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We characterize equilibrium leverage dynamics in a tradeoff model when the firm can 

continuously adjust leverage and is unable to commit to a policy ex ante. While the leverage ratchet effect 

leads shareholders to take on debt gradually over time, asset growth and debt maturity cause leverage to 

mean-revert slowly towards a long-run target. Because investors anticipate future debt issuance, credit 

spreads are high even when leverage is low. Higher borrowing costs fully offset the tax benefits of future 

debt issuance, so that equity values match those in a model where the firm commits not to issue new debt. 

Finally, although the target level and speed of adjustment of leverage depend critically on debt maturity, 

in equilibrium shareholders are indifferent toward the debt maturity structure. 
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1. Introduction 

Understanding the determinants of a firm’s capital structure, and how its leverage is likely to 

evolve over time, is one of the central questions in corporate finance. Leverage and its expected 

dynamics are crucial to valuing the firm, assessing its credit risk, and pricing its financial claims.  

Forecasting the optimal response of leverage to shocks, such as the 2007-2008 financial crisis, is 

necessary to anticipate the likely consequences of a crisis and its aftermath, and to evaluate 

alternative policy responses. 

 Despite its importance, a fully satisfactory theory of leverage dynamics has yet to be 

found.  Many models assume the absolute level of debt is fixed; for example, in the traditional 

framework of Merton (1974), as well as Leland (1994, 1998), the firm is committed not to 

change its outstanding debt before maturity, irrespective of the evolution of the firm’s 

fundamentals. As a result, the dynamics of firm leverage is driven solely by the stochastic 

growth in value of the firm’s assets-in-place. More recent work that allows the firm to restructure 

its debt over time typically assumes that all existing debt must be retired (at a cost) before any 

new debt can be put in place.1 These assumptions are neither innocuous, as the constraints on 

leverage generally bind in the model, nor are they consistent with practice, where firms often 

borrow incrementally over time.  See, for example, Figure 1, which shows how debt levels for 

American and United Airlines changed over time in response to fluctuations in their enterprise 

values (market value of equity plus book value of debt). 

 In contrast, we study a model in which equity holders lack the ability to commit to their 

future leverage choices, and can issue or buyback debt at the current market price at any time.  

Aside from corporate taxes and bankruptcy costs, there are no other frictions or transactions 

costs in our model.  In such a setting, when debt can be freely adjusted over time, it is feasible 

for the firm to avoid the standard leverage “tradeoff” by simply increasing debt to exploit tax 

shields when cash flows are high, and reducing debt to avoid distress costs when cash flows fall.   

                                                           
1 See e.g. Fischer, Heinkel, Zechner (1989), Titman and Tsyplakov (2007), Goldstein, Ju, and Leland (2001) and 
Strebulaev (2007), Dangl and Zechner (2016).    
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But although such an ideal policy is feasible, absent commitment an important agency 

friction emerges with regard to the firm’s future leverage choices. As emphasized by Admati et 

al. (2017), equity holders will adjust leverage to maximize the current share price rather than 

total firm value.  They demonstrate a “leverage ratchet effect,” in which equity holders are never 

willing to voluntarily reduce leverage, but always have an incentive to borrow more -- even if 

current leverage is excessive and even if new debt must be junior to existing claims. While the 

leverage ratchet effect is itself quite general, they numerically calculate a dynamic equilibrium 

only for a specialized model in which debt is perpetual and the firm does not grow but is subject 

to Poisson shocks.  

Solving the dynamic tradeoff model without commitment is challenging because of the 

dynamic interdependence of competitive debt prices today and equity’s equilibrium 

leverage/default policies in the future. In this paper we develop a methodology to solve for such 

an equilibrium in a general setting that allows for finite maturity debt, asset growth, investment, 

and both Brownian and Poisson shocks. In this equilibrium, equity holders increase debt 

gradually over time, at a rate which increases with the current profitability of the firm.  On the 

Figure 1. Time-series of outstanding book debt and enterprise value for American and United Airlines, for 
fifteen years before their bankruptcies in 2011 and 2002, respectively. Book debt is calculated as the sum of “long-
term debt” and “debt in current liabilities”, and market equity is calculated as “stock price” multiplying “common 
shares outstanding.” Data source: WRDS.    
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other hand, following negative shocks, equity holders never voluntarily reduce leverage, but do 

allow it to decline passively via debt maturity and asset growth.  

In our model, equity holders keep issuing debt to exploit tax benefits even after the firm’s 

leverage passes above the “optimal” level with commitment, leading to excessive inefficient 

default. This result holds even when there is no dilution motive to issue debt (either because debt 

is prioritized or there is zero recovery value in bankruptcy). Such over-borrowing raises the 

probability of default and lowers the price of debt enough to offset the tax advantage of leverage 

so that, on the margin, equity holders are indifferent to leverage increases. As a result, equity 

holders obtain the same value in equilibrium as if they commit not to issue any debt in the future. 

In other words, the extra tax shield benefits that tempt equity holders are exactly dissipated by 

the bankruptcy costs caused by excessive leverage.  

We apply our methodology to the special case of geometric Brownian motion (as in 

Leland (1994)) and solve for the equilibrium debt price and issuance policy in closed form. 

Because equity holders refuse to buy back debt once it is issued, debt issuance becomes 

effectively irreversible, slowing its initial adoption. Debt accumulates over time at a rate that 

increases with profitability, while if profits decline sufficiently, new issuance drops below the 

rate of debt maturity and the debt level falls. Leverage is thus path dependent, and we show 

explicitly that the firm’s outstanding debt at any point of time can be expressed in terms of a 

weighted-average of the firm’s past earnings. The endogenous adjustment of leverage leads the 

firm’s interest coverage ratio to mean revert gradually in equilibrium, with the speed of 

adjustment decreasing with debt maturity and asset volatility. These dynamics differ from the 

abrupt adjustment to a “target” leverage level implied by models with an exogenous adjustment 

cost (for instance, Fischer, Heinkel, Zechner, 1989; Goldstein, Ju, Leland, 2001; and Strebulaev, 

2007; etc.). 

We compare our model without commitment to standard full commitment benchmarks. 

While equity prices coincide with models in which there is no new debt issuance, bond investors’ 

anticipation of future borrowing causes credit spreads to be bounded away from zero and much 

larger than in standard models.   

We also study the optimal debt maturity structure modelled in terms of a constant 

required repayment (or amortization) rate stipulated in the debt contract. Our model without 



4 
 

commitment provides a fresh perspective on this question. We show that at every point in time, 

equity holders are indifferent to the maturity choice for future debt issuance. Short maturity debt 

leads to higher leverage on average, as equity holder issue debt more aggressively knowing 

leverage can be reversed when debt matures. Nevertheless, the gain from additional tax shields is 

offset by increased default costs. Thus, the agency costs associated with the leverage ratchet 

effect persist even for instantaneously maturing debt.   

In our model firms with different debt maturity structures can have quite different 

leverage dynamics; yet firms are indifferent in the debt maturity choice. This provides a potential 

explanation for the finding in Lemmon, Roberts, and Zender (2008), that much of the cross-

sectional variation in firms’ capital structure is persistent and largely unexplained by observable 

characteristics. From the perspective of our model, small perturbations or frictions that may lead 

firms to pick differing initial maturity structures will lead over time to dramatically different 

leverage outcomes. 2     

Finally, we consider the interaction of the firm’s leverage and investment policies.  When 

the firm cannot commit to its investment policy, leverage distorts investment due to debt 

overhang.  Compared to a fixed-debt policy as in Leland (1998), the no commitment leverage 

policy leads to less investment (due to debt overhang) when profitability is high, but more 

investment when profitability is low.  Ex ante, shareholders are not incrementally harmed by 

debt overhang, as underinvestment substitutes for default costs. The firm tends to issue new debt 

more slowly, and targets a lower level of leverage in the presence of debt overhang. Near default, 

however, shareholders issue debt more aggressively when they have the option to cut investment.   

Our paper is most closely related to Admati et al. (2017).  They demonstrate the leverage 

ratchet effect in the context of a one-time leverage adjustment, and then numerically evaluate a 

dynamic equilibrium in a stationary model with regime shocks and perpetual debt. Our paper 

studies leverage dynamics in a richer continuous-time framework that allows for both asset 
                                                           
2 The choice of debt maturity structure does affect the value of equity if the firm is forced to borrow a fixed amount 
upfront. Indeed, this question has been studied in the Leland (1998) setting, and often long-term debt, which 
minimizes rollover risk, is preferred (He and Xiong, 2012; Diamond and He, 2014). In contrast, we show that 
without commitment, firms prefer short-term debt for any positive targeted debt financing. Shareholders of a firm 
with shorter-term debt are more willing to allow leverage to decline following negative shocks, and this future 
equilibrium leverage policy lowers the required default premium today. Of course, longer-term debt is preferred 
from a social perspective, which lowers expected bankruptcy costs. (Another possible force favoring short-term debt 
is investors’ liquidity preference, which is modeled in He and Milbradt (2014).)  
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growth and debt maturity, as well as both Brownian and Poisson shocks.  We develop a general 

methodology to solve for an important class of equilibria, and for the standard workhorse model 

of Leland (1994), we solve for the equilibrium in closed-form, allowing for deeper analysis. 

In Dangl and Zechner (2016), the firm can choose how much maturing debt to rollover, 

but covenants place a cap on the rate of new debt issuance that prevent it from increasing the 

face value of its debt outstanding without first repurchasing all existing debt (at par plus a call 

premium and a proportional transaction cost).  Rolling over debt maintains the firm’s tax shields, 

as in in our model, and dilutes current creditors given their setting with a strictly positive 

recovery rate and pari-passu debt (which we analyze in Section 3.4). They show that when debt 

maturity is long, equity holders will rollover existing debt fully as it comes due, except for when 

leverage is so low that recapitalization to a higher face value of debt is imminent (in which case 

it is not worthwhile to issue debt that is likely to be replaced soon, at a cost).  If debt maturity is 

sufficiently short, however, then when facing high leverage shareholders may rollover only a 

portion of the maturing debt so that the total face value of debt gradually declines. This behavior 

abruptly reverses when the firm approaches default as shareholders maximize dilution (and 

minimize equity injections) by again rolling over debt fully.3  Importantly, they show that firm 

value is not monotonic in debt maturity; depending on parameters, an interior optimal maturity 

may exist that trades off the transactions costs of debt rollover (which favors long maturities) 

with the benefit from debt reductions given high leverage (which favors short maturities).4 As in 

our model, the choice of debt maturity becomes an important commitment device that allows for 

future debt reductions in the face of negative shocks. 

In a somewhat different context, Brunnermeier and Yogo (2009) stress the advantage of 

short-term debt in providing the firm with flexibility to adjust debt quickly in the face of shocks 

to firm value, but that long-term debt is more effective at reducing costs from rollover risk.  Abel 

(2016) considers a dynamic model with investment in which firms adjust leverage by issuing 

debt with instantaneous maturity.  Abel assumes i.i.d. regime shocks to profitability and shows 

that in response to a shock, (i) shareholders never reduce the amount of debt, and (ii) only firms 

                                                           
3 In our model, because there is no constraint on the rate of new issuance, this effect is even more pronounced, with 
debt issuance only increasing at the moment of default. 
4 The same trade-off would apply in our model if we were to adopt the same assumption on transaction costs. 
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that are borrowing constrained (i.e. have borrowed an amount equal to 100% of firm value) 

choose to increase debt.   

Our paper proceeds as follows.  In Section 2 we introduce a general continuous-time 

model of the firm and develop our methodology for solving for an equilibrium in which 

shareholders adjust debt continuously.  Section 3 applies our general results to the special case 

when cash flows are lognormal with possible jumps and derives a closed-form solution for 

security prices and debt issuance.  Section 4 analyzes debt dynamics and shows that the firm 

gradually adjusts leverage towards a target level.  We then evaluate the firm’s choice of debt 

maturity.  Section 5 compares our equilibrium with standard benchmarks such as Leland (1998).  

Section 6 extends the model to include agency costs of investment, and Section 7 concludes. 

2. A General Model 

We begin by outlining a general jump-diffusion model of cash flows that encompasses typical 

settings used in the literature.  We include both taxes and bankruptcy costs as in a standard 

tradeoff model.  We depart from the existing literature by assuming equity holders can issue or 

repurchase debt at any time at the current market price, and analyze the optimal no-commitment 

leverage policy in equilibrium. Clearly, this policy depends on equilibrium debt prices; but 

equilibrium debt prices depend on the firm’s future leverage choices, which determines the 

likelihood of default. Despite this interdependence, we can characterize the time-consistent 

leverage policy explicitly and show that the rate of debt issuance is determined by the ratio of tax 

benefits to the price sensitivity of debt to new issues.  We also show that equity values can be 

computed as though the firm committed not to issue new debt. 

