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1 Introduction

Organizational settings in which project managers privately influence both the amount and

riskiness of investment are ubiquitous. A manager may privately allocate capital across

projects with different cash flow volatilities, or simultaneously discover and exploit oppor-

tunities with different risks. Nevertheless, the design of dynamic incentive plans that both

allocate the appropriate amount of capital and induce managers to take the desired amount

of volatility has challenged formal analysis.

In this paper, we build a continuous-time dynamic contracting model in which the agent

has control over the size (capital invested) and the risk (cash flow volatility per unit of

capital) of assets owned by the principal. By introducing separately controlled components

of cash flow, we create a framework rich enough to capture meaningful risk choices. We

derive the optimal contract and show that it can be implemented with a simple mechanism:

the principal offers the agent two-part tariff, and the agent determines the amount of capital

to manage. Importantly, the implementation can be made static; the principal does not need

to dynamically adjust quantities nor keep track of the agent’s performance history.

The contributions of this paper are three-fold: first, our findings rationalize the observed

practice of capital budgeting documented by Jagannathan et al. (2016), Graham and Harvey

(2001), and others1: firms impose capital rationing on managers through a deliberately high

price of capital and that they most commonly do not adjust that cost of capital for risk. These

stylized facts contradict conventional wisdom and textbook corporate finance instruction. In

our model, the principal optimally imposes a high cost of capital to limit the scale of the

agent’s investment and the size of the agency problem. Moreover, because the principal

can only assign incentives based on performance and the agent makes hidden choices over

risk, the agent will optimally choose volatility such that the benefits and costs are equal,

and the principal will not need to modify the cost of capital for risk, despite risk impacting

performance. Secondly, we use our model to demonstrate and predict differences in the

cross-section and the time-series of the cost of capital as well as the relationship between

managerial risk-taking and pay-for-performance. Finally, we illustrate a modeling technique

that allows the agent to privately determine both the capital intensity and cash-flow volatility,

despite the principal being able to continuously monitor cash flows.2

1In Section 5, we summarize and condense the findings from Jagannathan et al. (2016), Graham and
Harvey (2001), Graham and Harvey (2011), Graham and Harvey (2012), Jacobs and Sivdasani (2012), and
Poterba and Summers (1995).

2Several recent papers such as Cvitanić et al. (2016b) and Leung (2017) have made attempts toward this

1



We begin with a basic dynamic moral hazard framework in which the principal (she) has

assets or projects that she hires the agent (he) to manage. The agent takes hidden actions

that determine the cash flow from these projects; the principal observes output and rewards

the agent with consumption after high output and imposes termination after low output.

Separation is costly, which makes the principal effectively risk averse. Our novel assumption

is that the agent receives capital from the principal but privately decides both the risk of

the project and the amount of capital that is actually invested. Any remaining capital is

allocated to generate private benefits for the agent.3 This joint modeling of capital intensity

and risk circumvents the issue that volatility is observable for Brownian motion, which has

been the primary obstacle precluding the analysis of dynamic risk choice in a tractable

framework. Thus, in our setting the principal must provide incentives to generate both the

desired risk choice and the desired capital intensity to avoid asset misallocation. The agent’s

choice is constrained by the observability of total risk/volatility – it is the components of

risk/volatility that are unobservable and subject to agency manipulation.

We show that the resulting optimal contract can lead to both overly-risky or overly-

prudent risk choice, relative to the first-best. To reduce the likelihood of costly separation

following poor performance, the optimal contract reduces the volatility of the agent’s con-

tinuation value, which has two components: the volatility of the project’s cash flow, and

the agent’s exposure to it (his pay-performance sensitivity, or PPS). Exactly which compo-

nent the principal reduces depends on the specific risk-return relationship, most critically,

how much additional risk the agent takes as incentives are made less intense. When the

risk taken by the agent is very sensitive to incentives, the principal offers more incentives,

increasing PPS and reducing risk below the first-best level. In contrast, when the risk taken

by the agent is relatively insensitive to incentives, the principal relaxes incentives, reducing

PPS and resulting in overly-risky project choice. In contrast to the risk adjustment, capital

intensity is always (weakly) less than the first-best because more intensive use of capital

implies higher cash-flow volatility and requires higher pay-performance sensitivity.

