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A Bayesian Approach to Real Options: The Case
of Distinguishing between Temporary and

Permanent Shocks

STEVEN R. GRENADIER and ANDREY MALENKO∗

ABSTRACT

Traditional real options models demonstrate the importance of the “option to wait”
due to uncertainty over future shocks to project cash flows. However, there is often
another important source of uncertainty: uncertainty over the permanence of past
shocks. Adding Bayesian uncertainty over the permanence of past shocks augments
the traditional option to wait with an additional “option to learn.” The implied in-
vestment behavior differs significantly from that in standard models. For example,
investment may occur at a time of stable or decreasing cash flows, respond sluggishly
to cash flow shocks, and depend on the timing of project cash flows.

DURING THE PAST TWO DECADES the real options approach to valuation of irre-
versible investment opportunities has become part of the mainstream litera-
ture in financial economics. The central idea is that the opportunity to invest
is equivalent to an American call option on the underlying investment project.
As a consequence, the problem of optimal investment timing is analogous to
the optimal exercise decision for an American option. Applications of the real
options approach are now numerous.1

One feature that is common to virtually all real options models is that the
underlying uncertainty pertains only to future shocks. Since future cash flows
are uncertain, there is an important opportunity cost of investing today: the
value of the asset might go up so that tomorrow will be an even better time to
invest. This opportunity cost is often referred to in the literature as the “option
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1The early literature is well summarized in Dixit and Pindyck (1994). McDonald and Siegel
(1986) provided the (now standard) setting, which was later extended to account for a time-to-
build feature (Majd and Pindyck (1987)) and strategic interactions among several option holders
(Grenadier (1996, 2002), Lambrecht and Perraudin (2003), Novy-Marx (2007)). Real options mod-
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Nishimura and Ozaki (2007)) into the standard setting.
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to wait.” Conversely, there is also a benefit of immediate investment in that the
project begins to generate cash flows immediately. At the point at which the
costs and benefits of waiting an additional instant are equalized, investment is
made. The implied investment strategy in this standard setting is to wait until
the expected value of the asset reaches some upper threshold value and then
invest.

In this paper we propose a very different kind of real options problem. While
uncertainty about future shocks is important, it may not be the most important
let alone only type of uncertainty faced by a firm. Indeed, another critical source
of uncertainty is uncertainty about past shocks. This is the case when the
firm observes the past shock but fails to identify its exact properties. As time
passes, the firm updates its beliefs about the past shock. Therefore, unlike the
standard models, the uncertainty in our setting is a combination of uncertainty
over future shocks and Bayesian updating, or learning about the nature of past
shocks. In this context, there is an additional benefit to waiting: the opportunity
to learn more about the nature of past shocks and use this information to make
a better investment decision. This gives rise to an additional trade-off between
investing now and waiting, embodied by what we call the “option to learn.”

Specifically, this paper focuses on the case in which uncertainty about past
shocks comes from the firm’s inability to distinguish between temporary and
permanent shocks to the cash flow process. To gain intuition on the trade-off
between investing now and waiting, consider a positive shock to the underlying
cash flows of the project. In the standard setting the firm’s strategy is rather
simple: the firm should invest if and only if the shock is high enough so that
the value of the cash flow process exceeds some threshold level. However, when
the firm does not know if the shock is temporary or permanent, it may want to
wait in order to learn more about the identity of the shock. Indeed, if the firm
waits until tomorrow and the value of the cash flow process is still at a high
level, then the past shock is more likely to represent a positive fundamental
change. On the other hand, if the cash flow process decreases, then there is a
greater chance that the past positive shock was simply a result of temporary,
nonfundamental fluctuations.

To account for the two fundamentally different notions of uncertainty, we
model the evolution of the cash flow process in the following way. First, the cash
flow process is subject to standard Brownian innovations, as in traditional real
options models. Second, the cash flow process is subject to jump shocks, which
may be permanent or temporary. If a shock is permanent, the cash flow process
is changed forever. In contrast, if a shock is temporary, the cash flow process
is changed only temporarily until the shock reverts at some random point in
the future. Importantly, one does not know with certainty the true nature of
these jump shocks. While learning about Brownian innovations is done by
simply observing the increments of the cash flow process, learning about the
permanent or temporary nature of past jump shocks involves waiting to see if
they revert.

Our argument is based on two building blocks that distinguish this model
from the prior real options literature. The first building block is the presence
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of both temporary and permanent shocks to cash flows. While virtually all real
options models focus solely on permanent shocks, the presence of temporary
shocks is a natural feature of many real world economic environments. The
focus on only permanent shocks is clearly a simplification that permits one
to model the cash flow process as a geometric Brownian motion. However, as
Gorbenko and Strebulaev (2010) show, assuming a geometric Brownian motion
cash flow process leads to a number of undesirable empirical properties.2

The second building block is the inability of the firm to distinguish be-
tween permanent and temporary shocks. This is an especially important fea-
ture of investments in natural resources, where it is often unclear when a
change in the commodity price represents a fundamental or ephemeral shift.
Indeed, as the World Bank’s Global Economic Prospects annual report for 2000
states:

Most important, distinguishing between temporary and permanent
shocks to commodity prices can be extraordinary difficult. The swings
in commodity prices can be too large and uncertain to ascertain their
causes and nature. The degree of uncertainty about duration of a price
shock varies. For example, market participants could see that the sharp
jump in coffee prices caused by the Brazilian frost of 1994 was likely to be
reversed, assuming a return to more normal weather. By contrast, most
analysts assumed that the high oil prices during the mid 1970s and early
1980s would last indefinitely.3

We show that augmenting the traditional uncertainty over future shocks
with Bayesian uncertainty over past shocks gives rise to a number of impor-
tant and novel implications. First, in contrast to the standard real options
setting in which investment occurs when cash flows rise to a constant trig-
ger, we find that once we account for Bayesian uncertainty about past shocks,
the investment trigger is a function of the firm’s changing beliefs about the
nature of past shocks. This distinction is due to the fact that while in stan-
dard real options models uncertainty is constant over time, in our Bayesian
framework uncertainty depends on the timing of past shocks. More specifically,
uncertainty is high soon after the arrival of a large shock since the firm is very
unsure whether it is permanent or temporary. However, as time goes by, un-
certainty about the past shock declines as the firm becomes increasingly more
confident about the shock’s permanence. Thus, in addition to the standard op-
tion to wait for realizations of future shocks, there is now also an option to wait
in order to learn more about the nature of past shocks. We find that these two
options to delay investment are additive, and appear to be of similar magni-
tude when past shocks are significant. Ignoring either option would lead to a
similar investment timing error. Because uncertainty increases after a shock
arrives, the model rationalizes a sluggish response of investment to cash flow

2For example, it implies that the volatilities of cash flow and asset growth are equal, while
empirically volatilities of cash flow growth are much higher than volatilities of asset value growth.

3World Bank, 2000. Global Economic Prospects and Developing Countries, p. 110.
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shocks. Intuitively, after a new shock arrives, the firm might find it optimal
to postpone investment in order to wait and see if the past shock is indeed
permanent.

A second important implication of the Bayesian model is that investment
may occur in the face of stable or even decreasing cash flows. Since standard
real options models imply that investment will be triggered when shocks push
the underlying cash flow level up to a fixed threshold, the firm can rationally
exercise the investment option only when the underlying cash flows increase.
However, when the traditional real options model is extended to include the
Bayesian feature, the firm may invest even when the cash flow process is
stable or declining simply because it becomes sufficiently certain about the
permanent nature of past shocks. While investment in the face of stable or
decreasing cash flows can be obtained in other models with more than one
state variable, our argument is special in that it links these features to the
timing of observable shocks and thereby offers an intuitive explanation for
firms (and industries) investing in markets where cash flows are stable, or
even declining. For example, as we discuss in Section III, learning about the
persistence of the 1973 oil price shock was likely one reason for the rapid office
construction in Denver and Houston during the late 1970s and early 1980s
when the underlying property cash flows were declining.

Finally, in contrast to standard real options models with uncertainty only
over future shocks, in the context of Bayesian uncertainty over past shocks the
exercise strategy depends on the timing structure of the project’s cash flows.
In standard real options models, the net present value that triggers exercise
is constant, regardless of whether the project’s cash flows are “front-loaded”
or “back-loaded.” That is, irrespective of whether the project’s cash flows occur
mostly up-front or mostly later in the future, exercise will be triggered when the
net present value of future cash flows equals the same premium over the cost.
However, with Bayesian uncertainty over past shocks, the exercise strategy
depends critically on the timing structure of the project’s cash flows. The greater
the “front-loadedness” of the option payoff, the less important is the assessment
of the relative likelihood that a shock is temporary or permanent. As a result,
the option to learn is less valuable, so the firm invests at a lower trigger. Thus,
while the firm might invest in a short-term project when the value of the future
cash flows exceeds the investment cost by a relatively small amount, the firm
might invest in a long-term project only if the value of the future cash flows
exceeds the investment cost by a large premium.

While we model shocks as jumps, it should be noted that a jump specification
is not necessary for the cash flow process to be a combination of temporary and
permanent shocks. One could model the cash flow process as a combination
of any two processes, where the first governs long-term cash flows from the
project and the second is responsible for short-term deviations from the long-
term mean. Uncertainty about the nature of past shocks is then equivalent to
observing the total cash flow process but not its separate components. However,
modeling shocks as jumps, while not being a necessary feature, allows us to
develop a framework that is both tractable and intuitive.
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Several papers are closely related to our model. Gorbenko and Strebulaev
(2010) incorporate temporary shocks into a contingent claims framework of
capital structure and show that the presence of temporary shocks provides
a potential explanation for several puzzles in corporate finance. Our paper
differs from theirs in two important respects. First, and most importantly,
our argument relies heavily on the firm’s imperfect information and learning
about the permanence of past shocks, while Gorbenko and Strebulaev (2010)
assume perfect information about past shocks. Second, while we consider firms’
investment decisions, their focus is on financing policy.