2.1. The Firm and Its Securities 

All agents are risk neutral with an exogenous discount rate of 0r > .5 The firm’s assets-in-place 

generate operating cash flow (EBIT) at the rate of tY  which evolves according to 

   ( ) ( ) ( )t t t t t tdY Y dt Y dZ Y dN−= + +µ σ ζ , (1) 

                                                           
5 Alternatively, we can interpret the model as written under a fixed risk-neutral measure that is independent of the 
firm’s capital structure decision. 
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where the drift ( )tYµ  and the volatility ( )tYσ  are general functions that satisfy standard 

regularity conditions; tdZ  is the increment of standard Brownian motion; tdN  is Poisson 

increment with intensity ( ) 0tY >λ ; and ( )tY −ζ  is the jump size given the Poisson event.6     

Denote by tF  the aggregate face value of outstanding debt. The constant coupon rate of 

the debt is 0c > , so that over [ ],t t dt+  debt holders receive coupon payments of tcF dt  in total.7 

The firm pays corporate taxes equal to ( )t tY cF dt−π , where ( )π ⋅  is a non-decreasing function of 

the firm’s profit net of interest.  When the marginal tax rate is positive ( 0′ >π ), the net after tax 

cost to the firm of the marginal coupon payment is 1 π− ′ , reflecting the debt tax shield subsidy.    

For simplicity, we assume that debt takes the form of exponentially maturing coupon 

bonds with a constant amortization rate 0ξ > . More specifically, each instant there are tF dtξ  

units of required principal repayments from maturing bonds, corresponding to an average bond 

maturity of 1 .ξ  Debt retirement in this fashion is similar to a sinking fund that continuously 

buys back debt at par. Together with the aggregate coupon of tcF dt , over [ ],t t dt+ equity holders 

are required to pay debt holders the flow payment of ( ) tc F dt+ ξ  in order to avoid default.  

In the main analysis, we assume investors recover zero value from the assets-in-place 

when equity holders default. The key implication of this assumption, which will simplify our 

analysis, is that debt seniority becomes irrelevant. Because there are no claims to divide in 

default, old debt holders do not get diluted by new debt holders in bankruptcy even if the new 

debt has equal (or higher) priority. Throughout our paper, “dilution” refers to a decrease in the 

share of bankruptcy proceeds going to prior creditors, and we make the zero recovery value 

assumption to emphasize that our results are not driven by the “dilution” effect which often 

arises when issuing pari-passu debt (e.g., Brunnermeier and Oehmke, 2014; Dangl and Zechner, 

                                                           
6 We have simplified notation by assuming the jump size ( )tYζ conditional on cash flow tY  is deterministic. We can 

easily generalize the model to allow a random jump size ( )tYζ , as long as the law of ( )tYζ depends on tY  only.   
7 The coupon rate c is fixed and arbitrary in our model; in practice, there may be limits/adjustments to the tax 
deductibility of the coupon if it is far from the par coupon rate. 
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2016). 8 That said, in Section 3.4 we consider the case with positive recovery and pari passu debt, 

and demonstrate that the threat of dilution in fact reduces the equilibrium level of debt issued by 

the firm prior to default.9  

Equity holders control the outstanding debt tF  through endogenous issuance/repurchase 

policy tdΓ , where tΓ  represents the cumulative debt issuance over time. We focus our main 

analysis on a class of equilibria in which equity holders find it optimal to adjust the firm’s 

outstanding debt smoothly with order dt . More specifically, we conjecture that at each instant 

the adjustment to existing debt is t td G dtG = , where tG  specifies the rate of issuance at date t, 

and verify later that other issuance policies, including discrete ones, are suboptimal in 

equilibrium. From now on, we call this equilibrium a “smooth” equilibrium, and call tG  the 

equity holders’ issuance policy, which could be issuing new debt if 0tG >  or repurchasing 

existing debt in which case 0tG < . Given our debt maturity assumption, the evolution of 

outstanding face value of debt tF  is given by 

   ( )t t tdF G F dt= −ξ . (2) 

Thus, the face value of debt will grow only if the rate of issuance more than offsets the 

contractual retirement rate. To highlight the economic forces at play, and in contrast to the bulk 

of the literature, we assume zero transaction costs in issuing or repurchasing debt.10         

Given the equity holders’ expected issuance/repurchase policy { }tG , debt holders price 

the newly issued or repurchased debt in a competitive market. Denote by tp  the endogenous 

debt price per unit of promised face value; note that in equilibrium, tp  will reflect creditors’ 

                                                           
8 There is an “indirect dilution effect” in our model even under the zero-recovery assumption, because the value of 
existing debt is adversely affected by an increased likelihood of default once new debt is issued.    
9 If any new debt is restricted to be junior to existing claims, our qualitative results still hold with a positive recovery 
rate. This setting adds significant complexity, however, as debt securities issued at different times have distinct 
prices. In contrast, given zero recovery or pari passu debt, all debt is identical independent of the timing of issuance.  
10 It is common in the dynamic capital structure literature, e.g. Fischer, Heinkel, and Zechner (1989) and Leland, 
Goldstein, and Ju (2000), to assume that firms--in order to adjust their capital structure--have to buy back all of their 
existing debt and then reissue new debt, and that there is a positive adjustment cost associated with this transaction. 
We eliminate this artificial constraint to highlight equity holders’ intrinsic incentives to adjust leverage at any time.  
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expectations regarding future leverage decisions.  Then over [ ],t t dt+  the net cash flows to 

equity holders are equal to 

   


( )


operating cash flow debt issuance/repurchasetax payment debt interest & principal

( )t t tt t tc FY Y c G p dF t−
 
 − − + +
 
 

(&(

(&(

xp . (3) 

The firm continues to operate until the operating cash flow tY  drops low enough, relative 

to the outstanding debt level tF , that equity holders find it optimal to default on their contractual 

obligation to debtholders. As in the literature (Leland 1994, 1998), shareholders cannot commit 

to a certain default policy, but instead default strategically. After default, debt holders take over 

the firm but recover zero by assumption (for the positive recovery case, see Section 3.4). 

2.2. Equilibrium Analysis 

We focus on Markov perfect equilibria in which the two payoff-relevant state variables are: the 

firm’s exogenous operating cash flow tY , and the outstanding aggregate debt face value tF , 

which is an endogenous state variable. We will analyze value function ( ),t tV Y F  for equity and 

the debt price ( ),t tp Y F . Denote by bτ  the equilibrium default time; that is, the first time that the 

state ( ),t tY F  falls into the endogenous default region, which we denote by B . Prior to default, 

i.e., for ( ), ,t tY F ∉B  given future issuance policies and debt prices { }( , ) :s sG p s t> , the market 

value of equity is equal to 

  ( ) ( )( , ) ( ) , .b r s t
t s s s s s s t tt

V Y F e Y Y cF c F G p ds Y Y F F
t

p ξ− −  = Ε − − + + = =   
−∫   (4) 

Because debtholders receive both coupon and principal payments until the firm defaults, and the 

firm recovery upon default is assumed to be zero, the market price of debt is given by  

   ( )( ) ( )( , ) ,b r s t
t t tt

p Y F e c dt Y Y F F
t ξ ξ− + − = Ε + = =  ∫ . (5) 
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An Optimality Condition  

Recall that we are interested in an equilibrium when there is no commitment by equity holders to 

future leverage policies. Thus, at any point in time, the issuance policy sG  for s t>  has to be 

optimal in solving the equity holders’ instantaneous maximization problem at time s , given 

equity’s value function and equilibrium debt prices. 

In this section we consider the necessary and sufficient conditions for the optimality of the debt 

issuance policy tG . The Hamilton-Jacobi-Bellman (HJB) equation for equity holders is 

   

( ) ( ) ( ) ( )

( ) ( ) ( )2

after-tax cash flowrequired return coupon&principal payment new debt issuance evolution of 

, max ( ) , ( ) ,

1( ) , ( ) ,
2

G F

Y YY

dF

rV Y F Y cF c F Gp Y F G F V Y F

Y V Y F Y V Y F Y V Y

Y= --  + + + -

+ + +

 
 -
 
 
((&((

(&( (&( (&( (((&(((

pxx 

msl   ( )( ) ( )
evolution of dY

Y V Y + - 
((((((((((((&((((((((((((

ζ

 (6) 

In the first line, the objective is linear in G with a coefficient of ( ) ( ), ,Fp Y F V Y F+ , which 

represents the (endogenous) marginal benefit of the revenue from a debt sale net of the marginal 

cost of the future debt burden on shareholders. If equity holders find it optimal to adjust debt 

smoothly, then it must be that this coefficient equals zero, i.e. 

   ( ) ( ), 0, Fp Y V YF F+ = . (7) 

This first-order condition (FOC) must hold for any ( ),Y F  along the equilibrium path.11 But to 

be sure that this policy is globally optimal, we must verify that there is no discrete adjustment to 

the debt level that shareholders would prefer.  We show next that global optimality holds if and 

only if the debt price is weakly decreasing in the firm’s total debt, i.e., ( ), 0Fp Y F ≤ .  

                                                           
11 This relation holds trivially in the default region B , as for defaulted firm the debt price 0p = and ( ), 0V Y F =

implies ( ), 0
F

V Y F = as well. It is worth pointing out that the zero-bankruptcy-recovery assumption is not necessary 
for 0p = at default. Even with a strictly positive recovery, as long as newly issued debt is junior to any pre-existing 
debt, newly issued debt is worthless at the moment of default as existing debt gets all the recovery. (Alternatively, if 
the firm can issue pari passu debt, then right before default it will issue new debt and dilute existing creditors to the 
point that their recovery value becomes zero, as we show in Section 3.4.) 
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PROPOSITION 1 (OPTIMALITY OF SMOOTH DEBT POLICY). Suppose the debt price

( ),Fp V Y F= −  is weakly decreasing in the total face value F of the firm’s debt, i.e., the 

value of equity ( , )V Y F  is convex in F . Then condition (7) implies that the policy tG  is 

an optimal debt issuance policy for shareholders. Conversely, if the policy tG  is optimal, 

then ( ),Fp V Y F= −  is weakly decreasing in F  for all equilibrium states ( ),Y F .  

PROOF. Equity holders are solving the following problem each moment along the optimal path 

   max ( , ) ( , ) ( , )Y F p Y F V Y FV∆ + ∆ −+ ∆ ⋅ + ∆ . (8) 

For the proposed smooth policy to be optimal, 0∆ =  must be optimal in (8). This problem has 

the first-order condition 0F Fp pV + + ∆ =  at 0∆ = , which implies that Fp V= − .   To check for 

global optimality, suppose that equity holders choose any 0∆ > . Then equity’s gain is 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0

0 0
monotonicity of 

0
FOC in Equation (7)

, , , , ,

, ,

, , 0

F

F

p

F

V Y F Y F p Y F V Y F d p Y F d

V Y F d p Y F d

V Y F p Y d

V

F

∆ ∆

∆ ∆

∆

+ ∆ − + ∆ + ∆ = + + + ∆

+ + +

= + +

⋅

 

≤

+ =

∫ ∫
∫ ∫

∫

((

((((((((((

d d d

d d d d

d d d

 (9) 

where in the second line we have used the condition that p is weakly monotone in F . Note the 

above inequalities still hold if 0∆ < ; in this case ( ) ( )p F p F δ+ ∆ ≥ +  but 0dd < . Finally, the 

condition that the debt price is weakly decreasing in F implies that equity’s value is convex in F, 

i.e. 0 0F FFp V≤ ⇔ ≥ .  

Now we prove the second part. First of all, it is easy to see ( ),p Y F  is continuous in F from (5). 

If ( ),p Y F  is weakly increasing in F, the above argument in (9) implies that any ∆  is a 

profitable deviation. But if ( ),p Y F  is not monotone in F, then for some Y, due to continuity 

there must exist two face values 1F  and 2F  with 1 2F F< , so that ( ) ( ) ( )1 2
ˆ, , ,p Y F p Y F p Y F< =

for [ ]1 2
ˆ ,F F F∈ . Now setting 2 1 0F F∆ = − >  and 1F F=   in (9) leads to a strictly positive 

deviation gain.  
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Equity Valuation  

The First-Order Condition (FOC) in (7), which implies a zero-profit condition for equity holders 

in adjusting the debt burden instantaneously, has deep implications for the equilibrium in our 

model. Plugging condition (7) into the equity HJB equation (6), we can see that the sum of terms 

involving G equals zero, leading to the following revised HJB equation for equity: 

  
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )21
2

, , ,( ) ( )

,,( ) , .
Y F

YY

Y FrV Y Y cF c F Y V FV

Y Y V Y Y F

Y F Y F

V V FF YY

= − − − + + −

 + + − +

π ξ µ ξ

σ λ ζ
 (10) 

This equation says that in the no-commitment equilibrium, the equity value can be solved as if 

there is no debt adjustment 0tG = , except for the natural retirement at rate ξ .  

