribution p� 2 D(�), and func-
tions f : X � U �W � � ! X and � : X � U �W ! R be given. The
following conditions are equivalent.

(a) There exists a randomized feedback u(t) = g(x(t); �(t)) such that the in-
tegral constraint I[�(x(t); u(t); w(t))] � 0 holds for all solutions of the
closed loop system F = F(f; p�; g; p�).

(b) There exists a function H : X ! R such that

H(�x) � min
p2D(U)

max
�w2W

X
�u2U

8<
:��(�x; �u; �w) +

X
��2�

H(f(�x; �u; �w; ��))p�(��)

9=
; p(�u)

(17)
for all �x 2 X.

Note that the optimal distributions p 2 D(U) in (17), one for each �x 2
X , de�ne the conditional distribution p(ujx) : X ! D(U) of the desired
randomized feedback.

Practically, the search for the control storage function H in (17) is fre-
quently reduced to the value iteration procedure Hn+1 = �(Hn), H0 = 0,
where the function � : H ! H is de�ned by �(H)(�x) =

max

8<
:0; min

p2D(U)
max
�w2W

X
�u2U

8<
:��(�x; �u; �w) +

X
��2�

H(f(�x; �u; �w; ��))p�(��)

9=
; p(�u)

9=
; :

The iterative techniques suggested earlier for FSA storage function analysis
extend naturally to the design case.



Proof of Theorem 4. The implication (b))(a) in Theorem 4 is straightfor-
ward, since the optimal distributions p 2 D(U) in (17) de�ne the conditional
distribution p(ujx) : X ! D(U) of a desired randomized feedback such that

E�(x(t); u(t); w(t)) � EH(x(t+ 1))�EH(x(t))

for all random variables w(t).
To prove that (a) implies (b), note �rst that, according to Theorem 1, the

IC I[�(x(t); u(t); w(t))] � 0 is satis�ed for the closed loop system if and only
if there exists a function Ĥ : X � U ! R such that

Ĥ(�x; �u) � ��(�x; �u; �w) +
X

û2U;�2�

Ĥ(f(�x; �u; �w; ��); û)pujx(f(�x; �u; �w; �z); û)pz(�z)

for all �x 2 X , �u 2 U , �w 2 W . For a �xed �w 2 W , multiplying these inequali-
ties by pujx(�x; �u) and summing up over all �u yields (17) for

H(�x) =
X
�u2U

Ĥ(�x; �u)pujx(�x; �u):

Example: Single Bit Memory Stabilization of Double Integrator. It
is known that memoryless output feedback uc(�) = K(yc(�)) is not capable
of stabilizing the double integrator system

�yc(�) = uc(�): (18)

However, the stabilization can be accomplished with a single bit of memory.
The problem of �nite memory stabilization can be reduced to robust FSA
feedback design in the following way.

Consider the sampled data feedback control law

uc(�) = �!(u(t))
2yc(�) for tT � � � (t+ 1)T; (19)

where T 2 (0; �=4) is a �xed sampling rate, t = 0; 1; 2; : : : is the discrete time,
w : f0; 1g ! R is a given function,

!(0) = 1; !(1) = !1 2
�
1;

�

4T

�
;

and u(t) 2 f0; 1g is the output of a FSA (to be designed) with input

s(t) = sign(yc(tT )):

The feedback design objective is to maximize the stabilization rate, hence
h(t) can be de�ned as the amount by which the logarithm of the state state
vector length decreases over a sampling interval [tT; tT + T ]:

h(t) = 0:5 log

�
jyc(tT )j

2 + j _yc(tT )j
2

jyc(tT + T )j2 + j _yc(tT + T )j2

�
� 
;
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�
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�
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Fig. 5. Finite Memory Feedback for Double Integrator

where 
 > 0 is the parameter to be maximized. The setup is shown on
Figure 5, where the A=D block represents the sign sampler.

Let us use the observer with a single bit state m(t) 2 M = f�1; 1g and
output x(t) 2 X = f0; 1g de�ned by

m(t+ 1) = s(t); x(t) = 0:25(m(t)� s(t))2:

Thus x(t) is the indicator that the sign of yc has changed over the last sam-
pling interval.