Our paper is also related to models of parameter uncertainty such as
Décamps, Mariotti, and Villeneuve (2005) and Klein (2007, 2009), who solve for
the optimal investment timing when the firm is uncertain about the drift pa-
rameter of the state process. These models of parameter uncertainty are based
on very different notions of uncertainty and learning. First, in these models, the
firm learns more about the true parameter over time. In the fullness of time,
full information can be achieved. In contrast, our model deals with uncertainty
about the state of the economy, which, unlike uncertainty about a parameter
of the model, is evolving over time: as new shocks arrive and old ones revert,
the learning problem changes dynamically, and even in the fullness of time
the true nature of uncertainty is never revealed. Second, in these models of
parameter uncertainty all learning is driven by evolutions in the Brownian
component of uncertainty.4 The Brownian and Bayesian components are thus
fundamentally intertwined, which results in difficulty in decomposing the two.
For example, a sequence of positive Brownian innovations not only lowers the
option to wait but also affects the option to learn as it implies a greater like-
lihood of a higher drift parameter. In our model’s setting, the Brownian and
Bayesian components are decoupled. The Brownian uncertainty is identical to
that from standard real options models, while learning is driven by a sepa-
rate shock process. Thus, our model is more appropriate for settings in which
learning is driven by the evolution of economic shocks and not by the volatil-
ity of the process itself. These distinctions result in important differences in
the resulting investment behavior. First, Klein (2007, 2009) shows that it may
be the case that Bayesian learning about parameter uncertainty may actually
lead to earlier investment than in the full-information setting. In contrast, our
model of Bayesian uncertainty over past shocks always leads to delay due to
the option to learn. Second, since the arrival of a shock increases uncertainty
and thus the value of waiting to learn, our model implies that investment

4See also papers on optimal experimentation that deal with problems of optimal control under
learning (e.g., Bolton and Harris (1999), Keller and Rady (1999), and Moscarini and Smith (2001)).
These papers focus on active learning through experimentation, in contrast to passive learning
through observation found in the present paper. Similarly to Décamps et al. (2005) and Klein
(2007, 2009), these papers feature Brownian uncertainty and learning, with the Brownian motion
providing the noise that makes learning necessary in the first place. In the present paper, by
contrast, Brownian uncertainty is irrelevant to learning and simply drives the standard option to
wait.
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responds sluggishly to shocks, an implication not present in models of param-
eter uncertainty.

Another related paper is Miao and Wang (2007), who solve for the en-
trepreneur’s optimal decision to exit a business in the presence of idiosyn-
cratic nondiversifiable risk. Specifically, Miao and Wang (2007) consider an
entrepreneur with incomplete information about her entrepreneurial abilities
who chooses between continuing entrepreneurial activity and taking a safe job.
While their paper contains Bayesian learning over entrepreneurial ability, it
does not allow for Brownian uncertainty of cash flows, as does ours. In addition,
in their setting there is only a single source of Bayesian uncertainty, while in
our model new shocks can arrive and old shocks can revert. Finally, the focus
of their paper is on risk aversion and imperfect hedging of idiosyncratic risks,
while ours is on the joint impact of various sources of uncertainty on investment
timing.5

Finally, our paper also shares the learning feature with Lambrecht and Per-
raudin (2003), who study competition between two firms for a single invest-
ment opportunity when information about investment costs is private. They
show that, as time goes by, while the competitor has not invested yet, each firm
updates its belief about the competitor’s investment costs upward.6

The remainder of the paper is organized as follows. Section I describes a
setup of the model and for purposes of providing intuition solves the most
simple case of a pure jump process with only one shock. Section II focuses on
incorporating learning over the past shock, developed in Section I, into the
standard geometric Brownian motion setting. Section III provides a discussion
of important implications of the model. Section IV generalizes the model to the
case of multiple shocks. Finally, Section V concludes.

I. Model Setup and a Simple Case

In this section, we describe the setup of the model, which incorporates un-
certainty over the permanence of past shocks into the real options framework.
Then, to show the main intuition behind the argument, we consider the sim-
plest possible setting as a special case. In subsequent sections we solve for more
general cases.

A. The Investment Option

Consider a standard real options framework in which a risk-neutral firm
contemplates irreversible investment. By paying the investment cost I, the

5Other papers that include learning based on a Poisson process include Malueg and Tsutsui
(1997), Bergemann and Hege (1998), and Keller, Rady, and Cripps (2005). Similar to Miao and
Wang (2007), but unlike the present paper, there is only Bayesian uncertainty and no Brownian
uncertainty. In these models, firms learn about profitability by observing (their own and sometimes
other firms’) payoff outcomes.

6Our paper is also related to Moore and Schaller (2002), who extend the neoclassical q theory of
investment by allowing for permanent and temporary shocks to interest rates, and for uncertainty
about them.
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firm obtains the perpetual cash flow X(t). The firm is free to invest in
the project at any time it chooses. The firm has a constant discount rate
r > 0.

The evolution of the cash flow process consists of two components. As usual
in the literature, the cash flow process evolves according to the geometric Brow-
nian motion with drift α and diffusion σ , where α < r to ensure finite values.7

In addition, the cash flow process is subject to jump shocks, which can be tem-
porary or permanent. Upon the arrival of a shock, the cash flow process jumps
from X(t) to X(t)(1 + ϕ), with ϕ > 0.8 A permanent shock changes the value of
the cash flow process forever, while a temporary shock changes the value of
the cash flow process only temporarily until it reverts at some random point
in the future. Once the shock reverts, the cash flow process jumps down by the
multiple of 1 + ϕ. Importantly, the firm is unable to distinguish between perma-
nent and temporary shocks, and thus uses Bayesian updating to assess their
relative likelihoods. We assume that the arrival and reversal (of temporary
shocks) follow jump processes. Specifically, a permanent shock arrives with in-
tensity λ1, a temporary shock arrives with intensity λ2, and each outstanding
temporary shock reverts with intensity λ3 > λ2. Reversal of each outstanding
temporary shock is independent of arrivals of new shocks and reversals of other
outstanding temporary shocks. Arrival of a new permanent (temporary) shock
is independent of arrival of a new temporary (permanent) shock and reversals
of outstanding temporary shocks.

Let us formally define the evolution of the cash flow process, conditional on
information about the identities of the shocks. Fix a probability space (�,F , P)
and a filtration (Ft) = {Ft : t ≥ 0}. The evolution of the cash flow process X(t) is
given by

dX(t) = αX(t) + σ X(t)dB(t) + ϕX(t)(dM1(t) + dM2(t)) − ϕX(t)
1 + ϕ

dN(t), (1)

where X(0) = X0, and B(t), M1(t), M2(t), and N(t) are (Ft)-adapted. In (1), dB(t)
is the increment of a standard Wiener process, and M1(t), M2(t), and N(t) are
nonexplosive counting processes corresponding to the arrival of permanent
shocks, the arrival of temporary shocks, and the reversal of outstanding tem-
porary shocks, respectively. These shocks’ intensities are λ1, λ2, and k(t)λ3,
respectively, where k(t) is the number of outstanding temporary shocks at
time t: k(t) = M2(t) − N(t). Conditional on Ft, the increments of M1(t), M2(t),
and N(t) over the next instant are independent. Defining the total num-
ber of outstanding shocks by n(t) = M1(t) + M2(t) − N(t), we can say that the

7To be more precise, the upper bound on α that guarantees finite values depends on the particular
specification of the model. When the number of potential permanent shocks is finite, the upper
bound is r. When the number of potential permanent shocks is infinite, the upper bound is r − λ1ϕ,
where λ1 and ϕ are defined later.

8The model can be extended to the case of stochastic jump amplitudes, including the possibility
of both positive and negative jumps, albeit at the cost of additional mathematical complexity.
However, the basic intuition and results remain unchanged.
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triple (X(t), n(t), k(t)) represents the state under the full-information filtration
(Ft).9

Now, let us consider the evolution of the cash flow process from the firm’s point
of view. The firm observes the evolution of X(t), but cannot distinguish whether
jumps in X(t) are caused by permanent shocks dM1(t) or temporary shocks
dM2(t). Mathematically, the information available to the firm is represented
by the partial-information filtration (Gt) generated by (B, M, N), where M(t) =
M1(t) + M2(t). Hence, at any time t, the firm knows the total number n(t) =
M(t) − N(t) of outstanding shocks, but does not know the number k(t) = M2(t) −
N(t) of outstanding temporary shocks. However, given the Bayesian learning
process described in detail in the next subsection, the firm possesses posterior
probabilities on the number k(t) of outstanding temporary shocks:

pk(t) ≡ P(k(t) = k |Gt). (2)

The firm therefore attaches probability p1(t) that there is exactly one out-
standing temporary shock, p2(t) that there are two outstanding temporary
shocks, . . . , pn(t)(t) that all of the n(t) outstanding shocks are temporary. Thus,
at time t the firm estimates that over the next instant (t, t + dt), a new shock ar-
rives with probability (λ1 + λ2)dt and an existing shock reverts with probability∑n(t)

k=1 pk(t)kλ3dt.
Let S(t) denote the expected (under the firm’s information set) present value

of the project’s underlying cash flows:

S(t) = E

[∫ ∞

t
e−r(s−t) X(s) ds |Gt

]
. (3)

We can then say that the firm’s investment problem is to find a stopping time
τ ∗ ∈ (Gt) such that

sup
τ∈(Gt)

E[e−rτ (S(τ ) − I) |Gt] = E
[
e−rτ ∗

(S(τ ∗) − I) |Gt
]
. (4)

B. The Bayesian Learning Process

Since the firm is unsure whether past shocks are permanent or temporary,
an important state variable is the firm’s belief about the identity of past shocks.

9Because the dynamics of X(t) are driven by both Brownian motion and jump processes, X(t) is a
jump-diffusion process (see Chapter 11.4.1 in Shreve (2004) for a discussion) and, more generally,
a semimartingale (see Chapter 2 in Protter (2004) for an overview). Mathematically, the stochastic
structure of the model is similar to models of correlated default in which default of one claim
causes changes in the default intensity of other claims. For example, see the primary-secondary
default model in Jarrow and Yu (2001). Both in Jarrow and Yu (2001) and in our model, there
is a “primary” jump process with a constant intensity, whose arrivals influence the intensity of a
“secondary” jump process.
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Consider moments t and t + dt for any t and infinitesimal positive dt. Depending
on the history between t and t + dt, there are three cases to analyze:10

1. no new shocks occur or outstanding shocks reverse between t and t + dt;
2. a new shock occurs; and
3. an outstanding shock reverses.