Intuitively, because equity holders gain no marginal surplus from adjustments to debt, 

their equilibrium payoff must be the same as if they never issue/repurchase any debt. The 

important implication of this observation is that we can solve for the equilibrium equity value 

( ),V Y F , even without the knowledge of the equilibrium debt price – ( ),p Y F does not enter 

equation (10)).  Therefore, we have the following key result: 

PROPOSITION 2 (NO-TRADE EQUITY VALUATION). Let 0 ( , )V Y F  be the value of equity 

that solves (10) in which the firm were committed not to issue or buyback debt ( 0tG = ).  

Then the value V of equity in any smooth equilibrium is equal to 0V . 

PROOF. Immediate from (10) and the fact that the boundary conditions are unchanged.  

This result, while perhaps striking at first, is analogous to the Coase (1972) conjecture for 

durable goods monopoly: the firm is a monopolist issuer of its own debt. When the firm is unable 

to commit to restricting its future sales, it cannot resist the temptation to trade aggressively, so 

much so that any surplus from trading gets dissipated in equilibrium.12 

                                                           
12 A closely related result appears in DeMarzo and Urosevic (2001) in a model of trade by a large shareholder 
trading off diversification benefits and price impact due to reduced incentives. In equilibrium, share prices are 
identical to those implied by a model with no trade. Similarly, the monopolist buyer in Daley and Green (2016) who 
cannot commit to his/her future strategy gains nothing from the ability of screening (sellers with different types). 
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Optimal Debt Issuance    

 Given the equity value V , we can invoke the FOC in (7) to obtain the equilibrium debt 

price ( ) ( ), ,Fp Y F V Y F= − . Finally, to confirm that this outcome indeed represents an 

equilibrium, we must verify whether ( ) ( ), ,Fp Y F V Y F= − is weakly decreasing in F , or 

equivalently that the equity value is convex in F . 

 Now we solve for the optimal leverage policy G. We have determined the equilibrium 

debt price using the optimality Fp V= − , where the equity value V is equivalent to the no-trade 

value from (10) and therefore independent of G. On the other hand, we can also calculate the 

debt price directly based on debt holders expected cash flows using (5). This calculation will 

depend on the timing of default, which does depend on the rate of debt issuance.  Thus the 

equilibrium leverage policy G must be such that these two methods of valuing the debt are 

consistent with each other.13 

 The next two steps follow the idea outlined above. First, let us consider the HJB equation 

that should hold for the debt price from (5), which is given by 

 

( )


( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

*

21
2

coupon
required return evolution of debt debt retirement

evolution of cash flow 
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F

Y YY
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dY
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Y F

F p

Y p Y p Y Y F p Y FY p Y F

= + − + − +

 + −+ + 
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((((
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ξ

ζ

ξ
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 (11) 

 

Next, starting with the HJB equation (10) for ( ),V Y F , if we differentiate by F and use the 

optimality condition Fp V= − , we obtain 

     
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )21
2

, , ,( )

( ) ( ) , , ., ,
F

Y YY

rp Y cF c c p Fp

Y p

Y F Y F Y F

Y F p YY Y p Y YF F p Y F

− = ′ − − + + +

 − − − + + +

p ξ ξ ξ

µ σ λ ζ
 (12) 

Although equation (12) is written in terms of the debt price p , we emphasize that it follows 

mechanically from the valuation equation (10) for equity, together with the FOC (7) for the 

                                                           
13 Intuitively, if G = 0 and the firm never issues additional debt, the debt price would exceed its marginal cost to 
shareholders, -VF, due to the incremental tax shield.  By increasing the rate of issuance, the likelihood of default will 
increase and the price of debt will fall to the point that (7) holds.   
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optimal issuance policy.  Finally, adding (12) to (11), we obtain a simple expression for G

shown below: 

PROPOSITION 3 (EQUILIBRIUM DEBT ISSUANCE). Let ( , )V Y F  be the no-trade value of 

equity.  If V is convex in F, then there exists a unique smooth equilibrium with debt 

issuance policy  

   ( ) ( ) ( )
* ( ) ( ),

, ,F FF

Y cF c Y cF cG Y F
Yp Y FVF

− ′
−

−′
= =

pp  . (13) 

Under this policy, the debt price given by (5) satisfies Fp V= − . 

PROOF. For a smooth policy to be optimal, (7) is necessary. But then (6) and (7) imply (12), 

which combined with (11) imply (13). Then Fp V= −  follows since their HJB equations and 

boundary conditions are equivalent, and the global optimality of the policy (13) follows from 

Proposition 1 and convexity of V.  

Note that the convexity of equity value V implies that, no matter how high the current 

level of debt, the rate of issuance *G  is always positive provided a strictly positive tax benefit 

0′ >π .   We can interpret the policy (13) as follows.  The rate of issuance of debt is such that the 

rate of devaluation of the debt induced by new issuances just offsets the marginal tax benefit 

associated with the coupon payments: 

   ( ) ( ) ( )* , ,FY F Y FG p Y cF c= ′ −p  .  (14) 

As shown by (14), if there were no tax subsidy ( 0′ =π ), then ( )* , 0G Y F = , that is, without a tax 

subsidy equity holders choose not to increase debt. On the other hand, they choose not to actively 

reduce debt via buybacks either, despite that fact that there are deadweight costs of bankruptcy.  

This result is consistent with the leverage ratchet effect of Admati et al. (2017) – even if the 

firm’s current leverage is excessive, equity holders never actively reduce debt but always have 

an incentive to increase debt when it provides a marginal tax benefit. 

Discrete Optimization    

Note that in equilibrium, because Fp V= − , the value of equity is the same for any smooth 

issuance policy G , yet the optimal policy *G  is uniquely determined such that shareholders 
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remain indifferent.  In a sense, our characterization of *G  is analogous to that of a mixed 

strategy equilibrium in which each player is indifferent to her choice of action, yet her 

equilibrium strategy is uniquely determined to keep the other player indifferent. 

Shareholder indifference regarding the issuance policy is, however, an artifact of the 

continuous-time limit.  If we were to compute the equilibrium as the limit of a discrete-time 

model, the optimal policy *G  would arise as the result of a strict optimization by shareholders. 

To see this result heuristically, suppose that the firm issues debt ∆  which is fixed over the next 

dt  instant, and let p  and V  be the end-of-period debt price and equity value functions, 

respectively. The firm would then pay additional interest of cdt∆ , and thus its earnings would 

decline by ( )( )1 Y cF cdt− ′ − ∆π  on an after-tax basis.14  Because the bonds trade for a cum-

coupon price of ( , )cdt p Y F+ + ∆ , shareholders would choose ∆  to solve:15 

   ( )( ) [ ]
Debt proceedsAfter-tax interest payment

max 1 ( , ) ( , )Y cF cdt cdt p Y F V Y FD --  ′ -D  + D + + D + + D
((((((

((((((((

p  (15) 

Equation (15) has the first-order condition 

   ( ) ( ) ( )
zero by equilibrium condition (7)

F

F F

Y cF cdt p V Y cF c
dt

p p
′ − + + ′ −

∆ = =
− −

(+(

pp
, (16) 

which exactly coincides with (13). Hence, we can interpret *G  as the strictly optimal issuance 

rate when the firm has “infinitesimal” commitment power over [ ],t t dt+   in a discrete-time 

setting. 

Summary  

In sum, for the general model in which equity holders are free to issue or repurchase any amount 

of debt at the prevailing market price, one can solve for the no commitment equilibrium as 

follows: 

                                                           
14 Here we are ignoring terms of order dt2 or higher which would arise if the marginal tax rate is not locally constant.  
15 Recall that p is the end-of-period bond price. If sold earlier it will trade for a higher price that includes the initial 
coupons. Also, we assume the new debt issuance occurs after the current period’s default decision and principal 
repayments; changing the timing would introduce terms of order dt2 without altering the conclusion. 
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(i) Use (10) to solve for the equity holder’s value function ( ),V Y F  by setting 0G = , i.e. 

as if equity holders commit to not issue any future debt; 

(ii) Set the debt price ( ) ( ), ,Fp Y FF V Y= − ; 

(iii) Check the global optimality condition by verifying the debt price ( ),p Y F is weakly 

decreasing in aggregate debt F , or equivalently ( ),V Y F  is convex in F ; 

(iv) Finally, given ( ),p Y F  we can solve for the optimal time consistent issuance policy 

( )* ,G Y F  from (13). 

In the remainder of the paper we will use this methodology to analyze several standard settings. 

3. A Closed-Form Solution 

We now apply the general methodology developed in the previous section to the widely used 

framework of a lognormal cash flow process.16  The results from Section 2 allow us to fully 

characterize an equilibrium in closed form, and evaluate the corresponding leverage dynamics.  

We also extend the model to allow for jumps to cash flows, and show that the solution is 

qualitatively unchanged. Finally, Section 3.4 studies the case of a positive recovery value; 

somewhat surprisingly, because equity holders are able to dilute existing creditors, a positive 

recovery value makes the debt price more sensitive to new issuance, thereby reducing the 

equilibrium level of debt. 

3.1. Log-Normal Cash Flows 

In the special case of lognormal operating cash flow, tY  follows a geometric Brownian motion:   

   ( ) ( ) and t t t tY Y Y Y= =µ µ σ σ , with r > µ . (17) 

Given the scale invariance of the firm in this setting, we analyze the model using a 

unidimensional state variable equal to operating cash flow scaled by the outstanding face value 

of debt,  
                                                           
16 This setting is consistent with e.g. Merton (1974), Fischer et al. (1989), Leland (1994), Leland and Toft (1996), 
and follows the development of starting from cash flows rather than firm value as in Goldstein et al. (2001). 
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   tt ty Y F≡ . (18) 

As an interpretation, ty  is proportional to the firm’s interest coverage ratio /ty c , that is, the 

ratio of operating income tY  to total interest expense tcF , a widely used measure of leverage and 

financial soundness.  Alternatively, 1/ ty  expresses the amount of debt as a multiple of the firm’s 

cash flow (EBIT). 

To maintain homogeneity, we assume a constant tax rate so that 

   ( ) ( )t t t tY cF y c F− = ⋅ − ⋅π π ,  (19) 

where the positive constant 0>π is the marginal corporate tax rate that applies to both losses 

and gains.17 With this setting, we conjecture and verify that the equity value function ( ),V Y F  

and debt price ( ),p Y F  are homogeneous so that  

  ( ) ( ), ,1YV Y F V F v y F
F

 



≡= 


 and ( ) ( ), ,1Yp Y F p p y
F

 =  


≡


. (20) 

We will solve for the (scaled) equity value function ( )v y  and debt price ( )p y  in closed form.  

Given the evolution of our state variables tY  and tF :   

   ( ),  and t t t t t t tdY Y dt Y dZ dF G F dt= + = −µ σ ξ , (21) 

the scaled cash-flows evolve as 

   ( )t
t t

t

dy g dt dZ
y

= + − +µ ξ σ ,  where /t t tg G F≡ . (22) 

As (22) shows, because the debt tF  grows in a locally deterministic way, the scaled cash flows 

grow with the same volatility as total cash flows. Their expected growth rate, however, is 

reduced by the net growth rate of the debt tg − ξ , where ξ  is the debt amortization rate and 

/tt tg G F=  is the endogenous debt issuance rate. The more debt the firm issues, the faster the 

scaled cash flow declines.   
                                                           
17 The methods developed here could also be applied with different marginal tax rates for losses versus gains, e.g. 

( ) max( , 0)y c y c− = ⋅ −π π , though we do not pursue that here. 
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When the scaled cash flow ty  falls below some endogenous default boundary by , equity 

holders are no longer willing to service the debt, and therefore choose to strategically default. At 

that event, equity holders walk away and debt holders recover nothing by the assumption of a 

zero liquidation value. 

3.2. Model Solution 

Recall from Section 2 that we can solve for the equilibrium equity value as if 0tg =  and equity 

holders do not actively adjust the firm’s debt, even though they will do so in equilibrium.  Using 

the fact that 

   ( ) ( ),YV Y F v y′= , ( ) ( ) ( ),FV Y F v y yv y= − ′ , and ( )YYFV v y′′= , (23) 

we can rewrite (10) with lognormal cash flows in terms of scaled cash-flow y  as follows: 

  ( ) ( ) ( ) ( ) ( )2 2( ) 1( ) ' ''
2

r v y y c yv y yy c v yξ ξ µπ ξ σ+ +−= − − − + + . (24) 

There are two boundary conditions for the ODE (24). When by y= , equity is worthless 

so ( ) 0bv y = . On the other hand, when y → ∞ , default becomes unimportant and we can treat 

the debt as riskless, and hence the equity value converges to 

    
 

tax shieldunlevered asset bond vava l el uue

)( ) (1 cv y yy c
r r r

π π φ rx
µ xx

− +
+ − −

+
≡ ≡

− +
((

 , (25) 

where 1
r

πφ
µ

−
≡

−
 is the unlevered valuation multiple for the firm, and (1 )c

r
π ξr

ξ
− +

≡
+

 is the 

after-tax cost to the firm of a riskless bond. Finally, the default boundary by  is determined by the 

smooth-pasting condition ( )' 0bv y = . Solving (24) with these boundary conditions, we obtain the 

following characterization of the equity value.  