We also demonstrate a generic and simple implementation for the optimal contract. In

a standard recursive optimal contract, the principal would allocate capital to the agent and

command a certain level of total cash flow risk. Our implementation allows the agent to

end. We discuss these studies below.

3Agency frictions of this kind are widespread: for example, a corporate manager may choose enjoyable
but unproductive projects, netting private benefits but an inferior risk-return frontier. Similarly, an asset
manager may not want to exert maximal effort to maintain all the available projects or investment options.
He obtains private benefits (e.g. shirking) and the risk-return frontier is pulled down.
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choose his own quantity of capital, the cash-flow risk target, and even his own compensation

structure (his PPS or equity share). The principal simply supplies the capital to the agent

at a certain cost calculated based on the agent’s choices.4 The cost of capital is subtracted

from the project’s output, and the remainder is split between the principal and agent based

on the proposed equity share. Critically, the implementation is static: the principal does not

need to make any dynamic adjustment to the formula used to calculate the cost of capital,

and she does not need to track the agent’s performance history either. In other words, the

time-varying optimal policies of the dynamic optimally contract can be automatically carried

out by offering the agent a static formula of hurdle rate.

Our novel implementation captures stylized facts about firms’ use of hurdle rates in capital

budgeting. As mentioned above, firms systematically use hurdle rates that are significantly

higher than both the econometrician-estimated and firm-estimated cost of capital, passing

up positive NPV projects. Our model explains capital rationing and the hurdle rate gap

through an agency perspective in which we embed the cost of capital. Alternatively, the

hurdle rate can also be interpreted as a preferred return to investors, which is standard in

private equity contracts.5

Our implementation also rationalizes practices that deviate from textbook cost of capital

usage, in particular failing to adjust for risk when determining hurdle rates. Intuitively, this

results from the fact that the principal cannot provide separate incentives for capital and

per-unit volatility in the optimal contract; our implementation gives the principal the ability

to set an exact price of capital, which is sufficient to implement the optimal contract. Put

differently, the agent’s incentive compatibility condition equalizes the marginal product of

capital in productive and unproductive projects. Thus, the cost of capital can be set equal

to the marginal product of capital in unproductive projects without adjusting for the returns

and risk in the productive projects, and the desired capital allocation will follow even so.

Finally, our results help reconcile empirical evidence regarding the correlation between

investment risk and pay-performance sensitivity, which has been particularly ambiguous

among existing studies.6 Our model points out that there are actually two different mech-

anisms through which incentives are determined. The first is a “static” mechanism, which

4For a concrete example, imagine the principal tells the agent: “take however much capital you want. If
you want a 10% equity share, your cost of capital is 8% per unit. If you want a 20% equity share, your cost
of capital is 7%.”

5See Metrick and Yasuda (2010) or Robinson and Sensoy (2013)

6Prendergast (2002) and Edmans et al. (2017) summarize the related theoretical and empirical studies.
See Section 5 for more detailed discussion of this line of research
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is described by the agent’s incentive compatibility constraint, capturing the causal trade-off

between incentives and risk. The second is a “dynamic” mechanism, which corresponds to

the solution to the principal’s maximization problem, where risk, size and PPS jointly evolve

according to the agent’s performance. Empirically, this means that the causal relationship

between risk and PPS could be very different from their time-series correlations, which helps

explain why existing studies failed to conclusively demonstrate how risk and PPS correlate

with each other.