Consider the first case, where there are no changes in the number of outstand-
ing shocks between t and t + dt. Suppose that there are n outstanding shocks
and at time t the firm assesses the probability that k of them are temporary at
pk(t). Then the beliefs of the firm are defined by vector p(t) = (p0(t)p1(t) . . . pn(t)).
If k of the outstanding shocks are temporary, over a short period of time dt
a shock reverts back with probability kλ3dt. Similarly, a new shock arrives
with probability (λ1 + λ2)dt. Thus, conditional on k of the shocks being tempo-
rary, the probability that there are no new shocks or reversions over dt equals
1 − (λ1 + λ2)dt − kλ3dt. Using Bayes’s rule, the posterior probability pk(t + dt)
is given by

pk(t + dt) = pk(t)(1 − (λ1 + λ2)dt − kλ3dt)

1 − (λ1 + λ2)dt − λ3

n∑
i=1

pi(t)idt

. (5)

Equation (5) is a direct application of Bayes’s rule. The numerator is the joint
probability of having k temporary outstanding jumps and observing no jumps or
reversions between t and t + dt. The denominator is the sum over i = 0, 1, . . . of
the joint probabilities of having i temporary outstanding jumps and observing
no jumps or reversions between t and t + dt.

We can rewrite (5) as

pk(t + dt) − pk(t)
dt

= −
λ3 pk(t)

(
k −

n∑
i=1

pi(t)i

)

1 − (λ1 + λ2) dt − λ3

n∑
i=1

pi(t) idt

. (6)

Taking the limit as dt → 0,

dpk(t)
dt

= −λ3 pk(t)

(
k −

n∑
i=1

pi(t)i

)
. (7)

The dynamics of pk(t) while there are no new shocks or reversions has two
interesting properties. First, pk(t) increases over time when k <

∑n
i=1 pi(t)i, and

decreases over time otherwise. Intuitively, when k <
∑n

i=1 pi(t)i, the likelihood
of reversion conditional on having k outstanding temporary jumps is lower

10Note that the probability of observing more than one new shock or reversion between t and
t + dt has the order (dt)2. Since dt is infinitesimal, we can ignore these cases. The same is true for
the likelihood of both a new shock and a reversion occurring at the same instant.
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than the unconditional likelihood of reversion. Therefore, when the firm does
not observe a new shock or a reversion, it updates its beliefs pk(t) upward.
The opposite is true when k >

∑n
i=1 pi(t)i. Second, the speed of learning is

proportional to λ3. In other words, if temporary shocks are more short-term,
then the firm updates its beliefs faster than if they are more long-term.

Now consider the second case. If a new shock occurs between t and t + dt,
then the updated beliefs equal

pk(t + dt) ≡ p̂k(p(t)) = pk−1(t)
λ2

λ1 + λ2
+ pk(t)

λ1

λ1 + λ2
. (8)

The intuition behind (8) is simple. After the shock, there can be k temporary
shocks outstanding either if there were k − 1 temporary shocks and the new
shock is temporary or if there were k temporary shocks and the new shock is
permanent.

Finally, considering the third case, if an outstanding shock reverses between
t and t + dt, by Bayes’s rule the firm’s updated beliefs equal

pk(t + dt) ≡ p̃k(p(t)) = pk+1(t)(k + 1)
n∑

i=1

pi(t)i

. (9)

When a shock reverses, the firm learns that it was temporary. Hence, there
are k outstanding temporary shocks after the reversal if and only if there were
k + 1 outstanding temporary shocks before that. The joint probability of having
k + 1 temporary shocks at time t and observing a reversion between t and t + dt
equals pk+1(t)(k + 1)λ3dt. The probability of observing a reversion between t and
t + dt conditional only on being at time t equals

∑n
i=1 pi(t)iλ3dt. Dividing the

former probability by the latter yields (9).
Equations (7) to (9) fully characterize the dynamics of the firm’s beliefs.

Notice that reversion of a shock decreases the number of outstanding shocks
by one, while arrival of a new shock increases this number by one.

To keep the model both intuitive and tractable, in the early sections of the
paper we focus on the case in which there is only one shock, which can be either
permanent or temporary.11 In this case, the firm’s beliefs can be characterized
by a single state variable p(t) ≡ p1(t), which is the probability that the out-
standing shock is temporary. Before the arrival and after the reversion, there
is no uncertainty about past shocks. At the moment t0 of the arrival of the
shock, the firm assesses the prior probability of the shock being temporary as
p(t0) ≡ π0 = λ2/(λ1 + λ2). After the shock arrives, the firm continuously updates
its assessment of this probability according to (7),

dp(t)
dt

= −λ3 p(t)(1 − p(t)), (10)

11Section IV considers the multi-shock setting.
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which is solved by

p(t) = λ2

λ1eλ3(t−t0) + λ2
. (11)

C. A Simple Case

Before presenting the details of our analysis in subsequent sections, we con-
sider the simplest setting to illustrate the intuition behind our results. Specif-
ically, for the cash flow specification in (1), we set α = σ = 0 and assume that
there is only one shock, which can be either permanent or temporary. In this
case the cash flow process is rather simple. At all times prior to the arrival of
the shock, the cash flow stream is fixed at X0. Upon the arrival of the shock, it
jumps up to X0(1 + ϕ). With a permanent shock the cash flow remains at the
higher level X0(1 + ϕ) forever after, but with a temporary shock the cash flow
eventually reverts to the level X0 at some (random) point in the future.

Suppose that the shock has arrived. Let us begin by calculating some simple
values. If the firm knows for sure that the shock is permanent, then the present
value of the project’s cash flows is X0(1+ϕ)

r , which is simply the present value
of the perpetual cash flow X0(1 + ϕ). Conversely, if the firm knows for sure
that the shock is temporary, then the present value of the project’s cash flows
is X0(1+ϕ+λ3/r)

r+λ3
, which is the present value of receiving a flow of X0(1 + ϕ) until

the shock is reversed and X0 thereafter. Therefore, the present value of the
project’s underlying cash flows upon investing at the belief level p, defined by
(3), is equal to

S(p) = (1 − p)
X0(1 + ϕ)

r
+ p

X0(1 + ϕ + λ3/r)
r + λ3

. (12)

To ensure that a nontrivial solution exists for the problem, we make the
assumption that X0 satisfies

rI
1 + ϕ

< X0 <
r + λ3π0

1 + ϕ + λ3

r
π0

I. (13)

Economically, the lower bound means that if the shock is known to be
permanent, the net present value of investing into the project is positive,
X0(1+ϕ)

r − I > 0, or else there would never be any investment in this Bayesian
setting. The upper bound is equivalent to an assumption that learning has pos-
itive value. In particular, this assumption implies that if the shock is known to
be temporary, then it is not optimal to invest: X0(1+ϕ+λ3/r)

r+λ3
− I < 0.

Let G(p) denote the value of the option to invest, while a shock persists,
where p is the current value of the belief process. By Itô’s lemma for jump
processes (see Shreve (2004)), the dynamics of G(p) under (Ft) are given by

dG(p) = −λ3 p(1 − p)G′(p)dt + (H(X0) − G(p))dN(t), (14)
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where H(X0) is the value of the option to invest after the shock reverts. In
(14), the intensity of N(t) is equal to k(t)λ3, where k(t) is the indicator of an
outstanding temporary shock at time t, known under (Ft). Because the firm
believes that the shock is temporary with probability p, E[dN(t) |Gt] = pλ3dt.
Therefore, the expectation of the differential with respect to the information
set of the firm is equal to

E

[
dG(p)

dt

∣∣∣∣Gt

]
= −λ3 p(1 − p)G′(p) + pλ3(H(X0) − G(p)). (15)

By definition, it must be the case that E[dG(p)/dt |Gt] = rG(p). Therefore, G(p)
must satisfy the following differential equation:

(r + pλ3)G(p) = −λ3 p(1 − p)G′(p) + pλ3 H(X0). (16)

By (13), the option will not be exercised after the reversion, so H(X0) = 0 and

(r + pλ3)G(p) = −λ3 p(1 − p)G′(p). (17)

The general solution to (17) is

G(p) = C · (1 − p)
(

1
p

− 1
) r

λ3

, (18)

where C is a constant to be determined by the appropriate boundary conditions.
The option will be exercised when the conditional probability of the shock

being temporary decreases to a lower threshold. Intuitively, it is optimal for
the firm to invest only when it becomes sufficiently sure that the past shock is
permanent. Let p̄ denote the trigger at which the option is exercised. The exer-
cise trigger p̄ and constant C are jointly determined by the following boundary
conditions:

G( p̄) = (1 − p̄)
X0(1 + ϕ)

r
+ p̄

X0(1 + ϕ + λ3/r)
r + λ3

− I, (19)

Gp( p̄) = − X0(1 + ϕ)
r

+ X0(1 + ϕ + λ3/r)
r + λ3

. (20)

The first equation is the value-matching condition. It reflects the fact that upon
exercise, the value of the project is equal to its net present value, S( p̄) − I. The
second equation is the smooth-pasting condition.12 It ensures that the trigger
p̄ maximizes the option value.

12This condition is also known as the high-contact condition (see Krylov (1980) or Dumas (1991)
for a discussion).
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Combining (18) with (19) and (20) yields the optimal investment threshold p̄
and constant C:

p̄ = X0(1 + ϕ) − rI

λ3

(
I − X0

r

) , (21)

C = 1
1 − p̄

(
1
p̄

− 1
)− r

λ3
[
(1 − p̄)

X0(1 + ϕ)
r

+ p̄
X0(1 + ϕ + λ3/r)

r + λ3
− I

]
. (22)

Now we can see that the upper bound on X0 from (13) is equivalent to as-
suming that p̄ < π0. This restriction seems entirely reasonable since it ensures
that there is some benefit to learning. Combined with the lower bound on X0,
it guarantees that p̄ ∈ (0, π0). Also, note that in this simple case, the option
will never be exercised prior to the arrival of the shock.13 This is because the
value of exercising prior to the arrival of the shock is dominated by the value
of waiting until the shock arrives and then exercising immediately, as shown
in the Appendix (which itself is dominated by optimal exercise after the shock
arrives).

This simple case highlights the key notion of Bayesian learning in a real op-
tions context. Perhaps the best way to gain intuition on the optimal investment
policy is to rewrite the expression for the optimal trigger p̄ outlined in equation
(21) as

X0(1 + ϕ) = p̄λ3

(
I − X0

r

)
+ rI. (23)

The intuition behind expression (23) is the trade-off between investing now
versus investing a moment later if the past shock persists, where the value
of waiting is explicitly an option to learn. If the firm invests now, it gets the
benefit of the cash flow X0(1 + ϕ) over the next instant. This is the term on the
left-hand side of the equal sign. If the firm waits a moment and invests if the
past shock persists, it faces a small chance of the shock reversing, in which case
the expected value gained by not investing is equal to I − X0

r . Importantly, by
waiting that additional moment, it gains the opportunity to forgo investment
should the past shock prove to be temporary. The second term on the right-hand
side of the equal sign, rI, is the savings from delaying the investment cost by
an instant. At the optimal trigger, these two sides are exactly equal, and the
firm is indifferent between investing now and waiting a moment to learn.