PROPOSITION 4.  Given a constant tax rate π , and letting  

   
( ) ( ) ( )

22 2 2

2

0.5 0.5 2
0

rµ ξ σ µ ξ σ σ ξ
γ

σ

+ + + − + +
≡

−
> , (26) 
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the equity value function and optimal default boundary are given by 

   1( ) 1
1 b

yv y
y

y
γ

φ ρ
γ

−  
 = − −   +   

 and 
1by ργ

φγ
=

+
. (27) 

PROOF. See the Appendix.  

Having solved for the value of equity, recall from (7) that we can determine the 

equilibrium debt price from the FOC ( ) ( ),Fp y V Y F= − .  Then from (23), and using (27), we 

have 

   ( ) ( ) ( ) 1F
b

yp y V yv y v y
y

−γ 
′ ρ


 = − = − = −     

. (28) 

Recall we need to verify the optimality of the issuance policy by checking the 

monotonicity of the equilibrium debt pricing function. It is easy to see that ( ) 0p y′ >  in (28), i.e. 

the greater the scaled cash flow the higher the debt price. As a result, the key condition in 

PROPOSITION 1 – that the debt price decreases with total debt – follows because 

   ( ) ( ) 2

2 ( 0),F
Y y vp Y
F F

p y yF  = ⋅ − = − <
′′


 

′ . (29) 

Finally, we can apply PROPOSITION 3 combined with (29) to derive the equilibrium debt 

issuance policy: 

PROPOSITION 5.  Given a constant tax rate π , the equilibrium issuance policy is 

  ( ) ( ) ( ) ( )
*

*
2,F b

G c c c c yg y
F Y F yp y y vFp y y

g
pppp  

ρg
 

= = = = = ′ ′ ′ 
−

. (30) 

New debt issuance ( )*g y is always positive, and is increasing in the scaled cash flow y.  

Thus, with lognormal cash flows, we can fully characterize equilibrium debt dynamics 

and security pricing in closed form.  Based on the equilibrium values for both equity and debt, 

total firm value (or total enterprise value, TEV) can be expressed as a multiple of the firm’s cash 

flow (i.e. TEV to EBIT) as 
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1 1

( )( ) ( ) 1 1 ,
1b b b

v y p y y y yv
y y y y

−γ− −γ−    + γ  = − = −   +     
′ = φ



ρ
φ

γ
   (31) 

where the first equality follows from the equilibrium condition for the debt price, and the last 

equality uses the expression of by  in PROPOSITION 4.  

Note that the firm’s TEV multiple is strictly increasing with the scaled cash flow y . 

Consequently, holding the level of cash flows fixed, total firm value decreases with leverage. 

Although there are tax benefits associated with debt, the firm issues debt sufficiently 

aggressively that the cost of debt rises to offset the tax benefits. An immediate implication of this 

result is that starting with zero leverage, there is no incentive for the firm to increase leverage 

discretely.  Instead, in equilibrium, the firm will issue debt gradually according to (30).  This 

behavior is in  stark contrast to models with commitment, which we discuss further in Section 5. 

 

3.3. Upward Jumps 

In the no commitment equilibrium, the firm’s debt level evolves continuously according to (30).  

This smooth issuance policy might be thought to depend on continuity of cash flows and asset 

values in the diffusion setting. In this section we extend our model to allow the firm’s cash flows 

to jump discontinuously, for example in response to new product development, and show that 

our prior solution, in which shareholders issue debt smoothly, is essentially unchanged. 

 Consider a jump-diffusion model in which cash flows occasionally jump from tY  to tYθ  

for some constant 1θ > . Specifically, 

   ( )ˆ 1t t t t t tdY Y dt Y dZ Y dN−µ −θ= + σ + , (32) 

where tdN  is a Poisson process with constant intensity 0λ > .18 In this extension, due to upward 

jumps, the effective expected asset growth rate becomes  

                                                           
18 While we focus on upward jumps with a fixed size, allowing the upward jump to be stochastic is straightforward. 
Downward jumps introduce an extra complication due to jump-triggered default, in addition to diffusion-triggered 
default. See footnote 20 for more details. 
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   ( )1ˆ≡ +µ λ θ −µ , (33)  

and we continue to assume rµ < to ensure that the unlevered firm value is bounded.  

As before, we can solve for the equity value as if shareholders commit not to issue any 

new debt. Because (32) still maintains scale-invariance, ( ) ( ),V Y F F v y= ⋅  continues to hold, 

and the HJB equation for the equity value becomes  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 211 ' '' ( ) .
2

ˆr v y yv y y v y v y v yy cπ − − ξ+ ξ = − + µ θ+ ξ + σ + λ −    (34) 

The last term in equation (34) captures upward jumps. The usual boundary conditions apply:  

When y → ∞  so leverage is negligible, default risk disappears and ( ) ( )v y v y→ ; while at the 

point of default, we have value-matching ( ) 0bv y =  and smooth-pasting ( )' 0bv y = .   

Somewhat surprisingly, even with jumps, equilibrium security prices and debt dynamics 

have exactly the same form we derived in the diffusion-only case: 

PROPOSITION 6.  Suppose cash flows evolve as a log-normal diffusion with upward 

jumps as in (32).  Then the equilibrium equity and debt values, and debt issuance policy 

are given by (27), (28), and (30) respectively, with γ  replaced by γ̂ , which is the unique 

positive root of 

   ( )
2 2

ˆ 2ˆ ˆ ˆˆ( ) 0
2 2

W r−γ  σ σ
γ = λθ + γ − µ + ξ − γ − + ξ + λ = 

 
.  (35) 

PROOF. See the Appendix.  

 Consequently, although the firm’s profitability (i.e., cash-flow tY ) may jump up 

discretely, the equilibrium debt issuance policy continues to be smooth in the sense that it 

remains of order dt . In response to positive jumps in the firm’s profitability, shareholders 

increase the speed of debt issuance, but do not issue a discrete amount of debt immediately. 
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Consequently, leverage falls discretely before gradually mean-reverting. This property holds 

even we set 2 0=σ  so that the firm’s cash flows only grow with discrete jumps.19,20   

3.4. Positive Recovery Value 

Thus far we have assumed that in the event of default the liquidation value of the firm is zero.  

Under this assumption, there is no difference between junior or senior debt, which rules out any 

direct dilution motive for issuing debt.   

 What if the firm has a positive recovery value in default, and the firm can issue pari passu 

or even senior debt, so that there is a dilution motive for debt issuance? Specifically, suppose that 

given cash flows Y, the firm has a liquidation value ( )L Y  equal to a fraction of its unlevered 

value: 

   ( )L Y Yαφ≡  for [0,1)∈α . (36) 

These liquidation proceeds are paid to the firm’s creditors. But if the firm can issue senior or pari 

passu debt without restriction, then by issuing new debt shareholders can dilute the claim of 

existing creditors in default. Indeed, at the moment of default, shareholders have an incentive to 

issue new debt to dilute the existing creditors fully, so that as a result existing creditors earn a 

zero recovery. Because shareholders receive the proceeds from the new debt issued, this scenario 

is equivalent to equity holders having the option to default on existing creditors and recover 

( )L Y .21   

Interestingly, we can show that in this case the resulting equilibrium is equivalent to one 

in which only a fraction (1 )−α  of the firm’s cash flows can be pledged to creditors (with 

shareholders owning the rest α fraction of non-pledgeable cash flows separately). The optimal 

default and issuance policies derived above continue to apply with the relevant measure of cash 

                                                           
19 When the diffusion term vanishes, we must impose 0µ + ξ <  so that cash flows decline faster than debt matures 
between jumps. Otherwise, it is optimal for the firm to sustain 100% debt financing without risking default. 
20 If we allow for negative jumps, there is an additional complication that jumps may trigger default. Nonetheless, 
the analysis in Chen and Kou (2009), with certain special assumptions on jump distributions, suggests that one can 
still solve for the equity valuation in closed-form. As long as the equity value function remains convex, the key 
qualitative property of smooth debt issuance policy continues to hold in general jump-diffusion models. 
21 In other words, it is as if there is a complete violation of absolute priority so that equity holders receive the entire 
recovery value of the firm (while debt holders recover nothing). 
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flow equal to just the pledgeable component ( )1 yα− .  The value of equity is then the sum of 

the value from the pledgeable and non-pledgeable parts. The following proposition formalizes 

this result:       

PROPOSITION 7.  Suppose cash flows evolve as a log-normal diffusion as in (17), all debt 

is pari passu, and in the event of default the firm is worth ( )L Y  as in (36). Then the 

equilibrium equity and debt values, default boundary, and debt issuance policy are:  

   ( ) ( (1 )) ( )Lv L yy v y α += − , 
1

L b
b

yy =
− α

, (37) 

   ( ) ( (1 ))Lp y p y − α= , and *( ) ( (1 ))Lg y g y= − α . (38) 

PROOF. See the Appendix.  

 In this scenario, the smooth issuance policy Lg  applies only up to the default boundary 

.L
by   At the moment of default, the firm issues an infinite amount of debt to dilute existing 

creditors. The main qualitative effect of a positive recovery rate is to raise the value of equity 

(i.e. ( ) ( )Lv y v y> ) and reduce the equilibrium level of debt prior to default (because debt 

issuance will match that of a firm with proportionally lower cash flows).   

It is interesting to observe that 0Lg y∂ ∂ > , so that shareholders issue less debt when the 

firm edges closer to default (but before actual default). Even more surprising, we have 

0Lg∂ ∂α <  so that a firm with a dilution motive issues less debt prior to default relative to the 

baseline case without a dilution motive. The extra dilution motive is instead reflected by the 

more aggressive default policy (and the associated infinite dilution at default), whereas the 

reduced pledgeability of cash flows lowers debt capacity prior to default. This result squares 

nicely with Dangl and Zechner (2016) who consider similar pari passu debt and positive 

recovery, but shareholders are constrained by an upper bound on the rate of debt issuance. 

Because of this constraint, shareholders in Dangl and Zechner (2016) raise debt at the maximum 

speed possible for some period prior to default.         
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4. Debt Dynamics 

Now that we have solved for the equilibrium debt issuance policy and security pricing, we can 

analyze the implications for observed debt dynamics.  Although lack of commitment leads the 

firm to always have a positive rate of debt issuance, the countervailing effect of debt maturity 

and asset growth cause leverage to mean-revert towards a target.  We begin by characterizing 

this target as well as the speed of adjustment.  We then consider the implications of alternative 

debt maturities, and find that in our model shareholders are indifferent to any maturity structure 

for future debt issuance.  

4.1. Target Leverage and Adjustment Speed 

From PROPOSITION 5, we see that the firm will issue debt at a faster rate when cash flows are 

high, and the rate of issuance slows as the firm approaches default.  Because the mapping from 

the cash flow to leverage is strictly monotonic, there is a unique level of the scaled cash flow ˆgy  

such that new net debt issuances occur at any given rate g . We can compute ˆgy  from (30) as 

follows: 

   
1/

ˆg b gy y
c

gρ
π

g ≡ ⋅ 
 

. (39) 

Then ŷξ  (i.e., set g ξ= ) is the target level of the scaled cash flow at which the new issuance 

exactly balances with retiring of existing debt, and the firm is neither accumulating nor retiring 

debt.  

Figure 2 illustrates the net debt issuance rate given different debt maturities and asset 

volatilities as a function of the firm’s current leverage.  This issuance policy causes leverage to 

mean revert towards a target level ŷξ  at which new issuance just balances debt maturity. Shorter 

debt maturity increases the speed of mean reversion, whereas lower volatility raises the target 

level of leverage.   
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Figure 2: Net Debt Issuance versus Firm Leverage for Different Maturities and Volatilities 

Baseline Parameters: 2%, 40%, 30%, (1 ) 5%, 20%c rµ σ π π ξ= = = − = = =  

 

Without commitment, the firm’s debt is path dependent, with the current level of debt 

equal to the cumulative past issuance net of debt retirement.  Because the issuance rate varies 

with the level of cash flows, this path dependence can be quite complex.  Surprisingly, using our 

expression for *g  in PROPOSITION 5, we can derive the evolution of the firm’s debt explicitly as 

a function of the firm’s initial debt position and its earnings history, as shown next. 

PROPOSITION 8.  Given the debt issuance policy *g  and initial debt face value 0 0F ≥ , the 

firm’s debt on date t  given the cash-flow history { }: 0sY s t< <  is 

    ( )
0 0

1/

ˆ
t s tt s

t
YF e e
y

F ds

γγ

γξ −γ −γξ

ξ

 
= γξ 

 
 +
  

 
 

∫         (40) 

PROOF. See the Appendix.  