The basic framework of our model borrows from DeMarzo and Sannikov (2006) and

Biais et al. (2007). Two other studies that examine volatility control in continuous-time are

Cvitanić et al. (2016b) and Leung (2017). Cvitanić et al. (2016b) (and Cvitanić et al. (2016a))

assess optimal control over a multi-dimensional Brownian motion when the contract includes

only a terminal payment and is sufficiently integrable. They show the principal can attain her

optimal value (possibly in a limit) by maximizing over contracts that depend only on output

and quadratic variation. The setup is similar to earlier work by Cadenillas et al. (2004) and

more broadly the literature on delegated portfolio control such as Carpenter (2000), Ou-

Yang (2003) and Lioui and Poncet (2013), which focus on exogenous compensation and/or

information structures. Another contemporaneous work involving volatility control is Leung

(2017), who, like us, assumes that cash flow is made of two components: agent’s private

choice of project risk and an exogenous market factor that is unobservable to the principal.

However, because the market factor in Leung (2017) is exogenous, after the contract is

in place, the agent has only limited ability to manipulate risk without being detected. Our

paper is also broadly related to Biais et al. (2010), DeMarzo et al. (2013) and Li and Williams

(2017) etc., who study optimal incentives when the agent’s action generate discrete, verifiable

jump risks. Finally, Epstein and Ji (2013) develop a volatility control model based on an

ambiguity problem. In contrast, with standard preferences, we study the design of an optimal

contract in an intuitive agency environment and show that our contract can be implemented

with a simple structure largely resembling the practice of capital budgeting.7

7Other papers that investigate agency problems and capital usage in the same model include He (2011),De-
Marzo et al. (2012), and Malenko (2018). We add to those papers by modeling an agency problem over capital
intensity and the productivity of capital, as opposed to over mean cash flow or growth.
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2 Model

In this section, we describe a principal-agent problem in which an agent is hired by a principal

to manage an investment. The principal gives capital to the agent, and the agent privately

allocates that capital among different projects or uses. The principal designs an incentive

contract based on total output to induce the agent to choose the desired projects – the

desired sources of cash flow and volatility.

2.1 The Basic Environment

Time is continuous. There is a principal that has access to capital and an agent that has

access to projects. Both the principal and the agent are risk neutral. The principal has

unlimited liability and a discount rate r, which is also her flow cost (rental rate) of liquid

working capital. The agent has limited liability and a discount rate γ > r. The principal

has outside option L > 0, and the agent has outside option R = 0, both of which are net of

returning rented capital.8 The agent cannot borrow or save.

The agent has access to a cash flow profile indexed by volatility σ, with 0 ≤ σ ≤ σ ≤ σ.

Given a level of volatility and of invested capital Kt ≥ 0, the agent’s project choice generates

a cumulative cash flow Yt that evolves as

dYt = f(Kt) [µ(σt)dt+ σtdZt] , (1)

where Zt is a standard Brownian motion. µ(σ) represents the agent’s risk-efficient frontier:

the best return that the agent can achieve given a level of volatility. Both σt and Kt can

be instantaneously adjusted without cost; Kt represents liquid working capital, such as cash,

machine-hours, etc.

We assume that f(K) represents a standard decreasing-returns-to-scale technology: three-

times differentiable with f(0) = 0; f ′(K) > 0; f ′′(K) < 0; limK→0 f
′(K) =∞; limK→∞ f

′(K) =

0. The agent has a limited selection of underlying projects, so each additional unit of capital

is invested with less cash flow output.9

8L > 0 and R = 0 simplifies the exposition because the principal will not temporarily shut down produc-
tion by granting the agent zero capital. In Section 6, we extent the model to include more general outside
values.

9Allowing concavity in the production function can be more realistic than linearity (e.g. allowing for
organizational frictions like a limited span of control), and the assumption generates a first-best with finite
capital usage. Because our principal and agent are risk-neutral, the first-best will be achieved after some
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We assume that µ(σ) represents the risk-efficient frontier given some set of underlying

projects: µ′′(σ) < 0, µ(σ) attains its maximum inside (σ, σ), and µ(σ) < 0.10 Together, they

imply that some risk-taking is efficient, but at some level increasing volatility reduces the

principal’s average cash flows – there is negative “alpha” with infinite volatility.