Figure 1 plots simulated sample paths of the cash flow process, X(t), and
the corresponding firm’s belief process, p(t). Before the arrival of the shock,
investment is suboptimal since the project does not generate high enough cash
flows. When the shock arrives, the cash flow process jumps from X0 to X0(1 +
ϕ). Despite the net present value of the project being positive, the firm finds
investment suboptimal because of the option to learn more about the nature of

13This result will not hold in several generalized versions of the model that follow.
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Figure 1. Simulation of the firm’s investment strategy. The top graph shows the simulated
sample path of the cash flow process, X(t), for the simple model of Section I.C. An upward step
corresponds to the arrival of a shock. For this sample path, the shock arrives at time 0.67 and
persists through year 3, implying that over time the firm becomes more confident that the shock
is permanent. The bottom graph shows the dynamics of the firm’s belief process as well as the
investment threshold p̄. The investment occurs when the firm’s belief process falls to p̄. At this
point, the benefits of learning and the costs of deferring the receipt of the cash flows are precisely
offset. The parameter values are r = 0.04, ϕ = 0.2, λ1 = 0.5, λ2 = 1, λ3 = 2, I = 25, and X0 = 0.95.

the past shock. As time goes by and the shock does not revert back, the firm
updates its beliefs downwards. When the firm becomes sufficiently confident
that the past shock is permanent, it invests. In the example in Figure 1 this
happens more than 1.5 years after the arrival of the shock.

II. Model with Bayesian and Brownian Uncertainties

In the simple case in the previous section, the cash flow process X(t) is a
pure jump process. Since most traditional real options models are based on
Brownian uncertainty, we generalize the simple case by allowing X(t) to follow
a combined jump and geometric Brownian motion process. In this case the firm
faces two fundamentally different types of uncertainty. First, as in traditional
models, the firm is uncertain about future shocks. This is captured by the cash
flow process being subject to the Brownian innovations and unknown timing of
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the shock before its arrival. This gives rise to the option to wait for realizations
of future shocks usually studied in the real options literature. Second, the firm
is also uncertain about past shocks, as it is unable to perfectly identify whether
the past shock is permanent or temporary. This gives rise to the option to learn
more about the nature of past shocks. In order to highlight the interaction
between these uncertainties, we assume only a single shock. Section IV extends
the model to the general case of multiple shocks.

Since there is only one shock, which can be either permanent or temporary,
we solve the model by backward induction. First, we consider the optimal
timing of investment conditional on a temporary shock having reversed. In
this case, there is neither uncertainty about past shocks nor the possibility of
new jumps, so the problem is the standard real options problem studied in the
literature. Second, we move one step back and consider the situation after a
shock arrives, when the firm is uncertain about its nature. Finally, we consider
the situation before a shock arrives.

A. Optimal Investment after a Shock Reverses

First, consider the situation after a temporary shock reverses. In this case
there is no uncertainty about past shocks, so the only underlying state variable
is X(t), which follows

dX(t) = αX(t) dt + σ X(t)dB(t). (24)

Let H(X) denote the value of the investment option after the shock reverses,
where X is the current value of the cash flow process. Using standard argu-
ments (e.g., Dixit and Pindyck (1994)), in the range before investment, H(X)
must solve the following differential equation:

rH = αXHX + 1
2

σ 2 X2 HXX. (25)

Equation (25) must be solved subject to the following boundary conditions:

H(X∗) = X∗

r − α
− I, (26)

H′(X∗) = 1
r − α

, (27)

where X∗ is the investment threshold. The first boundary condition is the
value-matching condition, which states that at the exercise time the value of
the option is equal to the net present value of the project. The second boundary
condition is the smooth-pasting condition, which guarantees that the exercise
strategy is chosen optimally. The last boundary condition is H(0) = 0, reflecting
the fact that X(t) = 0 is the absorbing barrier for the cash flow process.14

14This boundary condition applies to all of the valuation equations. However, to avoid repetition,
we do not list it in the future valuation equations.
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Solving (25) subject to (26) and (27) yields the investment threshold X∗,

X∗ = β

β − 1
(r − α)I, (28)

where β is the positive root of the fundamental quadratic equation 1
2σ 2β(β −

1) + αβ − r = 0:

β = 1
σ 2

⎡
⎣−

(
α − σ 2

2

)
+

√(
α − σ 2

2

)2

+ 2rσ 2

⎤
⎦ > 1. (29)

The corresponding value of the investment option H(X) is then given by

H(X) =

⎧⎪⎪⎨
⎪⎪⎩

(
X
X∗

)β (
X∗

r − α
− I

)
, if X < X∗,

X
r − α

− I, otherwise.

(30)

B. Optimal Investment while a Shock Persists

Consider the situation in which there is an outstanding shock that can be
either permanent or temporary. In this case, analogous to (1), the evolution of
X(t) under (Ft) is given by

dX(t) = αX(t) dt + σ X(t)dB(t) − ϕX(t)
1 + ϕ

dN(t), (31)

where the intensity of N(t) is equal to k(t)λ3, and where k(t) is the indicator for
an outstanding temporary shock at time t, known under (Ft) but unknown by
the firm.

We begin by calculating some simple values. If the firm knows for sure that
the shock is permanent, then the present value of the project’s cash flows is

1
r−α

X(t). If the firm knows for sure that the shock is temporary, then the present

value of the project’s cash flows is 1+λ3/((r−α)(1+ϕ))
r−α+λ3

X(t). Therefore, the expected
present value of the project’s underlying cash flows, defined by (3), is equal to

S(X(t), p(t)) =

⎡
⎢⎢⎣(1 − p(t))

1
r − α

+ p(t)
1 + λ3

(r − α)(1 + ϕ)
r − α + λ3

⎤
⎥⎥⎦ X(t). (32)

Let G(X, p) denote the value of the option to invest while the shock persists,
where X and p are the current values of the cash flow and belief processes,
respectively. By Itô’s lemma for two-dimensional processes with jumps (see
Theorem 11.5.4 in Shreve (2004)), in the range of (X, p) at which the option is
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not exercised, the dynamics of G(X, p) under (Ft) satisfy

dG =
(

αXGX + σ 2

2
X2GXX − λ3 p(1 − p)Gp

)
dt

+ σ XGXdB(t) +
(

H
(

X
1 + ϕ

)
− G

)
dN(t),

(33)

where H(X) is the value of the option when no more jumps can occur, given
by (30). Because the firm believes that the shock is temporary with probability
p, E[dN(t) |Gt] = pλ3dt. Hence, the instantaneous conditional expected change
in G(X, p) is equal to

E

[
dG
dt

∣∣∣∣Gt

]
=αXGX + σ 2

2
X2GXX−λ3 p(1− p)Gp+ pλ3

(
H

(
X

1 + ϕ

)
− G

)
. (34)

Thus, analogous to equation (16), in the range of (X, p) at which the option is
not exercised, G(X, p) must satisfy the following partial differential equation:

(r + pλ3)G = αXGX + σ 2

2
X2GXX − λ3 p(1 − p)Gp + pλ3 H

(
X

1 + ϕ

)
. (35)

Exercise will be triggered when cash flows rise to an upper trigger, which
is itself a function of the firm’s beliefs. Let X̄(p) denote the exercise trigger
function. Conjecture that X̄(p) < (1 + ϕ)X∗ for all p ∈ (0, π0].15 Equation (35) is
solved subject to the following value-matching and smooth-pasting conditions:

G(X̄(p), p) =

⎡
⎢⎢⎣(1 − p)

1
r − α

+ p
1 + λ3

(r − α)(1 + ϕ)
r − α + λ3

⎤
⎥⎥⎦ X̄(p) − I, (36)

GX(X̄(p), p) =

⎡
⎢⎢⎣(1 − p)

1
r − α

+ p
1 + λ3

(r − α)(1 + ϕ)
r − α + λ3

⎤
⎥⎥⎦ , (37)

Gp(X̄(p), p) =

⎡
⎢⎢⎣− 1

r − α
+

1 + λ3

(r − α)(1 + ϕ)
r − α + λ3

⎤
⎥⎥⎦ X̄(p). (38)

The value-matching condition (36) captures the fact that at the time of in-
vestment the value of the investment option equals the expected payoff from
immediate investment S(X̄(p), p) − I, while the smooth-pasting conditions (37)

15This conjecture is verified in the Appendix.
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and (38) guarantee that the trigger function is chosen optimally. In the Internet
Appendix we use the results in Peskir and Shiryaev (2006) to show that the
boundary X̄(p) indeed satisfies the smooth-pasting conditions (37) and (38).16

Evaluating (35) at X̄(p), plugging in the boundary conditions (36) to (38),
and simplifying, we get the following equation for the optimal trigger function
X̄(p):17

X̄(p) = pλ3

⎡
⎣(

X̄(p)
(1 + ϕ)X∗

)β (
X∗

r − α
− I

)
−

(
X̄(p)

(1 + ϕ)(r − α)
− I

)⎤
⎦

+ rI + σ 2

2
X̄(p)2GXX(X̄(p), p),

(39)

where GXX(X̄(p), p) is the limit of GXX(X, p) from the left, limX→X̄(p)− GXX(X, p).
In the Internet Appendix we demonstrate that there does indeed exist a solution
X̄(p) to the fixed-point problem in equation (39) for all p ∈ (0, π0].

Equation (39) provides intuition on the additive forces of the option to wait
and the option to learn. If the firm chooses to invest now over waiting an
instant, it receives the benefits of the current cash flow, which is the term
on the left-hand side of (39). If the firm waits a moment, it faces a small
chance of the shock reverting, in which case the benefits of not investing are
equal to ( X̄(p)

(1+ϕ)X∗ )β( X∗
r−α

− I) − ( X̄(p)
(1+ϕ)(r−α) − I). Thus, the first term on the right-

hand side of (39) corresponds to the value of waiting to learn more about the
nature of the past shock. The second term on the right-hand side of (39), rI, is
simply the savings from delaying the investment cost by an instant. Finally,
the third term is a new convexity term, σ 2

2 X̄(p)2GXX(X̄(p), p), which represents
the traditional option to wait for future realizations of Brownian uncertainty.18

In the sense that the right-hand side of (39) is the sum of the three components,
Brownian uncertainty is additive to Bayesian uncertainty. In other words, the
addition of Brownian uncertainty to the model increases the investment trigger
by a further component due to the option value of waiting for the evolution of
Brownian uncertainty over future cash flows.