Equation (40) implies that the firm’s debt today equals an appropriately “discounted 

average” of the initial debt and a target multiple of the firm’s intervening cash flows. This point 

becomes transparent in the special case of 0 0F = , i.e., when the firm starts with no debt. Setting 

0 0F = in (40), we have  

   ( )1/

0

( )1
ˆ

s t
t

t

sF e dsY
y

γ
γξ − γ

ξ

ξ= γ ∫   (41) 
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Since 
0

( ) 1
t ts t dse eγξ − −γξγξ = −∫  is approximately tγξ for small t , (41) implies that in equilibrium 

debt starts at 0 and grows gradually with order of /t1 γ , with the long run debt level dependent on 

the weighted average of the firm’s historical earnings. The weight put on recent cash flows 

relative to more distant ones is an increasing function of the product γξ . Table 1 shows the 

weight put on the firm’s last 12 months of earnings in the determination of its current debt level. 

Intuitively, shorter debt maturity (a greater ξ ) implies faster repayment of debt principal, 

allowing leverage to shrink more quickly in the face of declining cash flows. From (26) one can 

show that higher γ  is associated with lower volatility, which makes the firm more aggressive in 

adding leverage in response to positive cash flows news. Finally, note that the only impact of the 

tax rate π  is to rescale the debt level through ŷξ .22  

 

Table 1: Weight of Prior Year Earnings in Current Debt Level (1 e− γξ− ).  The debt level responds more quickly 
to current earnings when debt maturity is short and volatility is low. 

 Equation (41) demonstrates clearly that once the firm is free to adjust leverage over time, 

equilibrium debt dynamics depart strongly from the standard predictions of tradeoff theory.   

Figure 3 simulates the evolution of debt for an initially unlevered, issuing debt with a five-year 

maturity, using the same parameters as Figure 2.  While the firm does not issue a large amount of 

debt immediately, it does increase debt quickly until it approaches approximately 40% of firm 

value. Once it exceeds that level, the firm issues new debt at a slower rate than its existing debt 

matures, and the total amount of debt declines.  Overall, the firm’s debt level evolves gradually 

                                                           
22 Note that our model adopts an idealized version of the tax code.  In practice, the debt tax shield is not strictly tied 
to the coupon rate, but includes an adjustment for any discount or premium at the time of issuance. As a result, when 
leverage and credit risk are high, a firm issuing debt at a discount would enjoy somewhat higher tax shields than 
when leverage or credit risk are low.  For moderate levels of leverage, this would tend to reduce the speed of mean 
reversion. At very high leverage levels, however, when the firm has operating losses, tax shields must be deferred 
and the rate of debt issuance would slow at a faster rate than in our model.  

Weight on Prior Year Earnings in Current Debt Level 
Volatility 

Maturity 35% 40% 45% 50% 
20yr 7% 5% 4% 3% 
10yr 19% 15% 12% 10% 
5yr 52% 43% 36% 31% 
3yr 86% 78% 69% 62% 
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based on a weighted average of past earnings. This gradual adjustment of debt towards a target 

level, as simulated in Figure 3, resembles the evolution of debt observed in practice (see, for 

example, Figure 1). 

 

 Figure 3: Simulation of Debt Evolution 

( 2%, 40%, 30%, (1 ) 5%, 20%c rµ = σ = π = − π = = ξ = ) 

4.2. Debt Maturity Structure 

Our model considers a constant debt maturity structure in which all debt has an expected 

maturity of 1/ ξ . This assumption is common in much of the dynamic capital structure literature 

which treats the debt maturity structure as a parameter.23 While it is beyond the scope of this 

paper to allow the firm full flexibility over maturity structures, our analysis in this section offers 

new insight on debt maturity. We first show if the firm is not constrained to borrow a fixed 

amount, then shareholders are indifferent to the maturity structure of any future debt issuance. 

While different maturity choices will lead to different future leverage levels, any increase in tax 

benefits is offset by an increase in default costs, and the firm’s current share price is unaffected.  

But although shareholders are indifferent, a social planner that puts more weight on the dead 

                                                           
23 Debt retirement in this fashion is similar to a sinking fund that continuously buys back debt at par; see Leland 
(1998), Leland and Toft (1996), He and Xiong (2012), and Diamond and He (2014). See, however, Brunnermeir and 
Oehmke (2013) and He and Milbradt (2016) for analysis of the firm’s decision to lengthen or shorten its debt 
maturity. 
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weight costs of default would prefer that firms use long-term debt.  On the other hand, a firm that 

needs to borrow a large amount quickly, or that wants to maximize its debt capacity, would 

choose short-term debt. 

Optimal Debt Maturity: Shareholder Indifference 

Recall from PROPOSITION 2 that we can compute the current value of equity as though the firm 

will not issue or repurchase debt in the future, and just repays its existing debt as it matures. This 

result immediately implies that for an initially unlevered firm ( 0 0F = ), firm value does not 

depend on the choice of debt maturity structure ξ . This indifference result is deeper than it 

appears: Although the firm starts with no initial debt, recall that (41) says the firm will begin 

issuing debt immediately, and the debt maturity ξ  does affect future debt contracts, leverage, and 

share prices. Nevertheless, because any gains from tax savings are offset by increased 

bankruptcy costs, these dynamic consequences have no effect on the initial share price, and as a 

result shareholders are indifferent across alternative debt maturity choices.  

This irrelevance result can be generalized further. Consider the following thought 

experiment, in which equity – facing the current cash flows and debt structure ( ), ,t tY F ξ  – has a 

one-time opportunity to choose an alternative maturity 'ξ  for the firm’s future debt. That is, the 

firm’s existing debts continue to retire at the old speed ξ , but the newly issued debts are with the 

new maturity and hence will retire at the new speed 'ξ . We have the following proposition.  

PROPOSITION 9.  In a no-commitment equilibrium with smooth debt issuance, the firm’s 

current equity value is independent of the maturity 'ξ  of new debt.  

PROOF:  We can consider the implied future liabilities from the firm’s existing debt as a 

modification of the cash flow process for the firm and then apply our general results from 

Section 2. For equilibria in which equity holders are taking smooth debt issuance polices, equity 

holders obtain zero profit by issuing future debt, and their value will be the same as if equity 

does not issue any future debt. As a result, the current equity value only depends on the maturity 

structure ξ  of existing debt, but not on the maturity structure 'ξ of future debt.  
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The logic of Proposition 9 and hence the indifference result can be further generalized to 

a setting in which the firm is free to choose any maturity structure for its newly issued debt any 

time. Again, the equity value only depends on the maturity structure of existing debt.    

Although equity holders are indifferent between alternative maturity structures, different 

maturity choices will lead to very different patterns and levels of future leverage.  For example, 

Figure 4 shows the total enterprise value, debt amount, and leverage (debt value/TEV) for the 

firm given the same history of productivity shocks, but financed using either five-year debt (left 

panel) or one-year debt (right panel).  In both cases the initial TEV and equity value is the same, 

but leverage evolves quite differently.  With longer-term debt in the left panel, debt changes 

gradually, as the firm issues debt more slowly, and leverage is lower on average.  With shorter-

term debt, the firm issues debt more rapidly knowing it can decrease debt quickly by not rolling 

over maturing debt.  Because it can adjust debt more quickly, the firm has higher leverage on 

average.24 

 
Figure 4: Debt and Leverage with Differing Maturities.  

Left panel shows TEV, debt face value, and market leverage with 5-year average debt maturity.  Right panel shows 
1-year average debt maturity. In either case, initial firm value is unchanged, but leverage is higher overall and 

adjusts more quickly with shorter-term debt.  Parameters are 2%=µ , 40%=σ , 30%=π , (1 ) 5%c r− = =π , 
0.2=ξ  (5-year debt) or 1 (1-year debt). 

Figure 4 provides a potential explanation for the finding in Lemmon, Roberts, and 

Zender (2008), that much of the cross-sectional variation in firms’ capital structure is persistent 

and largely unexplained by observable characteristics. From the perspective of our model, small 

                                                           
24 Of course, in our model we have assumed away transactions costs associated with issuing or rolling over debt. 
Such considerations would make long-term debt less costly, as in Dangl and Zechner (2016). 
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perturbations or frictions that may lead firms to pick differing initial maturity structures will lead 

over time to dramatically different leverage outcomes.  

Ultra-Short-term Debt and Commitment 

A common intuition from the agency literature is that shareholder-creditor conflicts are 

ameliorated with short-term debt.  As our analysis shows, without commitment this result is not 

correct: the use of short-term debt induces the firm to lever more aggressively, and the agency 

costs resulting from the leverage ratchet effect do not disappear. 

To highlight this contrast, consider ultra-short-term debt which matures instantaneously 

(i.e. at interval dt), much like demand deposits. If the firm can adjust its leverage freely in 

response to the cash-flows shocks, then given coupon rate c r> − µ  the firm could set /t tF Y c≈  

and avoid default while capturing the entire debt tax shield. Choosing the following issuance 

policy  

   ( )t t t td F dt F dZµ ξ σΓ = + + ,   (42) 

which makes t t t tdF F dt F dZµ σ= + , would potentially prevent the scaled cash flow ty from 

fluctuating over time. Essentially, this captures the flexibility advantage offered by short-term 

debt.25  

Although the flexibility benefit does apply in our model, the above argument implicitly 

assumes that equity holders can commit to the first-best leverage policy. In our model, the 

inability to commit to certain future leverage policy matters in a significant way – equity holders 

continue to raise debt until the likelihood of default impacts its price. This point is highlighted in 

(42), which requires the firm to repurchase debt following negative cash-flow shocks 0tdZ < , 

while in our model shareholders never find debt repurchases optimal. In the limit, even with 

instantaneously maturing debt, there is always a risk of bankruptcy in our model, and the implied 

bankruptcy cost offsets the tax benefit.26 

                                                           
25 See Tserlukevich (2008) for further elaboration of this point. The flexibility offered by short-term debt is also 
studied in a recent paper by Geelen (2017). 
26 It might seem that with instantaneously maturing debt, there is no opportunity for shareholders to exploit existing 
creditors by issuing more debt prior to maturity. But note that new borrowing could be done essentially 
simultaneously with the initial borrowing (the firm issues debt in the morning, then more debt at lunch time, …, and 
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Optimal Maturity from a Social Perspective 

As shown in Figure 4, a shorter debt maturity leads firms to take on more debt and hence 

capture a larger tax shield.  But because initial firm value is unchanged, this larger tax shield is 

offset by a higher expected bankruptcy cost. Therefore, though shareholders are indifferent to 

debt maturity, from a social perspective there is a clear ex ante ranking. Because only bankruptcy 

results in a real deadweight cost, a planner should favor debt with the longest possible maturity, 

as long-term debt leads firms to take on less debt on average.   

We can calculate the expected bankruptcy cost ( )BC y  , as a fraction of unlevered firm 

value 0Yφ , and study how it varies with debt maturityξ  . Starting with initial debt 0F , debt 

evolves according to ( )( )t t tdF g y F dtξ= − and the firm default occurs at bτ  with 
b bbY y Fτ τ= ,  

implying 

 ( ) ( )( )( )
( )

0 0 0 00
0

1 , exp b
b

b

r b
t

H y

yBC y e Y Y yF F r g y dt y y
Y y

tt
t xφ

φ
−   = = = ⋅ − + − =   Ε

 
Ε ∫
((((((((((((((

            

                                                                                                                                                                                           
so on so forth). For a model exploring the agency cost associated with sequential rounds of simultaneous borrowing, 
see Bizer and DeMarzo (1992). 
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We then compute the expectation term denoted by ( )H y  numerically based on the following 

ODE  

 ( ) ( ) ( )( ) ( ) ( )2 2' 0.5 ''r g y H y g y yH y y H yξ µ ξ σ+ − = + − +     

with boundary conditions ( ) 1bH y =  and ( )H y ky→ when y → ∞  for some constant 0k > .27  

For illustration, we focus on the case of an initially unlevered firm ( 0 0F =  which 

corresponds to y = ∞ ). In this case, we have bBC ky= , where both endogenous constants k  and 

by depend on debt maturity ξ . Figure 9 plots BC  against ξ  for two different levels of cash-

flow volatility. First, the planner who aims to minimize bankruptcy cost prefers longer-term debt 

(lower ξ ). Second, interestingly, a lower volatility gives rise to a greater bankruptcy cost. The 

key to this counter-intuitive result is the endogenous debt issuance policy. Shareholders in a firm 

with lower volatility are more aggressive in levering up, so much so that we have a greater 

overall expected bankruptcy cost. 

                                                           
27  Bankruptcy costs cannot exceed the first-best firm value which is linear in y. Strictly speaking, 

( ) ( )H y ky o y= +  for y → ∞ . 

Figure 5. Expected bankruptcy costs BC (for an unlevered firm, as a fraction of unlevered firm value) as a 
function of debt retiring rate . Bankruptcy cost is increasing in , implying that the planner who minimizes 
bankruptcy cost prefers the longest-term debt. Two volatility levels are considered.  Other parameters are

, ,     
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Another important advantage of studying an initially unlevered firm is that, in this case, 

expected bankruptcy costs move in tandem with expected tax shields.28 This illustrates the sharp 

contrast between the objectives of the firm and that of the planner, as the shortest debt maturity 

maximizes tax shield but in the same time yields the largest bankruptcy cost. Note however, that 

this ex ante ranking can be reversed ex post, especially when the firm is close to default ( y  near 

by ).  Short-term debt (larger ξ  ) results in a lower bankruptcy costs ( )BC y  once the firm is 

near distress because a firm with a largerξ  can delever more quickly (see Figure 2).     