In short, the assumptions on f(K) and µ(σ) are flexible and allow a well-defined, interior

first-best capital and volatility of investment {KFB, σFB}, which are given by

max
K≥0;σ≥σ

[f(K)µ(σ)− rK] (2)

and characterized by the first-order conditions 0 = µ′(σFB) and r = f ′(KFB)µ(σFB).

2.2 The Agency Friction

The principal supplies capital Kt to the agent and a recommended level of volatility σt. The

agent cannot obtain capital without the principal (an assumption that we drop in Section 4).

The agent chooses two hidden actions: true volatility σ̂t and the actual amount of investment

K̂t in productive, risky projects. In addition to productive projects, the agent has access

to a project that produces zero cash flow but some private benefits. The agent allocates

the remaining Kt − K̂t capital to this zero-cash-flow project and receives a flow of private

benefits λ(Kt− K̂t)dt, where 0 < λ ≤ r.11 That is, the agent can mix between projects with

productive cash flow and projects with private benefits. However, capital misallocation is

(weakly) inefficient: capital cannot be used to generate private benefits in excess of its rental

cost.

Our agency problem can be interpreted in several different ways:

histories (see Section 3). In contrast, a linear production function (e.g. f(K) = K) implies infinite first-best
capital usage. To compensate, one would need to make the agent risk averse, as in Sannikov (2008). Risk
aversion can generate a principal’s value function that is strictly concave, so that the first-best level of capital
is never implemented. However, the fundamental agency problem remains unchanged, and the comparative
statics in Section 3 and the implementation in Section 4 remain substantively similar.

10For example, if the agent is choosing among underlying projects each with a normally distributed returns
and a linear cost of volatility (e.g. something analogous to a repeated one-period CAPM), then we have

µ(σ) = µ + C
√
σ2 − σ2 − bσ. If instead the agent faces a constant return to risk minus a convex volatility

penalty, then we may have µ(σ) = bσ − σα.

11We adopt a linear private benefits function to match the standard benchmark. In Section 6 we extend
the model to allow general, non-linear private benefits Λ(K̂,K) from capital misallocation and discuss its
implications on incentive compatibility and the optimal contract. We can also allow the agent’s private
benefits project to generate cash flow volatility, without qualitatively changing the model’s outcome, as long
as that volatility is not too large.
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• Choosing K̂t < Kt simply means shifting capital to enjoyable but unproductive projects.

Thus, a manager with a desire for the quiet life (e.g. Bertrand and Mullainathan

(2003)), or a manager who prefers not to travel to make site inspections (e.g. Giroud

(2013)) would both qualify.

• In Section 4, we demonstrate an implementation of the optimal contract that allows

the agent to request any amount of capital (K) from the principal and invest some of

it (K̂t < Kt) to unproductive projects. In that case, the agency friction can also be

naturally interpreted as empire-building, since the manager enjoys the control of more

capital than it is needed for productive uses.

• A manager might not want to spend the effort to maintain all possible opportunities.

For example, a manager might watch a smaller number of potential investments. In

doing so, he gains private benefits from shirking λ∆t, and the efficient investment

frontier is reduced to f(K −∆t) (µ(σ̂t)dt+ σ̂tdZt). Here, ∆t plays the role of Kt− K̂t.

The cash-flow process Y is observable to the principal. Given the properties of Brownian

motions, the principal can infer the true overall volatility, denoted Σt.
12 As a result, the

principal can impose a particular level of overall volatility (e.g. by terminating the agent if

the proper level is not observed). We make the more direct assumption that the principal

simply controls the total cash-flow volatility from (1), labeled Σt, with

Σt ≡ f (Kt)σt = f(K̂t)σ̂t. (3)

The second equality is the constraint that the agent must achieve the desired level of total

volatility with his hidden choices.