We find that the trigger function X̄(p) is increasing in p in all of our numerical
results. The intuition for this monotonicity result is as follows. An increase in
p makes the option to learn more valuable, in that waiting an instant longer
provides insurance against a greater likelihood of reversal. We clearly see this

16An Internet Appendix for this article is available online in the “Supplements and Datasets”
section at http://www.afajof.org/supplements.asp.

17In general, X̄(p) and G(X, p) can be computed numerically. In the Internet Appendix we also
derive the closed-form solution for the special case of σ = 0.

18In order to ensure optimality of the exercise trigger, X̄(p), G(X, p) must be convex at X̄(p). To
see this, note that for a given p, G(X, p) > h(p)X − I for all X < X̄(p), where h(p) = [(1 − p) 1

r−α
+

p
1+ λ3

(r−α)(1+φ)
r−α+λ3

]. From the value-matching condition, at X̄(p), G(X̄(p), p) = h(p)X̄(p) − I , and from the

smooth-pasting condition, GX(X̄(p), p) = h(p). Thus, at X̄(p) it must be the case that GXX(X̄(p), p) >

0.
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Figure 2. Investment trigger functions for different values of the Brownian volatil-
ity parameter. The graph plots the investment trigger function X̄(p) for different values of the
Brownian volatility parameter σ . The bottom curve corresponds to the case of pure Bayesian
uncertainty (σ = 0). The middle and top curves correspond to the case of both Bayesian and
Brownian uncertainties (σ = 0.05 and σ = 0.10, respectively). As a result, the change of the trig-
ger along each curve is due to the impact of Bayesian uncertainty, while the upward shift of the
whole trigger function is due to the impact of Brownian uncertainty. The parameter values are
r = 0.04, α = 0.02, ϕ = 0.2, λ1 = 0.5, λ2 = 1, λ3 = 2, and I = 25.

effect for the case of σ = 0, which is solved in closed form in the Internet
Appendix, in which there is only the option to learn at work. Thus, in order
for X̄(p) to be decreasing over some range, it would have to be the case that
the option to wait due to Brownian uncertainty decreases substantially as p
increases, so much so that it counteracts the increase in the option to learn.
However, our numerical results show that the option to wait (the convexity
term) is relatively independent of p. This relative independence between the
option to learn and the option to wait is not surprising, as in our model learning
and Brownian innovations are separable.

The quantitative effects of the addition of Brownian uncertainty to the model
are illustrated in Figure 2, which shows the investment trigger function X̄(p)
for different values of σ .19 Importantly, while σ is constant, p is falling over

19To compute the trigger functions we used a variation of the least squares method developed
by Longstaff and Schwartz (2003). The procedure is outlined in the Internet Appendix.
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time, so that the Bayesian effect is dynamic and declining over time as learning
accumulates. Both Bayesian and Brownian uncertainties lead to a significant
increase in the investment trigger. If there were no Brownian or Bayesian
uncertainty and all shocks were permanent, the trigger would equal one. Now
consider the case in which we add only Bayesian uncertainty, corresponding to
the bottom curve where σ = 0. For the case of p = 2/3, which equals the value
of π0 for our parameter specification, we find that the impact of pure Bayesian
uncertainty increases the investment threshold by 12.6%, which is labeled the
“Bayesian effect” in Figure 2. Now consider the additional impact of Brownian
uncertainty. The middle and top curves correspond to the cases of σ = 0.05
and σ = 0.10, respectively. The addition of Brownian uncertainty leads to an
additional increase in the threshold by 5.6% for the case of σ = 0.05 and by
20% for σ = 0.10, which are labeled the “Brownian effects” in Figure 2.20 As
discussed above, the addition of Brownian uncertainty does not undo the effect
that Bayesian learning has on the optimal exercise rule. Indeed, the shape
of the trigger function X̄(p) does not change much as the Brownian volatility
parameter σ increases. For any σ, X̄(p) is an increasing and concave function
of p.

C. Optimal Investment Prior to the Arrival of a Shock

To complete the solution, consider the value of the investment option before
the shock arrives. In this case, the only underlying uncertainty concerns the
future shocks to X(t). Specifically, X(t) evolves according to

dX(t) = αX(t) dt + σ X(t)dB(t) + ϕX(t)(dM1(t) + dM2(t)), (40)

where M1(t) and M2(t) are arrival processes of permanent and temporary
shocks, respectively.

Denote the option value by F(X). Prior to the investment, F(X) solves21

(r + λ1 + λ2)F(X) = αXF ′(X) + 1
2

σ 2 X2 F ′′(X) + (λ1 + λ2)G(X(1 + ϕ), π0), (41)

where G(X, p) is the value of the investment option while the shock persists.
Because the option has only one state variable, the optimal trigger will be a
fixed value, X̂.

Since in this region Bayesian learning plays no role, we relegate the deriva-
tion of X̂ to the Appendix. The investment trigger prior to the arrival of the
shock is the unique solution to

X̂ = γ1

γ1 − 1
(r − α + λ1 + λ2)rI

r + λ1 + λ2
+ ÃX̂γ2 , (42)

20Note that this implies that the total instantaneous volatility of the cash flow process is higher
than σ , since it also includes volatility due to the jumps.

21As before, equation (40) describes the dynamics of X(t) under (Ft). However, in terms of
valuation, it is immaterial, because E[dM1(t) + dM2(t) |Ft] = E[dM1(t) + dM2(t) |Gt] = (λ1 + λ2)dt.
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where Ã is defined in the Appendix, and where γ1 and γ2 are the positive
and negative roots of the fundamental quadratic equation 1

2σ 2γ (γ − 1) + αγ =
r + λ1 + λ2. The corresponding value of the investment option F(X) is shown in
the Appendix.

We can now fully summarize the optimal investment strategy in the following
proposition:

PROPOSITION 1: The optimal investment strategy for the model with both
Bayesian and Brownian uncertainty is:

1. If the shock does not occur until X(t) reaches X̂, then it is optimal for the
firm to invest when X(t) = X̂;

2. If the shock occurs before X(t) reaches X̂, and if at the time of the shock X(t)
is above X̄(π0)/(1 + ϕ), then it is optimal for the firm to invest immediately
after the shock;

3. If the shock occurs before X(t) reaches X̂, and if at the time of the shock X(t)
is below X̄(π0)/(1 + ϕ), then it is optimal for the firm to invest at the first
time when X(t) = X̄(p(t));

4. If the shock occurs before X(t) reaches X̂, and if at the time of the shock X(t)
is below X̄(π0)/(1 + ϕ) but it reverts back before X(t) reaches X̄(p(t)), then
it is optimal to invest at the first time when X(t) reaches X∗ after the shock
reverts.

D. Discussion

Proposition 1 demonstrates that there are four different scenarios for the
firm’s investment timing. Under the first scenario, the cash flow process X(t)
increases up to X̂ before the shock occurs. There is no learning prior to the
arrival of the shock, so the investment trigger is constant. One simulated
sample path that satisfies this scenario is shown in the upper left corner of
Figure 3.

Under the other three possible scenarios, the shock occurs before the cash
flow process reaches X̂, so the firm does not invest prior to the arrival of the
shock. After the shock arrives, the investment trigger is a function of the
firm’s beliefs about the past shock as given by equation (39). When the firm
observes that the shock does not revert back, it lowers its assessment of the
probability that the past shock was temporary. Since immediate investment
is more attractive when the past shock is permanent, the investment trigger
X̄(p(t)) decreases over time.

Under the second scenario, the value of the cash flow process immediately
after the shock overshoots X̄(π0). In this case, the firm invests immediately
after the shock arrives. A sample path satisfying this scenario is shown in the
upper right corner of Figure 3.

Under the third scenario, the cash flow process X(t) reaches the investment
trigger X̄(p(t)) after a period of learning but before the shock reverts. A simu-
lated sample path illustrating this scenario is shown in the lower left corner
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Figure 3. Simulations of the firm’s investment strategies. The figure shows the simulated
paths of the cash flow process X(t) (plotted in solid lines) and the corresponding investment triggers
(plotted in dashed lines) for the four different scenarios specified in Proposition 1. The optimal
exercise strategy is to invest at the first time when X(t) reaches the investment trigger for the first
time. The parameter values are r = 0.04, α = 0.02, σ = 0.10, ϕ = 0.2, λ1 = 0.5, λ2 = 1, λ3 = 2, I =
25, and X(0) = 1.

of Figure 3. This graph illustrates several interesting properties of investment
in our Bayesian setting such as the dependence on the timing of past shocks
and the sluggish response of investment to shocks. We discuss these and other
implications in more detail in the next section.

Finally, under the fourth scenario, the past temporary shock reverts back
before the firm invests. If this happens, the problem becomes standard. After
the reversal, the investment trigger is constant at the level X∗. The firm invests
at the first time when the cash flow process reaches X∗. A simulated sample
path that describes the fourth scenario is shown in the lower right corner of
Figure 3.
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III. Model Implications

In this section we analyze important implications of the model.

A. Bayesian Uncertainty and the Option to Learn

In traditional real options models focusing on uncertainty about future
shocks only, investment takes place when cash flows rise to a constant trig-
ger. This is due to the fact that uncertainty is entirely driven by the Brownian
component, which is constant over time. This trigger embodies the notion of
the traditional option to wait as investment is triggered when the real option
is sufficiently in the money.

When we add Bayesian uncertainty over past shocks, the investment trig-
ger is no longer constant, but rather is a function of the firm’s beliefs about
the nature of past shocks. More specifically, the trigger is high soon after the
arrival of a shock, but then goes down as time goes by. Thus, in the Bayesian
framework, uncertainty is no longer constant, but instead declines over time
as the firm becomes increasingly more confident in past shock’s permanence.
Hence, in addition to the standard option to wait for future shocks, we now
also have an option to learn more about the nature of past shocks. We see in
equation (39) that the investment trigger exceeds the Marshallian trigger of rI
due to two forces: the option to learn (waiting until a moment later to see if a
past shock reverses) and the option to wait (and benefit from cash flows rising
over the next moment). As demonstrated in Figure 2, these forces are additive
and appear to be of similar magnitudes. Ignoring either option would lead to a
similar investment timing error.