Maturity and Debt Capacity 

Suppose the firm must raise some amount of funds initially through debt. We know from 

PROPOSITION 1 that it is suboptimal to issue a discrete amount of debt in our model – 

shareholders would be better off issuing debt gradually – but suppose the firm must raise funds 

quickly and equity capital is unavailable in the short run. In that case we can show that short-

term debt maximizes not only the firm value, but also the debt capacity, i.e., the maximum 

amount of debt that the firm can raise. 

Given initial cash-flow 0Y , the firm sets the initial debt face value 0F  to raise 0D  from 

debt holders. From (31) we know that total firm value is  

   
1

0 0
0 0

/1
b

Y FY Y
y

−γ−  
 − < 
  

φ φ
 

. (43) 

Hence, both the total firm value and the debt value 0D  cannot exceed the upper bound 0Yφ .  

PROPOSITION 10.  Suppose the firm starts with initial cash flows 0Y . 

i) The debt capacity, which is the highest debt value 0D  that the firm can raise, is 

higher with a shorter debt maturity, and approaches 0Yφ  as ξ → ∞ .   

                                                           
28 When 0 0F = , the total enterprise value is ( ) ( )0 01 /Y r Yπ − µ = φ− , independent of the debt maturity (recall the 
irrelevance result of debt maturity structure discussed before). Hence, the expected bankruptcy costs must equal the 
present value of future tax shields for all ξ.  
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ii) Given an fixed maturity ξ , firm value is decreasing in the amount of debt 0D  the 

firm must raise. 

iii) For any feasible target debt value 0D , firm value will be higher with a shorter debt 

maturity (higher ξ).  

PROOF:  See the Appendix.    

 

Figure 6 illustrates Proposition 10 by plotting the debt value ( 0D ) as a function of the 

debt face value ( 0F ) for different maturities (see top panel). Note that debt value declines if the 

face value is too high thanks to the “Laffer” curve effect: at some point an increase in the face 

value is more than offset by the increase in credit risk. The maximal debt capacity declines with 

maturity, as the credit risk of long-term debt is exacerbated by the firm’s anticipated future debt 

issuance. With short-term debt, however, the firm is able to borrow close to the full value of the 

unlevered firm. Total firm value declines with the amount of upfront borrowing 0D , as shown in 

the bottom panel of Figure 6, and this effect is more severe when the debt has longer maturity.          

Thus, a firm that is constrained to raise a discrete amount of debt quickly will find it 

optimal to use short-term debt. A key advantage of short-term debt is that by allowing it to retire, 

the firm can reduce leverage quickly should cash flows decline. This advantage of short-term 

debt is distinct relative to traditional Leland-type models in which the firm commits to maintain 

a fixed face value of debt (see Section 5 for a further analysis of such models).  When the firm is 

committed to replacing retiring debt, it may suffer significant rollover losses (as the new debt 

sells at a discount to the face value the firm is repaying) which induce shareholders to default 

earlier. The shorter the maturity, the higher this rollover risk, making long-term debt optimal.29 

                                                           
29 See He and Xiong (2012) who show this result by having the debt face value fixed, and Diamond and He (2014) 
who strengthen this result by holding the debt market value fixed. Dangl and Zechner (2017) allow the firm to 
reduce leverage by not rolling over all debt; because debt issuance is costly in that model, intermediate term debt 
optimally trades off flexibility and transactions costs of refinancing. 
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Figure 6. Debt Value and Firm Value for different levels of initial borrowing using alternative maturities. 
Debt value is hump-shaped in the face value of debt, and maximal debt capacity declines with maturity. Firm value 
declines with the level of initial borrowing as well as the maturity of the debt.  
(Parameters are 5)(1 %r c= − =π , ( ) 5%1r c π= − = , 40%=σ ,

0
23.33,30% 0, 1.Y== =ρπ .)  

  

5. Full Commitment Benchmarks  

To facilitate discussion, we now solve two other cases that serve as benchmark with 

commitment. In each case, the firm’s relevant state variables evolve exactly as in (21), except 

that the firm has the ability to commit to a certain future debt issuance policy.  

No Future Debt Issues 

We first consider the benchmark case in which the firm commits not to issue debt in the future, 

i.e. 0tg =  always.  We call this case the “No Future Debt” case, and indicate the corresponding 

solutions with the superscript “0” (representing the commitment to 0g = ). 
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Recall that our methodology developed in Section 2 first called for solving the equity 

value function as if there will be no future debt issues, even though the firm will choose to add 

debt equilibrium, because the lack of commitment dissipates the benefits of debt tax shield.  

Therefore, from PROPOSITION 2, we have the equity value 0 ( ) ( )v y v y=  with the same default 

boundary by  as calculated in PROPOSITION 4. 

Indeed, the only change in this setting will be the debt pricing.  Intuitively, new debt 

issues (despite the absence of dilution motive given zero recovery) harm existing creditors by 

accelerating default, and thus debt holders are willing to pay more for the same promise today if 

the firm can commit not to issue more debt in the future. With such a commitment, the firm’s 

scaled cash flow evolves according to  

   ( )t
t

t

dy dt dZ
y

= µ + ξ + σ , (44) 

and thus the HJB equation for debt price can be written as  

 


( ) ( )0 0 0 2 2 01
2

couponrequired return evolution of gain from principal repayment

( ) 1 ( ) ( ) ( )
dy

rp y c p y yp y y p y= + ξ − + m + ξ ′σ ′+′


((((((((((

((

,  (45) 

with two boundary conditions. The first is no recovery value: ( )0 0 0bp y = ; and the second is risk-

free pricing as the distance to default grows: ( )0 cp y
r

+ ξ
→

+ ξ
 as y → ∞ . Using standard methods 

(see e.g. the proof of PROPOSITION 4) the solution for the debt price is  

   ( )0 1
b

c yp y
r y

−γ  + ξ  = −  + ξ    
 , (46) 

where the constant γ  is again given by (26).  We summarize these results as follows: 

PROPOSITION 11.  If the firm can commit not to issue future debt, i.e. 0tg = , then the 

equity value is unchanged, as is the default boundary, relative to the no commitment case.  

Default is delayed, however, and the debt price improves by the value of the debt tax 

shield 
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    0

debt tax shield value

( )) 1(
b

c yp p y
r y

y
−γ  

 = −  + x   

p


−

((((((

. (47) 

 PROOF:  Equation (47) follows immediately from (28),  (46) and 0
b by y= .    

From (47), we observe that when the firm can fully commit not to issue any debt in the 

future and hence is less likely to default, its debt will trade at a higher price than that of firms 

who cannot commit. Indeed, the premium is equal to the value of the tax shield, consistent with 

the observation that, in the no commitment case, the firm issues new debt at a rate so that 

expected bankruptcy costs offset the expected tax benefit. Thus, commitment to 0tg =  does not 

benefit equity holders, but does improve the value of the debt due to the reduction in bankruptcy 

costs, which is just the expected tax benefit.    

Fixed Face Value (Leland 1998) 

Another relevant benchmark for our model without commitment is Leland (1998), who assumes 

that firm commits to keep a fixed total face value F.  Specifically, in Leland (1998), the firm 

commits to replace the maturing debt (with intensity ξ ) by the same amount of newly issued debt 

with the same coupon, principal, and maturity. We denote this case using the superscript “ ξ ”, 

which requires tg = ξ  always. 

PROPOSITION 12.  Suppose the firm commits to keep the face value of debt constant, i.e. 

tg = ξ  always.  Define  

 
( ) ( )22 2 2

2
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µ −
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σ
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σ
. 

 Then the value of equity and debt are given by 
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with the default boundary,   1
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v
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ξ ξ ξ
ξ
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= γ − γ + γ + ξ φ
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PROOF:  See the Appendix.    
 

Model Comparison: Valuation and Debt Issuance 

Figure 7 plots the equity value and debt issuance policies for the three models: the base model 

without commitment ( *g g= , solid thick line), full commitment to no future debt ( 0g = , dashed 

thin line), and Leland (1998) commitment to a fixed face value ( g = ξ , dash-dotted thin line).  

 
Figure 7:  Equity Values for Alternative Debt Issuance Policies 

Parameters are 5%r = , 8%c = , 0.1ξ = , 2%µ = , 25%σ = , 35%π = .   

As explained, the equity value in the no-commitment case coincides with the setting 

when there are no future debt issues. With a fixed face value policy, the equity value is lower 
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when cash flows are low, as the firm is committed to continuing to issue debt even in the face of 

large rollover losses. This effect gives rise to a higher default boundary byξ  than the default 

boundary in the other two cases 0
b by y= , as indicated in the top plot of Figure 7.30 On the other 

hand, when cash flows are high, the equity value in the fixed face value case is higher than that 

in either case with 0g =  or *g g= . Relative to the 0g =  case where tax benefits are lost as debt 

matures, the firm in the fixed face value case maintains its debt and hence enjoys greater tax 

benefits. On the other hand, the firm in the fixed face value case commits to a debt policy that is 

much less aggressive than the no-commitment case, hence incurring a much lower bankruptcy 

cost.    

Figure 8 illustrates the debt price and valuation multiple for each policy. Not surprisingly, 

as shown in PROPOSITION 11, the debt price with “no future debt issuance” 0tg =  dominates 

that without commitment, simply because future debt issuance pushes the firm closer to the 

default boundary. This also explains why in the bottom panel, the TEV multiple without 

commitment is always lower than that under commitment of 0tg =  (recall equity values are the 

same under these two cases). 

From (47), we see that the debt price premium due to “no future debt issuance” grows 

with the firm’s distance to default. This implies that the debt of firms that cannot commit will 

exhibit large credit spreads even when the firm’s current total leverage is very low--but, of 

course, the future leverage might be high. In fact, even for almost zero current leverage, the 

credit spreads for firms without commitment are non-zero. In contrast, the credit spreads for 

almost zero leverage firms are zero for the other two benchmark cases. 

                                                           
30 However, b by yξ <  could potentially occur, especially when the tax benefit π  is high. Recall by is the default 

policy as if equity holder obtains no tax benefit, while for byξ , the firm with fixed debt face value indeed captures 
some tax benefit (hence, a high π pushes equity holders to default later).   
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Figure 8: Debt Price and TEV Multiple for Alternative Debt Issuance Policies 

Parameters are 5%r = , 8%c = , 0.1ξ = , 2%µ = , 25%σ = , 35%π = . 

Relative to our base case, the fixed face value (Leland 1998) case generates a lower debt 

price for low y but higher debt price for high y . This is due to the endogenous issuance policy *g  

plotted in Figure 7. There, we observe that the debt issuance policy without commitment is 

increasing in y , and slower (faster) than the fixed face value policy when y  is low (high), and 

investors price the debt in anticipation of these future leverage polices.  

The next proposition summarizes the comparison of debt values across three models, 

depending on the firm’s profitability state y . Figure 8 corresponds to the case of b by yξ > , so for 
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sufficiently low y , the debt price in the case of fixed face value pξ  drops below the other two 

cases.    

PROPOSITION 13.  We always have ( ) ( )0p y p y< . For y → ∞  we have 

   ( ) ( ) ( )0p y p y p yξ< < .  

For sufficiently low y so that ( )min ,b by y yξ→ , we have 

( ) ( ) ( ) ( ) ( ) ( )0 0 if ,  and   if .b b b bp y p y p y y y p y p y p y y yξ ξ ξ ξ< < > < < <  

PROOF:  See the Appendix.    
 

Finally, as indicated in Eq. (31), in our no commitment case the firm’s TEV multiple is 

strictly increasing in the scaled cash flow y . Consequently, holding the level of cash flows Y 

fixed, total firm value decreases with the debt face value F . In other words, in the no 

commitment equilibrium there is always a loss to total firm value from leverage – the tax 

benefits of debt more than offset the resulting bankruptcy costs due to future debt increases. This 

result is shown in the TEV-multiple-against-leverage plot in the bottom panel of Figure 8: there, 

the solid line (i.e., the no commitment case) achieves its maximum at zero leverage. In contrast, 

TEV multiples in both commitment cases have an interior maximum.31 This interior maximum is 

often viewed as the “optimal” leverage in the traditional trade-off theory, though of course in a 

dynamic context it may be far from optimal ex-post once shocks are realized (see, e.g., Fischer, 

Heinkel, Zechner (1989) and Strebulaev (2007)).     