In terms of this paper, the transformation of the quantized control input
u(t) 2 f0; 1g into the observer output x(t) 2 f0; 1g de�nes a \complex" open
loop model H . A simpli�ed model of H (its abstraction) can be de�ned by
the equations

x(t + 1) = w(t):

To make this simpli�ed model useful for design and analysis, one has to put
integral constraints on the uncertain input variable w(t), and to provide a
lower bound for the average value of h(t) in terms of x(t); u(t); w(t).

Let

M =

�
cos(!1T ) !�1

1 sin(!1T )
�!1 sin(!1T ) cos(!1T )

�
; eq =

�
sin(q)
cos(q)

�
;

�1 = � log
kM2e0k

kMe0k
; �2 = log kMk; �0 = arccos max

q2[0;�]

je0qMeqj

kMeqk
;

where kLk denotes the largest singular value of matrix L. Here M is the
matrix of the linear transformation xc(tT + T ) = Mxc(tT ) of the analog
state

xc(�) =

�
yc(�)
_yc(�)

�

of the system over a single time sampling interval � 2 [tT; tT+T ] when u(t) =
1; ��1 is the maximal possible increment of log kxc(�)k over a single time
sampling interval when u(t) = x(t) = 1; �2 is the maximal possible increment
of log kxc(�)k over a single time sampling interval when u(t) = 1 (note that



kxc(�)k does not change when u(t) = 0); �0 is the minimal increment in
the phase of xc(�) over a single time sampling interval when u(t) = 1 (the
increment equals T when u(t) = 0).

By construction, h(t) � �1 � 
 when x(t) = u(t) = 1. On the other hand,
h(t) = 0 when u(t) = 0, and the inequality h(t) � ��2 � 
 always holds.
Therefore a lower bound for h(t) can be derived in terms of x(t); u(t); w(t)
according to

h(t) � �0(x(t); u(t); v(t)) = [�1x(t) � �2f1� x(t)g]u(t)� 
:

On the other hand one switch of the sign of yc(�) occurs (on average)
for every � radians increment of the phase of xc(�). Moreover, not more
than one sign switch can take place during a single sample interval, and
hence the total number of sign switches over the time interval � 2 [0; T t0]
equals the sum of x(t) from t = 0 to t = t0. Hence the integral constraint
I[�(x(t); u(t); w(t))] � 0 holds for

�(x(t); u(t); w(t)) = �x(t) � �0u(t)� T (1� u(t)):

With these functions �0; �, the FSA/IC design formulation is complete, and
Theorems 1-3 can be applied to optimize a randomized feedback law.

Indeed, for the design feasibility of the reduced single bit model, the per-
formance condition I[�0] � 0 must be satis�ed subject to I[�] � 0 and the
FSA equation. According to Theorem 3, this means existence of � � 0 such
that the IC I[�0���] � 0 holds subject to the FSA equation x(t+1) = w(t).
According to Theorem 4, this means existence of a storage function satisfying
(17), i.e.

H(�x) � min
p

max
�w

X
�u

f���(�x; �u) +H( �w)gp(�u);

where

��(�x; �u) = [(�1 + �2)�x� �2]�u� 
 � �[��x � (�0 � T )�u� T ]:

Here the maximum with respect to �w is achieved when H( �w) = maxH ,
independently of what p is, and hence the minimum with respect to the
distribution p is achieved at an atomic distribution. If we assume (without
loss of generality) that maxH = 0, (17) further collapses to

0 � H(�x) � min
�u
f���(�x; �u)g:

Finally, the largest achievable 
 equals �d̂, where d̂ is the minimum (with
respect to � � 0) of

d(�) = maxfminf��T;���0 + �2g;minf�(� � T ); �(� � �0)� �1gg:

For example, for T = 0:22, !1 = �=(4T ) � 3:57 this yields the maximal

 � 0:067 at � � 0:31, with the optimal control u(t) = x(t).
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