An important implication of Bayesian uncertainty over past shocks is the
sluggishness in responding to positive cash flow shocks. In traditional real
options models, in which uncertainty is about future shocks only, investment
responds immediately to past cash flow shocks. In contrast, uncertainty about
past shocks rationalizes the sluggish response of investment to shocks. Specif-
ically, the firm might find it optimal to wait an additional period to see if the
past positive shock is indeed permanent. Given this, the firm is now less likely
to invest soon after the arrival of a positive shock, when the option to learn is
most valuable. As time goes by, however, uncertainty is reduced, and the firm
is willing to invest at a lower level of the cash flow process.22

The slow response of investment to cash flow shocks generated by the op-
tion to learn is consistent with the slow response of economic variables such
as investment, labor demand, and prices to shocks (e.g., Caballero and Engel
(2003)). Another stylized fact that is consistent with Bayesian learning about
past shocks is that the response of investment to shocks is time-dependent. In
particular, aggregate investment is shown to be more responsive to shocks if
the period preceding expansion is longer (Caballero, Engel, and Haltiwanger

22See Bloom (2009) for evidence that uncertainty shocks such as the 1973 oil price shock have
large aggregate effects due to more “cautious” behavior by economic agents.
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(1995), Bachmann, Caballero, and Engel (2008)). Our argument appears to
be consistent with this evidence since firms are likely to believe that positive
shocks following the period of expansion are more likely to be permanent, so
the option to learn is less valuable in this case. The result that uncertainty
about the identity of the shock can lead to a sluggish response of investment
to shocks is very general and can hold in different environments with shocks
of different types. For example, Moore and Schaller (2002) show in simula-
tions that uncertainty about the persistence of interest rate shocks can lead to
sluggishness of investment in the context of the neoclassical q theory.

The magnitude of the slow response of investment to cash flow shocks de-
pends on two key parameters: the size of the shock ϕ and the speed of learning
λ3. Papers that calibrate models of investment decisions usually assume that
temporary shocks are relatively persistent. For example, Thomas (2002) and
Gourio and Kashyap (2007) assume that a productivity shock follows an AR(1)
process with coefficient 0.9225. In the context of our model this would mean
that learning about the shock’s type would be rather slow. This suggests that
incorporating uncertainty about whether shocks are permanent or temporary
into models of aggregate investment can have important quantitative effects.

B. Investment in the Face of Stable or Declining Cash Flows

Another interesting property of our model is that investment may occur in
the face of stable or even decreasing cash flows. In standard real options models,
investment will be triggered when shocks increase the cash flow process up to
a constant upper threshold. As a result, the firm can rationally exercise the
investment option only at times of increasing cash flows. In contrast, when
the traditional real options model is extended to include Bayesian uncertainty
over the nature of past shocks, the firm may invest at times of stable or even
declining cash flows simply because it becomes sufficiently confident in the
permanence of the past shocks.

As an illustration of this property, consider a particular sample path of cash
flows and the investment response presented in Figure 4. We see that invest-
ment is made at a time of steady cash flows. At the moment of investment, it
was the reduction in Bayesian uncertainty rather than the increase in current
cash flows that triggered investment. This is made possible by the monotoni-
cally decreasing trigger function, X̄(p(t)).

Empirically, we certainly see examples of firms (and industries) investing in
markets where cash flows are stable, or even declining. As detailed in Grenadier
(1996), during the late 1970s and early 1980s several U.S. cities saw explosive
growth in office building development in the face of rapidly increasing office
vacancy rates. Consider the cases of the Denver and Houston office markets.
Over the 30-year period from 1960 to 1990, over half of all office construction
was completed in a 4-year interval: 1982 to 1985. Since the average length
of time between the initiation and completion of office space construction is
2.5 years, this investment was likely initiated over the 1979 to 1983 period.
Throughout this period, office vacancies in these two cities were around 30%,
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Figure 4. Investment in the face of stable cash flows: Illustration. The figure shows the
simulated path of the cash flow process X(t) (plotted in the solid line) and the corresponding
investment trigger (plotted in the dashed line). The optimal exercise strategy is to invest at the
first time when X(t) reaches the investment trigger for the first time. The parameter values are
r = 0.04, α = 0.02, σ = 0.10, ϕ = 0.2, λ1 = 0.5, λ2 = 1, λ3 = 2, I = 25, and X(0) = 1.

considerably above previous levels. Notably, however, these two cities (as well
as most of the cities experiencing unprecedented office growth during this
period) were oil-patch cities where developers likely concluded (incorrectly)
that high oil prices in the late 1970s and early 1980s would last indefinitely
(see the quote provided in the introduction). Our model explains this period of
rapid construction in times of declining cash flows by suggesting that the firms
became very sure that high oil prices, and hence high rents, in these oil cities
would last forever.

Figure 4 also makes evident that accounting for uncertainty about past
shocks may lead to a failure of the “record-setting news principle,” which states
that investment occurs only at instants in which the value of the cash flow pro-
cess reaches a new peak.23 In Figure 4 we see that investment occurs at a
cash flow level that is more than 5% lower than its previous maximum. Thus,

23The record-setting news principle, a term credited to Maxwell Stinchcombe, is usually for-
mulated in terms of asset values, rather than cash flows (see, for example, Boyarchenko (2004)).
Because the model is defined in cash flows, we focus on the cash flow analogue of the record-setting
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even when current cash flows are not at their all-time maximum, the decline
in uncertainty about past shocks can trigger investment.

C. Investment Strategy and the Timing Structure of the Project’s Cash Flows

In the standard real options literature, there is a simple equivalence between
options that pay off a stream of cash flows and those that pay off an identical
lump sum value. Thus, the timing of cash flows, per se, does not matter for the
firm’s investment strategy.24 Ultimately, the firm chooses a trigger such that
the value of future cash flows at exercise provides the needed option premium
to induce investment. For example, suppose that the project’s cash flows are
driven solely by Brownian uncertainty about future shocks, and the maturity
structure of these cash flows is relatively short. Suppose that for this option on
a short-term project the firm chooses to exercise when the value of the future
cash flows exceeds the investment cost by 50%, a premium consistent with
the value of the option to wait. Then it is also true that the optimal exercise
policy for an option on a project with a long-term cash flow structure but the
same other characteristics will be one where investment is triggered when the
value of future cash flows exceeds the investment cost by 50%. This equivalence
relation is previously shown by Dixit and Pindyck (1994). In Chapter 5, these
authors consider the optimal exercise rule for options that pay off with a lump
sum value of V(t). Then, in Chapter 6, they perform an analogous analysis
for options that pay off with a perpetual cash flow of P(t), with present value
identical to the lump sum value V(t). They show that the optimal exercise rules
are identical.

However, in the context of valuations that are driven by uncertainty over
past shocks, the timing of cash flows can be quite important in determining
the investment strategy. The greater is the front-loadedness of the project’s
cash flows, the less important is the assessment of the relative likelihood that
a shock is temporary or permanent. As a result, the option to learn is less
valuable, so the firm invests at a lower trigger. Thus, while the firm might
invest in a short-term project when the value of the future cash flows exceeds
the investment cost by 50%, the firm might only invest in a longer-term project
if the value of the future cash flows exceeds the investment cost by 100%. This
is because the option to learn is fundamentally linked to the cash flow structure
of the project.

In this section we consider a simple parametrization of the front-loadedness
of the option payoff, ranging from payoffs that are equivalent to a one-time
lump sum payment to payoffs that are equivalent to perpetual cash flows.

news principle. The two definitions are equivalent if the cash flow process is the only state variable
and the asset value is a monotone function of the current value of the cash flow process.

24When we refer to the standard real options literature, we refer to models in which there is an
initial lump-sum cost followed by a single lump-sum cash flow or a sequence of positive cash flows,
and in which investment is irreversible. However, in a broader class of real options, in which costs
could be paid over time and partial reversibility is possible, the timing of the project’s cash flows
could matter for investment.
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Consider the simplest case studied in Section I.C, but with one alteration.
Assume now that if an option is exercised at time τ , it provides a stream
of payments (1 + w

r )e−w(t−τ ) X(t), t ≥ τ . The parameter w ∈ [0,+∞) captures the
degree of front-loadedness of the project’s cash flows. Projects with low values of
w are relatively back-loaded: much of their cash flows are generated long after
the exercise time. High values of w mean that the project is relatively front-
loaded, with most cash flows coming close to the exercise time. The particular
parametrization was chosen so as to make the present value of cash flows from
the immediate exercise of the project in the no-shock case independent of w:∫ ∞
τ

X(t)(1 + w
r )e−w(t−τ )e−r(t−τ )dt = X(τ )

r . Of course, other reasonable parameteri-
zations are possible. This specification of cash flows captures two cases widely
used in the real options literature. First, when w = 0, the model reduces to the
one studied in Section I.C. In this case, the project pays a perpetual flow of
X(t) upon exercise. Second, if w → ∞, payments from the project converge to a
one-time lumpy payment of X(τ )

r at the time of exercise τ .
Similar to (13), to ensure that the project has a potentially positive net

present value and that there is positive value to learning, we make the as-
sumption that X0 satisfies

rI
1 + ϕ

< X0 <
r + λ3π0

1 + ϕ + λ3

r
π0 + λ3

r
π0

wϕ

(r + λ3 + w)

I. (43)

Compared to (13), (43) puts the same lower bound and a more restrictive
upper bound. As previously, these bounds guarantee that the solution to the
investment timing problem is nontrivial.

As in Section I.C, let the value of the option while the shock persists be
denoted by G(p). Over the range of p over which the option is not exercised, the
standard argument implies

(r + pλ3)G(p) = −G′(p)λ3 p(1 − p). (44)

This equation has the general solution

G(p) = Cw(1 − p)
(

1
p

− 1
) r

λ3

, (45)

where Cw is a constant. Note that this general solution coincides with the one
obtained in Section I.C. However, because of the more general cash flow timing
assumption, the boundary conditions are now different.

Because the payoff from the project if the current shock is temporary is
affected by the parameter w, the value-matching condition at the exercise
trigger p̄w is now

G( p̄w) = (1 − p̄w)
X0(1 + ϕ)

r
+ p̄w

X0

(
1 + ϕ + λ3

r
+ w(1 + ϕ)

r

)
r + λ3 + w

− I. (46)
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Note that although the present value of the firm’s cash flows in the case of the
permanent shock does not depend on w, in the case of the temporary shock
it depends on w positively. Intuitively, a more front-loaded project allows the
firm to capture more of the temporary high cash flows than a more back-loaded
project.

As in Section I.C, the exercise trigger is chosen to maximize the value of
the option (or equivalently, to satisfy the smooth-pasting condition), giving the
optimal trigger value

p̄w = X0(1 + ϕ) − rI

λ3

(
I − X0

r
− X0wϕ

r(r + λ3 + w)

) . (47)

Note that when w = 0, then p̄w = p̄, which is the trigger we obtained in Section
I.C. As in Section I.C, it is straightforward to show that the option will never
be exercised prior to the arrival of the shock.