Comparison of Leverage Dynamics  

In two benchmark cases with commitment, the scaled cash-flows follow a geometric 

Brownian motion with exogenous drifts, i.e., ( )t t tdy y dt dZ= µ + ξ + σ  for the case of no future 

debt issuance, and t t tdy y dt dZ= µ + σ  for the fixed face value case. In our model with no 

commitment, the equilibrium evolution of the firm’s scaled cash-flows is:  

                                                           
31 This is evident in the bottom panel of Figure 8, as both dashed and dash-dotted lines have a positive slope at zero 
leverage, and drop to zero when leverage reaches 100%. 
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( )( )* t
t t t

b
t t t t t

ycdy g y y dt y dZ y dt y dZ
y

  
 = + − + = + − + 
   

g

µ ξ σ µ ξ σ
g

π
ρ

. (48)  

The equilibrium debt issuance policy ( )*
tg y in (30) is increasing in ty , implying that ty grows 

slower when ty is higher. In fact, the firm’s scaled cash-flows are mean-reverting towards the 

steady-state value (recall the definition of ˆgy  in ).32 

   ( ) 1/

ˆ by y
c+

 
≡  

+

 

γ

µ ξ

γ µ ξρ
π

  (49) 

 

We are interested in the firm leverage dynamics implied by three different models. For 

given underlying cash-flow shocks { }tdZ , the left panel of Figure 9 plots the debt face value Ft, 

while the right panel shows the dynamics of scaled cash-flow ty , which tracks one-to-one to the 

firm’s interest-coverage-ratio (or book leverage).  Because the underlying shocks are the same, 

the differences across these three different models are purely due to their different debt issuance 

policies. In this sample path, negative shocks in the early years cause the firm in our baseline no 

commitment case to issue less debt compared to the fixed face value case which commits to

but of course since * 0g >  the firm has more debt than it would in the no issuance case.  

Later, after a streak of positive shocks, the firm issues debt even faster than it matures and the 

debt level grows.  As a result, ty  in the no commitment case (blue solid line) has a larger upward 

drift initially, but this reverses near the end of the sample path. 

                                                           
32 Strictly speaking, to ensure ty  to mean revert over its equilibrium region [ ),t by y∈ ∞ , one has to show that

ˆ by y+ >µ ξ so that the drift of ty is positive when t by y= , which is indeed the case for our baseline parameters. 

However, ˆ by y+ <µ ξ could occur for sufficiently largeσ (so 0γ →  in (49)).   

,g = ξ
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Figure 9: Aggregate debt face values (left panel) and scaled cash-flows dynamics 

(right panel) for three models.  

With fixed cash-flow shocks { }dZ and 5%r = , 8%c = , 0.1ξ = , 2%µ = , 25%σ = , 35%π = . 

6. Endogenous Investment and Debt Overhang 

In this section, we extend our model by adding an endogenous investment decision also 

under the control of shareholders.  Including investment allows us to explore the interaction of 

shareholder-creditor conflicts over investment and leverage choices.  As expected from Myers 

(1977), and additional consequence of leverage is that debt overhang leads shareholders to 

underinvest.  We show that when shareholders are unable to commit to future leverage decisions, 

the effect of debt overhang on investment is more severe when leverage is low and less severe 

when leverage is high compared to the case with a fixed debt level (as in Leland (1998)). On the 

other hand, debt overhang also impacts the leverage ratchet. Because underinvestment makes the 

debt price more sensitive to leverage, we find that for low leverage situations shareholders issue 

debt less aggressively than in the benchmark case in which investment is fixed. However, the 

leverage-ratchet effect becomes exacerbated near default, as shareholders reduce leverage less 

aggressively when they are able to cut investment.      
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6.1. General Analysis 

Suppose equity holders may choose an endogenous investment policy ti  which enables 

the firm to increase the drift ( ),t tY iµ  of the cash flow process at a cost ( ),t tK Y i . Specifically, 

profitability evolves as33 

   ( ) ( ),t t t t tdY Y i dt Y dZ= µ + σ , (50) 

and the firm generates cash at the rate34 

 


( )


operating cash flow debt issuance/repurchasetax payment capital investmentdebt interest & principal

( ) ,( )t t t tt tt tc F K Y G pY Y cF ip −− − + x − +
(&( (&(

(&(

. (51) 

We assume both µ and K are smooth and increasing, and that µ is concave and K is convex in i.  

As in the general analysis of Section 2, the HJB equation for equity is linear in the 

issuance rate G.   As before we focus on the equilibrium where G takes interior solutions, which 

implies that Fp V= − . We can solve for the equity value function as if there is no debt issuance: 

 ( ) ( )( ) ( ) 21max 1 1 , ( , ) ( )
2F Yi Y YrV c F FV K Y i Y i V Y VY= − π − − π + x − x − + m + σ 

  
.  (52)  

Optimal investment policy *i  is therefore characterized by the first-order condition 

 ( ) ( )* *, ,i i YK Y i Y i V= µ .  (53) 

 The equilibrium issuance policy can be derived as before. Taking the derivative of (52)

with respect to F, at the optimal investment policy *i , and using Fp V= − , we have35 

   ( )2
*((1 ) ) ( , )

2Y F YY

Y
rp c Y i p p Fp p

σ
p ξ µ ξ ξ− = − − + − + + − . (54) 

                                                           
33 For illustration purposes, we consider a general cash-flow diffusion process without jumps; the analysis for a 
cash-flow process with jumps is similar. 
34 For simplicity we assume any tax consequences associated with investment are embedded in the cost function K. 
35 Here we apply the envelope theorem to ignore the dependence of i* on F, which readily applies if investment 
takes interior solutions (as we will assume throughout). Even if the optimal investment policy takes a binding 
solution, the same logic applies as long as the constraint does not depend on F.        
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Comparing (54) with the valuation equation for the debt price in (11), we find the same debt 

issuance policy as in PROPOSITION 3: 

 ( ) ( ) ( )
, 0

, ,F FF

c cG Y F
Y F Y Fp V

pp
=

−
= > .  

Again, the equilibrium requires the condition in PROPOSITION 1, i.e. ( ) ( ), , 0F FFp VY F Y F− = >  

holds always. 

6.2. Log-normal Cash Flows and Quadratic Adjustment Costs 

Consider the setting with a log-normal cash-flow process studied in Section 3, with 

  ( )( , )Y i i Yµ µ= +  and  ( ) 2, 0.5K Y i i Yκ= ,  where the constant 2

)2(1
( )r

πκ
µ

−
>

−
. 

Here, we can interpret investment as increasing the scale of the firm, with an adjustment cost that 

is proportional to the current scale and quadratic in the speed of adjustment. Without debt, our 

model is similar to Hayashi (1982), with the optimal investment policy equal to 

   ( ) ( )2 2 1Ui r r= − µ − − µ − − π κ ,  (55)  

implying an unlevered firm value of Ui Yκ .36 

Now we derive the solution to our model without commitment. Denote the optimal 

investment rate by *
ti  so that the evolution of scaled cash-flow t t ty Y F=  is  

 ( )*t
t t t

t

dy i g dt dZ
y

= µ + + ξ − + σ .  

Equity holders default when ty  hits the endogenous default boundary by . The scaled equity 

value ( )v y  without debt issuance satisfies  

                                                           
36  The unlevered firm chooses i  to maximize the constant growth perpetuity value 

2(1 ) 0.5 / ( ),YY i r iπ κ µ− − − −   which has solution Ui  and value 
2 2(1 ) 0.5 (1 ) 0.5U U

U

U

Y i Y i
i Y

r

Y

i r

Yπ κ π κ
κ

µ µ

− − − +
= =

− − −
.  
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 ( ) ( ) ( )( ) ( ) ( ) ( )
2

2 21max 1 ' ''
2 2i
ir v y y c y i yv y y v yκ

+ x = − π − − x − + m + + x + σ .       (56) 

Given the optimal investment ( ) ( )*i y v y′= κ , the above equation becomes 

 ( ) ( ) ( )( )
( )

( ) ( ) ( )
2

2 2' 11 ' ''
2 2

y v y
r v y y c yv y y v y

  + ξ = − π − − ξ + + µ + ξ + σ
κ

,   (57) 

with two boundary conditions: ( ) Uv y i y= κ − ρ  for y → ∞ , and ( ) 0bv y = . The default boundary 

by  is determined by the smooth-pasting condition ( )' 0bv y = .  

Although we no longer have closed-form solution in the model with investment, we can 

solve (57) numerically. But to assure we have a valid equilibrium, we must verify the key 

condition of PROPOSITION 1, that the equity value is convex (or equivalently, the debt price is 

decreasing) in y. The next proposition shows that indeed this condition holds. 

PROPOSITION 14.  In the log-normal cash-flow model with quadratic investment costs, 

equity value is strictly convex, i.e., ( )'' 0v y > , so that the debt price is decreasing in debt 

face value. This guarantees the optimality of smooth issuance policy and hence the 

investment policy ( ) ( )*i y v y κ′=  and issuance policy ( ) ( )
* 0

'
cg y

yp y
p

= > ,  together 

with the debt price ( ) ( ) ( )'p y yv y v y= − , constitute an equilibrium.     

PROOF:  See the Appendix.    

6.3. Optimal Investment and Leverage 

Having solved for shareholders’ endogenous investment ( )*i y  and debt issuance ( )*g y  

policies, we can compare them to several benchmarks with alternative investment or debt 

issuance constraints in order to study the interaction between these two types of agency costs.  In 

particular, we can hold debt fixed as in the Leland (1998) model and consider the consequence 

for the firm’s endogenous investment policies, or we can hold investment fixed (for example, at 

the optimal unlevered policy (55)) and compare the endogenous debt issuance policies. 

Appendix 8.2 gives the details of solving these benchmark cases. Figure 10 compares the 
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investment policies (left panel) and debt issuance polices (right panel) for the different scenarios.  

The resulting investment and debt issuance polices from PROPOSITION 14 are shown as solid 

blue lines, labeled “ *i , no commitment *g .”  

Consider first the firm’s investment as a function of its scaled cash flow. The black 

dashed line labeled “ Ui , no commitment *g ” graphs the investment if it were fixed at the optimal 

level for the unlevered firm.  As expected, when shareholders can choose investment, their 

policy *i  shows underinvestment relative to this benchmark, with the degree of underinvestment 

increasing as the firm’s scaled cash flows decline. This underinvestment is the well-known debt 

overhang effect (Myers 1977; Hennessey, 2004); in the extreme, equity holders choose to cease 

investing altogether when the firm is close to default. 

We also show the investment policy that would arise with fixed leverage as in the Leland 

(1998), depicted as the red dash-dotted line labeled “ *i , Leland ’98 g = ξ .”  Here the firm 

maintains a fixed face value of debt, but shareholders choose investment endogenously. 

Compared with our model where there is no commitment to a debt level, we see even greater 

underinvestment near default in the Leland setting. The reason is that in our model, the distressed 

firm will choose to allow leverage to decline (as we saw in Figure 2), reducing the likelihood of 

default and increasing the expected return on investment.  On the other hand, when leverage is 

moderate or low, the firm in the Leland fixed-debt setting investments more than when debt is 

unrestricted, and even more than the unlevered optimum. The reason is that the Leland firm, by 

committing to a debt level, captures a positive benefit from the debt tax shield which raises its 

expected return on investment. To summarize, the no commitment leverage police *g  leads to 

greater underinvestment when leverage is low, and less underinvestment when leverage is high.    

In the right panel of Figure 10 we compare the rate of debt issuance polices when 

investment is endogenous versus when investment is fixed at the unlevered optimal level Ui . 

When leverage is low to moderate, debt issuance is about 7.5% slower when investment is 

endogenous. This moderation is due to the increased price impact of debt issuance as creditors 

anticipate the decline in investment due to debt overhang.  The comparison reverses when 

leverage is high and the firm approaches financial distress.  In that case, shareholders’ option to 

cut investment lowers the risk of default and so makes the debt price less sensitive to new 
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issuance, exacerbating the leverage-ratchet effect. Overall, these effects imply that debt overhang 

slows the rate of mean-reversion of firm leverage from either extreme.   

 
 

Figure 10 Endogenous investment and debt issuance policies.  
Our model extension with endogenous investment is denoted by “i*, no commitment g*.” The left panel compares 
investment with the first-best iU and endogenous investment in the Leland (1998) setting with a fixed face value of 

debt.  The right panel compares the speed of debt issuance when investment is endogenous versus when it is fixed at 
iU. Parameters are ( )1 5%, 40%, 8%, 0.2,r c π σ µ ξ= − = = = − = 87.5κ = implying optimal growth 2%Uiµ + =  

and steady-state leverage of approximately 40%. 

 

7. Conclusions 

When the firm cannot commit ex ante to future leverage choices, shareholders will adjust 

the level of debt to maximize the firm’s current share price. As shown by Admati et al. (2017), 

capital structure decisions are then distorted and a leverage ratchet effect emerges: shareholders 

will choose to issue new debt gradually over time even if leverage is already excessive relative to 

the standard tradeoff theory optimum. This endogenous rate of debt issuance decreases as the 

firm approaches default, and is offset by the rate of asset growth and debt maturity, so that the 

firm’s equilibrium leverage is ultimately mean-reverting.   

We develop a general methodology to solve for equilibrium debt dynamics in this setting, 

including endogenous investment, and apply it to several standard models. When earnings evolve 

as geometric Brownian motion (including possible upward jumps), we explicitly solve for the 
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firm’s debt as a weighted average of past earnings, with the speed of adjustment decreasing with 

debt maturity and volatility. 