The agency friction in our model comes from the fact that the principal does not observe

the source of volatility – intensive capital use in productive projects or excessively risky

projects. Put differently, the agent can generate the appearance of productive activity (cash

flow volatility) while still putting capital to use generating private benefits. The agent can

allocate Kt − K̂t capital to the unproductive project while increasing the volatility in the

productive project (σ̂ > σt), keeping aggregate volatility (Σt) constant. In so doing, the

12For concreteness, consider a heuristic example: a principal observes dXt = atdt+ btdZt with X0 known
and bt > 0, but the principal does not observe either at or bt directly. The ability to observe the path of X
implies the ability to observe the path of X2. Since d(X2

t )− 2XtdXt = b2tdt, the principal is able to infer bt
along the path.
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agent enjoys total private benefits λ(Kt − K̂t). Thus, the principal provides an incentive

contract to induce the agent to choose the desired components of volatility; the agent must

be induced not to take bad risks that hide bad asset allocation.13

2.3 Objective Functions

Contracts in our model are characterized using the agent’s continuation utility as the state

variable. Denote the probability space as (Ω,F , P ), and the filtration as {Ft}t≥0 generated

by the cash-flow history {Yt}t≥0. Contingent on the filtration, a contract specifies a payment

process {Ct}t≥0 to the agent, a stopping time τ when the contract is terminated, a sequence

of capital {Kt}t≥0 under the agent’s management, and a sequence of recommended volatility

levels {σt}t≥0. {Ct}t≥0 is non-decreasing because the agent is protected by limited liability.

All quantities are assumed to be integrable and measurable under the usual conditions.

Given a contract, the agent chooses a given set of policy rules {K̂t, σ̂t}t≥0. The agent’s

objective function is the expected discounted value of consumption plus private benefits

W K̂, σ̂
t = EK̂, σ̂

[∫ τ

t

e−γ(s−t)
(
dCs + λ(Ks − K̂s)ds

)
+ e−γτR

∣∣∣∣Ft] , (4)

while the principal’s objective function is the expected discounted value of the cash flow,

minus the rental cost of capital and payments to the agent

V K̂, σ̂
t = EK̂, σ̂

[∫ τ

t

e−r(s−t) (dYs − rKsds− dCs) + e−rτL

∣∣∣∣Ft] . (5)

where both expectations are taken under the probability measure associated with the agent’s

choices. The optimal contract is defined as:

Definition 1 A contract is incentive compatible if the agent maximizes his objective function

by choosing {K̂t, σ̂t}t≥0 = {Kt, σt}t≥0.

A contract is optimal if it maximizes the principal’s objective function over the set of

contracts that 1) are incentive compatible, 2) grant the agent his initial level of utility W0,

13In our model, private benefits are linked to excess volatility at the project level, despite the fact that
private benefits have no direct effect on cash-flow volatility. Instead, the effect is indirect: the agent allocates
capital to the unproductive project and compensates with an excessively volatile productive project choice.
Our setup contrasts with models that assume the agent generates risk directly from consuming private
benefits – for example, shirking might mean increasing disaster risk, as in Biais et al. (2010) and Moreno-
Bromberg and Roger (2016). Despite the direct/indirect distinction, both classes of models share the property
that stronger incentives reduce project volatility (see Section 3.1).
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and 3) give WK,σ
t ≥ R.

This definition restricts our analysis to contracts that involve no capital misallocation

because we have defined incentive compatible contracts to mean K̂t = Kt. In developing the

optimal contract in Section 3, we will restrict attention to contracts that implement zero

misallocation. This is without loss of generality as long as misallocation is inefficient (λ ≤ r),

which we show in Proposition 3. We discuss generalizations to λ > r in Section 6.