Consider how the parameter of front-loadedness affects the trigger value:

∂ p̄w

∂w
= rϕ(r + λ3)

λ3

X0(1 + ϕ) − Ir
[X0(r + λ3 + w(1 + ϕ)) − Ir(r + λ3 + w)]2

X0 > 0. (48)

We therefore find that the greater the front-loadedness, the earlier the timing
of investment.

Now consider how the parameter of front-loadedness affects the value at
exercise. The option premium at the time of exercise is

G( p̄w)
I

= −1 + 1
I

⎛
⎜⎜⎝1 − X0(1 + ϕ) − rI

λ3

(
I − X0

r
− X0wϕ

r(r + λ3 + w)

)
⎞
⎟⎟⎠ X0(1 + ϕ)

r

+ 1
I

X0(1 + ϕ) − rI

λ3

(
I − X0

r
− X0wϕ

r(r + λ3 + w)

) X0

(
1 + ϕ + λ3

r
+ w(1 + ϕ)

r

)
r + λ3 + w

.

(49)

Differentiating with respect to w gives us

∂

(
G( p̄w)

I

)
∂w

= − X0ϕ(X0(1 + ϕ) − rI)2

I((X0 − rI)(r + λ3 + w) + X0ϕw)2
< 0. (50)

Thus, the greater the front-loadedness of the project, the lower the option
premium necessary to induce exercise.

Intuitively, if the project’s cash flows are very front-loaded, then knowing the
identity of the shock is not very important for the firm. In this case the firm
gets a large part of the project cash flows very soon after the exercise date. As



Bayesian Approach to Real Options 1977

a result, the learning option is not very valuable, so the firm invests at a lower
premium. On the other hand, if the project’s cash flows are very back-loaded,
then it is very important for the firm to be sure that past shocks are permanent.
As a result, the learning option is very valuable and the firm invests at a higher
premium.

IV. A Model with Multiple Shocks

In this section, we generalize the model of Section II for the case of multiple
shocks. Specifically, we assume that at any time t there can be any number
n(t) = 0, 1, . . . , N̄ of shocks outstanding. If n(t) < N̄, the evolution of X(t) under
(Ft) is given by (1), where the probability of observing a reversal over the next
instant depends on the number k(t) of outstanding temporary shocks. In partic-
ular, if n(t) = 0, there are no outstanding shocks, so the intensity of the reversal
process N(t) is zero. If n(t) = N̄, no new shocks can occur, so the evolution of
X(t) under (Ft) is given by (1) with the intensities of the shock processes M1(t)
and M2(t) being zero. When the maximum number of outstanding shocks N̄
increases to infinity, the model approaches the case of an unlimited number of
shocks, each of which can be permanent or temporary.

Under the information set of the firm, at each time t the state can be described
by a triple (X(t), n(t), p(t)), where X(t) is the value of the cash flow process, n(t)
is the number of outstanding shocks, and p(t) = (p0(t) p1(t) . . . pn(t)(t))′ is the
vector of the firm’s beliefs. The Bayesian learning process p(t) is derived in
Section I.B.

As before, we begin by calculating the present value of the project’s underly-
ing cash flows, defined by (3). It is equal to

S(X(t), n(t), p(t)) = an(t)
0 X(t) +

n(t)∑
i=1

pi(t)
(
an(t)

i − an(t)
0

)
X(t), (51)

where the constants an(t)
0 , an(t)

1 , . . . are defined in the Internet Appendix. Intu-
itively, if the firm knew for sure that there are exactly k outstanding temporary
shocks out of n(t), then the present value of the project’s cash flows would be lin-
ear in X(t) and equal to an(t)

k X(t) for some constant an(t)
k . Taking the expectation

with respect to the beliefs of the firm yields (51).
Let G(X, n, p) denote the value of the option to invest, where X and p are the

current values of the cash flow and belief processes, respectively, and n is the
current number of outstanding shocks. The optimal investment decision can
be described by a trigger function X̄(n, p). In the Internet Appendix we provide
the details of the determination of X̄(n, p) and G(X, n, p), which is done using
the same argument as in Section II.B. In particular, we show that X̄(n, p) can
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be expressed as

X̄(n, p) =
(

λ3

n∑
k=1

pkk

)[
G

(
X̄(n, p)
1 + ϕ

, n − 1, p̃(p)

)

+ I − S

(
X̄(n, p)
1 + ϕ

, n − 1, p̃(p)

)]

+ rI + σ 2

2
X̄(n, p)2GXX(X̄(n, p), n, p),

(52)

where p̃(p) is the vector of beliefs updated after the reversion, defined by (9).
Given the similarity between (52) and (39), it becomes clear how the multi-

shock case generalizes the single-shock case. As before, the intuition behind the
equation for the optimal trigger is the trade-off between investing now versus
investing a moment later if all of the past shocks persist, where the value of
waiting is explicitly the option to learn. If the firm invests now, it gets the benefit
of the cash flow X̄(n, p) over the next instant. This is the term on the left-hand
side of the equal sign. If the firm waits a moment, it faces a small chance of one
of the shocks reversing, in which case the expected value gained by waiting is
equal to the first term on the right-hand side. Specifically, G( X̄(n,p)

1+ϕ
, n − 1, p̃(p)) +

I − S( X̄(n,p)
1+ϕ

, n − 1, p̃(p)) is the value gained by not investing should an existing
shock reverse over the next instant, and λ3

∑n
k=1 pkk is the likelihood of this

occurring. The second term on the right-hand side of the equal sign, rI, is the
savings from delaying the investment cost by an instant. The third term is
the convexity term, which represents the value of waiting due to Brownian
uncertainty. At the optimal trigger, X̄(n, p), the two sides of equation (52) are
exactly equal and the firm is indifferent between investing now and waiting a
moment.

We can now summarize the solution to the optimal investment timing prob-
lem in this multi-shock setting.

PROPOSITION 2: The optimal investment strategy for the model outlined in this
section is to invest when X(t) exceeds X̄(n(t), p(t)) for the first time.

To provide intuition for the multi-shock extension, Figure 5 plots a simulated
path of the cash flow process X(t) along with the corresponding investment
trigger X̄(t) ≡ X̄(n(t), p(t)). Due to computational complexity, for this numerical
solution we consider the case of N̄ = 2 and α = σ = 0. The numerical procedure
is outlined in the Internet Appendix. In this example, each shock increases the
value of the cash flows by 10% (ϕ = 0.1). A new permanent shock occurs, on
average, every 3 years (λ1 = 0.33). A new temporary shock occurs, on aver-
age, every year (λ2 = 1) and takes 4 months to revert (λ3 = 3). The dynamics
of the cash flow process are straightforward. In the 5-year period there are
four arrivals of new shocks, corresponding to upward jumps in X(t). Two out
of four shocks revert, corresponding to downward jumps in X(t). The dynam-
ics of the investment boundary are more interesting. Prior to the arrival of
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Figure 5. Simulation of the firm’s investment strategy. The top graph shows the simulated
sample path of the cash flow process, X(t), for the model of Section IV. Each of the four upward steps
corresponds to the arrival of a new shock. Similarly, each of the two downward steps corresponds
to the reversal of an outstanding shock. The bottom graph adds the investment trigger X̄(t) =
X̄(n(t), p(t)) to the simulated sample path from the top graph. The optimal investment strategy
is to invest at the first time when X(t) crosses the investment trigger. The parameter values are
r = 0.04, α = 0, σ = 0, ϕ = 0.1, λ1 = 0.33, λ2 = 1, λ3 = 3, I = 25, N̄ = 2, and X(0) = 0.92.

the first shock, there is no uncertainty about past shocks. Since there is no
Bayesian updating at this time, the trigger is constant at X̄(0, 1) = rI. After
the first shock arrives, the trigger jumps up to X̄(1, 1 − π0, π0) as the firm be-
comes unsure if the outstanding shock is permanent or temporary. As time
goes by and the cash flow process does not revert back, the firm believes that
the first shock is more likely to be permanent. As a result, the investment
trigger decreases. This intuition underlies the whole dynamics of the trigger in
Figure 5. An arrival of a new shock leads to an upward jump in the trigger due
to an increase in uncertainty. When the cash flow process is stable, the trig-
ger goes down as the firm updates its beliefs about the past shocks. When an
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outstanding shock reverses, the firm learns that one of the outstanding shocks
is temporary. Hence, reversal leads to a downward jump in the trigger. The
investment occurs when X(t) exceeds the dynamic investment trigger X̄(t) for
the first time. In the example in Figure 5, this happens at t = 2.1, when the
firm becomes sufficiently sure that the outstanding shock is permanent.

By allowing for multiple shocks, the model of this section illuminates the na-
ture of the Bayesian investment problem beyond that of the simpler one-shock
model. Most notably, the exercise trigger, X̄(n(t), p(t)), is a multi-dimensional
function, which demonstrates its dependence on all persisting past shocks.
Thus, as illustrated in Figure 5, the investment trigger jumps by a discrete
amount at all moments when either a new jump occurs or an existing shock
reverses. In between such jumps, the trigger declines as uncertainty about past
shocks is reduced.

V. Conclusion

This paper studies the optimal timing of investment in the presence of uncer-
tainty about both future and past shocks. We augment the standard Brownian
uncertainty driving traditional real options models with additional Bayesian
uncertainty over distinguishing between the temporary and permanent nature
of past cash flow shocks. As a result, the evolving uncertainty is no longer con-
stant and is driven by Bayesian updating, or learning. We show that this gives
rise to two real options. In addition to the “waiting” option as in traditional
literature, the firm now has a “learning” option: the option to learn more about
the nature of past shocks. We solve for the optimal investment rule and show
that the implied investment behavior differs significantly from that predicted
by standard real options models. In particular, investment often responds slug-
gishly to cash flow shocks, investment may occur at a time of stable or even
decreasing cash flows, and the optimal investment timing depends critically on
the timing structure of the project’s cash flows.

Several further extensions of the model would prove interesting. First, the
model could be extended to a multiple-firm industry equilibrium in the manner
of Grenadier (2002). Of particular interest would be the fact that firms need
to update their beliefs about not only their own past shocks, but also those
of their competitors. Thus, while competition is known to erode the option to
wait, the benefits from waiting to learn could mitigate such erosion. Second,
the structure of the jump component could be made richer by permitting more
than just either permanent or temporary shocks. For example, shocks could
have a greater variety of (unobserved) types, such as n types with reversion
intensities λreversion

1 , λreversion
2 , . . . , λreversion

n .