Because creditors expect the firm to issue new debt in the future, credit spreads are wider 

in our model than in standard models with fixed debt, and remain wide even when firms are 

arbitrarily far from default. Lower debt prices dissipate the tax shield benefits of leverage, so that 

the equity value is identical to the case without no future debt issuance.  This inability to capture 

tax benefits of leverage may provide a possible resolution for the zero-leverage puzzle 

(Strebulaev and Yang, 2013), as the potential tax benefit from leverage is offset by the high 

credit spread even for initial debt. 

Finally, while shortening the maturity of future debt issues raises the average level of 

leverage as well as its speed of adjustment, it has no impact on the share price. As a result, even 

“instantaneous” debt does not resolve the agency problem, and equity holders have no incentive 

whatsoever to adjust the firm’s debt maturity structure. This interesting observation also offers a 

potential explanation for the finding in Lemmon, Roberts, and Zender (2008), that much of the 

cross-sectional variation in firms’ capital structure is persistent and largely unexplained by 

observable characteristics: Small perturbations or frictions that may lead firms to pick differing 

initial maturity structures will lead over time to dramatically different leverage outcomes.     

Firms may try to reduce the agency costs resulting from the leverage ratchet effect by 

agreeing to covenants that restrict future debt issuance. Equity and debt issuance may also incur 

transactions costs or expose the firm to other market imperfections, which prompts the firm to 

actively manage its internal liquidity (cash) position (e.g., Bolton, Chen, and Wang, 2014).  We 

leave for future work an exploration of the leverage dynamics that arise from the interaction of 

these additional forces with the leverage ratchet effects explored here.  
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8. Appendix. 

8.1. Remaining Proofs 

PROOF OF PROPOSITION 4. We can write the value function as 

  ( )


( )

equity value 
without 

option value of defaultdefault option

( ) 0 ( ) ( ) ( )( ) br
b

b
bv yv y y E e v y v y

y
v y

−γ

− +ξ t  
=  


 + − =


−
((((

, (58) 

where the expression for ( ) brE e− +ξ τ    and γ  follows by solving the ODE 

    2 21
2( ) ( ) ( ) ( ) ( )r f y yf y y f y+ ξ = µ + ξ ′ + σ ′′   

with boundary conditions ( ) 1bf y =  and ( ) 0f ∞ = .  Finally, the optimal default boundary by  is 

determined by the smooth-pasting condition, ( ) 0bv y′ = .   

PROOF OF PROPOSITION 6.  Note that the HJB equation (34) has the linear solution  

   ( )v y y= φ − ρ . (59) 

The homogenous delayed differential equation 

    2 21
2ˆ( ) ( ) ( ) ( ) ( ) ( )r f y yf y y f y f y+ ξ + λ = µ + ξ ′ + σ ′′ + λ θ   

has solutions of the form ˆy−γ  where γ̂  solves the characteristic equation (35). In (35),  because 

W is convex, ( ) ( )W W∞ = −∞ = ∞ ,  ( )0 0W r< − − <ξ , and ( ) ˆ1 0W r− = − <µ , W has a unique 

positive real root (as well a unique negative real root ˆ 1< −η  that can be ruled out by the upper 

boundary condition). The remainder of the analysis follows exactly as in Section 3.2.   
 
PROOF OF PROPOSITION 7.  It is straightforward to check that (37) satisfies the HJB equation 

(24) or (34) with the boundary condition ( ) ( )L L L
b bv y L y=  and smooth pasting condition 

( ) ( )L L L
b bv y L y′ = ′ . The expressions for Lp  and Lg  follow from ( )p y y vv= ′ −  and 

( ) ( )
cg y

yp y
=

′
p  as in (28) and (30).   
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PROOF OF PROPOSITION 8:  Using (30) the change in the face value of debt is (where we denote 

tdFF
dt

≡ ) 

   * 1( ( / ) )
b

F g Y F F
y

Fc Y Fgg
gg

πξ ξ
ρ

− 
= − =  


−


 . (60) 

Let H F= γ , then 1H F F−= 

γγ  and so (60) implies 

   1

ˆb

c Y YF F HH F
yy

γ

− γγγ
γ

ξ

  π
= γ = γ γξ γξ γξ    ρ  

=


− −
γ

  . 

Given 0H , this equation is a linear differential equation with general solution 

   0 0 ˆ
t sst

t H dYH e
y

se
γ

−γξ γξ

ξ

  
 +
 

= γξ 
  

∫ . 

(40) then follows from 1/F H= γ .  

 

PROOF OF PROPOSITION 10:  Given cash flows 0Y , and debt 0 0 / bF Y y≤ , the market value 0D  of 

the firm’s debt is  

   ( ) 0
0 0

0
00 0 0 0( 1 1)

b b

y YD F F p y F F F
y y

γ

γ γ

ρρ
− −      

   = − = −           
≡


. (61) 

The face value of debt which maximizes (61) is * /
0

0 1( )1
b

YF
y

γγ − 
= + 

 
, with corresponding 

maximal debt capacity 

   0* 1/ 1/
0 00 0) )( (1

1
(1 )

b

YD F Y
y

D γ γργ γ φ γ
γ

− − 
= + = + 

 
≡

+
. (62) 

Result (i) then follows from the fact that (62) is increasing in γ , and γ  is increasing in ξ  (from 

(26)), and that ξ → ∞  implies γ → ∞ , which implies 1/1 ) 1( γγ − →+ . 
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From (31), total firm value is given by 

   10
0 0 0 0

1 1

( 1) 1
b b

YyTEV F
y y

Y FY
γ γ

γφ φ
− − − −

+
      
   = − = −   
         

, (63) 

which is decreasing in the 0F .  Result (ii) follows because in the range *
0 0[0, ]F F∈ , 0 0( )D F  is 

strictly increasing, and so to raise more funds 0D  the debt must have a higher face value. 

(Shareholders would never choose *
0 0F F> , as they could raise more funds with a lower face 

value.) 

For result (iii) we need to evaluate how total firm value changes with ξ  for a fixed level of 

borrowing 0D . Combining (61) and (63) we have the following relation between 0D , γ , and 

TEV, and using 
1by γ ρ

γ φ
=

+
, one solve for 0F  and show that 

 ( )
1

1 1

0
0

0 0
0 0 0

1 111 1TEV TEVD Y Y TEV
T

Y
Y Y Y EV

γ
γ γφγ γφ φ

γ φ φ γ φ

+ +
 
     

= − − − − −     

 
+ +   =     −      

   

 (64) 

Because γ  is increasing in ξ , and TEV decreaseswith 0D , the result follows by showing that 

(64) is increasing in γ . To show this, letting / (1 ) (0,1)z γ γ≡ + ∈  and 0

0

1Y
Y TEV

φδ
φ −

≡ > , the 

result is equivalent to showing that ( )1 1z

z
δ −  is increasing in z , which follows from the fact 

that a compound returns grow faster than linearly.   
 

PROOF OF PROPOSITION 12:  The solution with constant face value is as follows. The scaled 

cash-flow ty  in this case follows 

   t
t

t

dy dt dZ
y

= µ + σ , (65) 

and equity holders in equilibrium will default at a threshold byξ  to be derived shortly. Then, 

using the same logic as we did to compute p0 , we have the analogous solution to (46):  
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   ( ) 1
p

b

c yp y
r y

ξ−γ

ξ
ξ

  + ξ  = −   + ξ   
. 

where the constant p
ξγ is defined by effectively lowering the drift by ξ  (the rate of new debt 

issues) in (26): 

   
( ) ( )22 2 2

2

0.5 0.5 2
0p

r
ξ

µ − σ + σ + σ + ξ
γ =

σ

−
>

µ
 . (66) 

Next, the equity value ( )v yξ  must solve  

 ( ) ( )( ) ( )( ) ( ) ( )2 21
2

required return net after-tax earnings evolution of state variable ydebt rollover gains/losses

1 1rv y y c p y yv y y v yxxxx   = -p-   + x-  + µ ′ ′′+ s
 (((( ((((((((

((((

, (67) 

with boundary conditions ( ) ( ) 0b bv y v yξ ξ ξ ξ′= =  and ( ) cy
r

cv y
r

ξ π
+ −

+ ξ
φ→

+ ξ
as y → ∞ . Note that 

the second term in (67) captures the rollover gains/losses when equity holders refinance the 

maturing debt, as emphasized by He and Xiong (2012): per dollar of face value, the firm must 

repay principal at rate ξ , while equity holders commit to replace the maturing debt by issuing ξ  

new bonds at price pξ .   Following Leland (1998), we can solve for the equity value function as  

   ( )
Default-free Cost of DefaultTEV Cost of Debt

1
v p

b
b b

c c yv c yy
r r

y y
r y y

- -
  + -
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where the constant v
ξγ is defined as 
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and the endogenous default boundary byξ  satisfying the smooth-pasting condition ( ) 0bv y =′ξ ξ  is 
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PROOF OF PROPOSITION 13:  ( ) ( )0p y p y<  is implied by (47). When y → ∞ , 
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  holds when y → ∞ , which is equivalent to p
ξγ < γ ; but the latter 

holds because γ  increases with µ . The second part of result is obvious as the debt price drops to 

zero at the default boundary.   
 

PROOF OF PROPOSITION 14:  Define a constant UB iκ≡  and ( ) ( )w y v y By ρ≡ − + ; then ( )w ⋅  is 

concave if and only if ( )v ⋅ is concave. Using (57) and ( ) ( )' 'v y w y B= + , we have: 
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Hence ( )w y satisfies the following ODE:  

 ( ) ( ) ( ) ( )( ) ( )
2

2 2'
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2 2
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  (69) 

We need two steps to show that ( )'' 0w y >  for all by y>  . 
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Step 1. ( ) 0w y > for all by y≥ . We know that at default ( ) ( )' ' 0b bw y v y B B= − = − < , and 

( ) 0w ∞ = . This implies that if ( ) 0w y ≤  ever occurs, then the global minimum must be 

nonpositive and interior. Pick that global minimum point 1y ; we must have ( )1' 0w y = and 

( )1'' 0w y > . Suppose that ( )1 0w y < ; evaluating (69) at 1y , we find that the LHS is strictly 

negative while the RHS is positive, contradiction. Suppose that ( )1 0w y = ; then there must exist 

some local maximum point 2 1y y> , so that ( )2 0w y > ,  ( )2' 0w y = and ( )2'' 0w y < . But the 

same argument of evaluating (69) at 2y leads to a contradiction.  

Step 2. Because ( )w y  approaches 0 from above when y → ∞ , we know that for y  sufficiently 

large ( )w y  is convex. Suppose counterfactually that ( )w y is not convex globally; we can take 

the largest inflection point 2y with ( )3'' 0w y = . We must have ( )3' 0w y <  and ( )3''' 0w y >  (it is 

because for 3y y>  the function ( )w y  is convex and decreasing to zero from above). At this 

point, differentiate (69) and ignore the term with ( )3'' 0w y = , and we have 
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 (70)  

Recall ( ) ( )22 2B r r= − − − −κ µ κ µ κ  which implies  

 ( ) ( ) ( )22
3 3' 2 ' 0Br w y r w y − − = − − ⋅ < 

 
µ κ µ κ

κ
  

As a result, the LHS of (70) is negative while the RHS of (70) is positive, contradiction. This 

implies that ( )w y is convex globally.  

Combining all the results above, we have shown that ( )'' 0v y > for by y> .   

8.2. Appendix for Section 6.3 
With slight abuse of notation, consider a constant investment policy i , which could take either the constant 

value of unleveri in equation (55) or sociali in equation Error! Reference source not found.. The flow payoff to equity 
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holders is ( ) ( )
2

1
2
iy c yκ

− π − − , and the method in our base model allows us to derive the equity holders’ value 

to be 
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with endogenous default boundary  
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Then we can solve for the endogenous debt issuance policy *g  as in (30).  

The solution to the Leland (1998) model with endogenous investment is characterized by a pair of ODE, 

one for the equity value ( )v yξ and the other for the debt price ( )p yξ . For equity value, we have 
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With optimal investment ( ) ( )* 'v y
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, the above ODE becomes  
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 (71)  

With boundary conditions 

( ) ( ) ( ) ( ) ( )( )20, ' 0, ' 2 1  for sufficient large ,b b FBv y v y v y i r r yξ ξ ξ κ κ µ µ π κ= = = = − − − − −   

For debt price ( )p yξ , we have  

 ( ) ( ) ( ) ( ) ( )2 21
2

v y
r p y c yp y y p y

ξ
ξ ξ ξ 

+ ξ = + ξ + µ + + σ  ′κ 

′
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with boundary conditions ( ) ( )0, ' 0bp y p y= =ξ ξ for sufficiently large y. One can easily solve for

( ) ( ){ },v y p yξ ξ by solving the ODE system (71)-(72), with respective boundary conditions.   
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