Appendix: Proofs

Proof that in the simple case of Section I.C, the option will never be exercised
prior to the arrival of the shock.

First, we demonstrate that the strategy of exercising prior to the arrival
of the shock is dominated by the strategy of investing immediately upon the
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arrival of the shock. If the firm invests prior to the arrival of the shock, it pays
the cost I and obtains the cash flow X0 until the arrival of the shock. Upon the
arrival of the shock, it obtains the additional cash flow ϕX0 until the time that
the shock reverses, if ever. If the firm instead waits until the shock arrives and
then invests immediately, it gets no cash flow before the shock arrives, pays
the cost I when the shock arrives, and obtains the cash flow ϕX0 until the time
that the shock reverses, if ever.

Let NB denote the net benefit of investing prior to the shock versus waiting
until the shock arrives. Let τ denote the random arrival time of the shock. Then
we can write NB as

NB = E

[∫ τ

0
X0e−rtdt

]
+ (E[e−rτ ]I − I) =

(
X0

r
− I

)
(1 − E[e−rτ ]), (A1)

where NB is equal to the value of the cash flow X0 until the arrival of the shock
(the first term), plus the cost of paying I immediately rather than at the time
of the shock’s arrival (the second term).

The upper bound on X0 in (13) implies

X0 − rI <
r + λ3π0 − r − rϕ − λ3π0

1 + ϕ + λ3

r
π0

I = − rϕ

1 + ϕ + λ3

r
π0

I < 0. (A2)

Thus, NB < 0.
We have proven that it is always better to wait until the shock arrives and

invest immediately at that time than to invest prior to the shock. In addition,
once the shock arrives, it is always optimal to wait further until p(t) falls to the
threshold p̄. Thus, investing prior to the arrival of the shock is dominated by
the strategy of waiting until the shock arrives and then waiting until p(t) falls
to the threshold p̄.

Proof of Section II.B conjecture that X̄(p) < (1 + ϕ)X∗.
From the proof of the existence of a boundary X̄(p) in the Internet Appendix, it

follows that it is always optimal to exercise the option whenever X > (1 + ϕ)X∗.
Therefore, for any p ∈ (0, π0], X̄(p) must be below (1 + ϕ)X∗.

Derivation of the investment trigger X̂ and the investment option value F(X)
for the model with Brownian uncertainty in Section II.C.

If the investment option is exercised prior to the arrival of a shock, the firm
receives

S(X) − I = X
r − α

+ ϕX
r − α + λ1 + λ2

(
λ1

r − α
+ λ2

r − α + λ3

)
− I. (A3)

Conjecture that it is strictly optimal to wait when X(t) is below X̄(π0)/(1 + ϕ),
that is, X̂ ≥ X̄(π0)/(1 + ϕ). This is quite intuitive, as it implies that if it is not
optimal to invest at an instant prior to the shock, then it would not be optimal
to invest if the jump occurs and immediately reverts. The conjecture is verified
later. It follows that the investment option value F(X) is equal to either FL(X)
or FH(X), corresponding to the lower and the upper regions, respectively. By
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Itô’s lemma, F(X) satisfies the following differential equations:

• in the region X < X̄(π0)/(1 + ϕ),

(r + λ1 + λ2)FL(X) = αXF ′
L(X) + 1

2σ 2 X2 F ′′
L(X)

+ (λ1 + λ2)G((1 + ϕ)X, π0);

(A4)

• in the region X̄(π0)/(1 + ϕ) < X < X̂,

(r + λ1 + λ2)FH(X) = αXF ′
H(X)

+ 1
2

σ 2 X2 F ′′
H(X) +

⎛
⎜⎝λ1

1 + ϕ

r − α
+ λ2

1 + ϕ + λ3

r − α

r − α + λ3

⎞
⎟⎠ X

− (λ1 + λ2)I. (A5)

Equations (A4) and (A5) differ due to the implied investment behavior at the
moment of the arrival of a shock. In the lower region the arrival of a shock does
not induce immediate investment, while in the higher region it does. Equations
(A4) and (A5) are solved subject to the following boundary conditions:

FH(X̂) = X̂
r − α

+ ϕ X̂
r − α + λ1 + λ2

(
λ1

r − α
+ λ2

r − α + λ3

)
− I, (A6)

F ′
H(X̂) = 1

r − α
+ ϕ

r − α + λ1 + λ2

(
λ1

r − α
+ λ2

r − α + λ3

)
, (A7)

lim
X↑X̄(π0)/(1+ϕ)

FL(X) = lim
X↓X̄(π0)/(1+ϕ)

FH(X), (A8)

lim
X↑X̄(π0)/(1+ϕ)

F ′
L(X) = lim

X↓X̄(π0)/(1+ϕ)
F ′

H(X), (A9)

lim
X→0

FL(X) = 0. (A10)

As before, the value-matching condition (A6) imposes equality at the exercise
point between the value of the option and the net present value of the project’s
cash flows, while the smooth-pasting condition (A7) ensures that the exercise
point is chosen optimally. Conditions (A8) and (A9) guarantee that the value of
the investment option is continuous and smooth. Finally, (A10) is a boundary
condition that reflects the fact that X = 0 is the absorbing barrier for the cash
flow process.

The general solutions to equations (A4) and (A5) are given by

FL(X) = C1 Xγ1 + C2 Xγ2 + 2(λ1 + λ2)
σ 2(γ1 − γ2)

(
2(X) − 
1(X)), (A11)



Bayesian Approach to Real Options 1983

FH(X) = A1 Xγ1 + A2 Xγ2

+ (λ1 + λ2)((1 + ϕ)(r − α) + λ3) + λ1λ3ϕ

(r − α + λ1 + λ2)(r − α)(r − α + λ3)
X

− λ1 + λ2

r + λ1 + λ2
I,

(A12)

where


i(X) = Xγi

∫ X

0

G((1 + ϕ)x, π0)
xγi+1

dx, i ∈ {1, 2}. (A13)

We have five boundary conditions (A6) to (A10) to determine the four un-
known constants (A1, A2, C1, and C2) and the investment trigger X̂. Consider
condition (A10). It implies

lim
X→0

C2 Xγ2 + 2(λ1 + λ2)
σ 2(γ1 − γ2)

(
lim
X→0


2(X) − lim
X→0


1(X)
)

= 0. (A14)

Because γ1 > 0, limX→0 
1(X) = 0 . Also, by l’Hôpital’s rule,

lim
X→0


2(X) = lim
X→0

Xγ2

∫ X

0

G((1 + ϕ)x, π0)
xγ2+1

dx

= lim
X→0

G((1 + ϕ)X, π0)X−γ2−1

−γ2 X−γ2−1

= − 1
γ2

lim
X→0

G((1 + ϕ)X, π0) = 0.

(A15)

Therefore, condition (A10) implies C2 = 0. Using (A11) and (A12) and combin-
ing equations (A8) and (A9), we get

A2 =
(

X̄(π0)
1 + ϕ

)−γ2

×
[

1 − γ1

γ1 − γ2

(λ1 + λ2)((1 + ϕ)(r − α) + λ3) + λ1λ3ϕ

(r − α + λ1 + λ2)(r − α)(r − α + λ3)
X̄(π0)
1 + ϕ

+ γ1

γ1 − γ2

λ1 + λ2

r + λ1 + λ2
I + 2(λ1 + λ2)

σ 2(γ1 − γ2)

2

(
X̄(π0)
1 + ϕ

)]
.

(A16)

Combining equations (A6) and (A7), we get

X̂ = γ1

γ1 − 1
(r − α + λ1 + λ2)rI

r + λ1 + λ2
+ ÃX̂γ2 , (A17)

where Ã = A2(r − α + λ1 + λ2)(γ1 − γ2)/(γ1 − 1).
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The corresponding value of the investment opportunity is

F(X) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 Xγ1 + 2(λ1 + λ2)
σ 2(γ1 − γ2)

(
2(X) − 
1(X)), X ≤ X̄(π0)
1 + ϕ

A1 Xγ1 + A2 Xγ2 + (λ1 + λ2)((1 + ϕ)(r − α) + λ3) + λ1λ3ϕ

(r − α + λ1 + λ2)(r − α)(r − α + λ3)
X

X̄(π0)
1 + ϕ

≤ X ≤ X̂

− λ1 + λ2

r + λ1 + λ2
I,

X
r − α

+ ϕX
r − α + λ1 + λ2

(
λ1

r − α
+ λ2

r − α + λ3

)
− I, X ≥ X̂,

(A18)

where A2 is given by (A16), and A1 and C1 satisfy

A1 = X̂−γ1

(
X̂

r − α + λ1 + λ2
− rI

r + λ1 + λ2
− A2 X̂γ2

)
, (A19)

C1 = A1 + A2

(
X̄(π0)
1 + ϕ

)γ2−γ1

+
(

X̄(π0)
1 + ϕ

)−γ1

×
(

(λ1 + λ2)((1 + ϕ)(r − α) + λ3) + λ1λ3ϕ

(r − α + λ1 + λ2)(r − α)(r − α + λ3)
X̄(π0)
1 + ϕ

− λ1 + λ2

r + λ1 + λ2
I

+ 2(λ1 + λ2)
σ 2(γ1 − γ2)

(

1

(
X̄(π0)
1 + ϕ

)
− 
2

(
X̄(π0)
1 + ϕ

)))
.

(A20)

We now confirm the conjecture that X̂ ≥ X̄(π0)/(1 + ϕ). By contradiction, sup-
pose that it is optimal to invest at some trigger X′ below X̄(π0)/(1 + ϕ). Let
us modify the problem in the following way. Suppose that the upward jump
occurs immediately, that is, λ1 + λ2 = +∞ with π0 being unchanged. For each
sample path, the project in the modified problem yields the same cash flows as
the project in the original problem with the difference that the range of extra
cash flows generated by the upward shock occurs earlier. Hence, investment in
the modified problem occurs earlier than in the original problem. In particular,
since it was optimal to invest at X′ in the original problem, it is also optimal
in the modified problem. Since in the modified problem the jump occurs im-
mediately, the value of the investment option is G(X(1 + ϕ), π0). However, it is
strictly optimal to wait when X(1 + ϕ) < X̄(π0). Therefore, it cannot be optimal
to invest at any such X′. This implies that, indeed, it is strictly optimal to wait
for any X below X̄(π0)/(1 + ϕ).
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