3 The Optimal Contract

In this section we derive the optimal contract. We begin by characterizing the properties of

incentive compatible contracts and then proceed to the principal’s Hamilton-Jacobi-Bellman

(HJB) equation. We end with a categorization of contract types and some comparative

statics. Our discussion in the text will be somewhat heuristic; proofs not immediately given

in the text are in the Appendix.

3.1 Continuation Value and Incentive Compatibility

The following proposition summarizes the dynamics of the agent’s continuation value Wt as

well as the incentive compatibility condition:

Proposition 1 Given any contract and any sequence of the agent’s choices, there exists a

predictable, finite process βt (0 ≤ t ≤ τ) such that Wt evolves according to

dWt = γWtdt− λ(Kt − K̂t)dt− dCt + βt

(
dYt − f(K̂t)µ(σ̂t)dt

)
(6)

The contract is incentive compatible if and only if

{Kt, σt} = arg max
K̂t∈[0,Kt]; f(K̂t)σ̂t=f(Kt)σt

[
βtf(K̂t)µ(σ̂t)− λK̂t

]
(7)

If the contract is incentive compatible, then βt ≥ 0 with

βt =
λ

f ′(Kt)
× 1

µ(σt)− µ′(σt)σt
(8)

and (6) simplifies to

dWt = γWtdt+ βtΣtdZt − dCt. (9)
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The dynamics of Wt can be derived using standard martingale methods. The first three

terms on the right hand side of (6) reflect the promise keeping constraint: because the

agent has a positive discount rate, any utility not awarded today must be compensated with

increased consumption in the future. The last term contains the agent’s incentives, where

βt is the agent’s pay-performance sensitivity (PPS): for every dollar of excess cash flow, the

agent’s continuation value changes by βt dollars. Under an incentive compatible contract

{K̂t, σ̂t} = {Kt, σt}, so (6) simplifies to (9).

The incentive compatibility condition (7) is a maximization over the discretionary part

of the agent’s instantaneous payoff. Given the evolution of the agent’s continuation value

(6), the agent chooses K̂t and σ̂t to maximize his flow utility:

βtE[dYt] + λ(Kt − K̂t)dt = βtf(K̂t)µ(σ̂t)dt︸ ︷︷ ︸
Cash flow paid to the agent

+ λ(Kt − K̂t)dt︸ ︷︷ ︸
Agent’s private benefit

. (10)

subject to two constraints. First, because the agent cannot borrow on his own, he must

choose K̂t ∈ [0, Kt]. Second, because the principal controls aggregate volatility (3), the agent

must choose his controls such that f(K̂t)σ̂t = f(Kt)σt = Σt. The resulting maximization

problem is given in (7).14

We now discuss the important features of incentive compatible contracts in our setting.

First, the agency friction does not prevent the principal from implementing the first-best

outcome. In fact, the principal can do so even without giving the agent a full share of the

project’s cash flow:

Property 1 By choosing βt = λ
r
≤ 1 and Kt = KFB, the principal implements {KFB, σFB}.

We define βFB ≡ λ
r
≤ 1 to be the level of incentives which, when combined with KFB,

implement the first-best policies in the second-best problem.

Intuitively, at Kt = KFB, βFB = λ
r

is the ratio of the marginal benefit from capital

misallocation (λ) to the marginal value of productive capital (r), which is less than one.

Substituting βt = λ
r

into the agent’s problem (7) produces the same outcome as the first-

best optimization (2). No additional incentives are needed to implement the first-best level

of volatility.

14The agent’s problem in this model is effectively static: at any time t, the principal decides her optimal Kt

and σt and uses βt and Σt to implement such choices. This is a standard feature among dynamic contracting
models in which the agent’s action bears no persistent effect. The dynamics of the optimal contract come
from the principal’s side, which we describe in the next subsection.
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Second, the agency friction requires the principal to be somewhat moderate in her

risk-taking: the principal is precluded from implementing very-high or very-low volatility

projects. This result will be especially important in Section 4 when we demonstrate an

implementation through a cost of capital that has a small or zero adjustment for risk.

Property 2 The principal cannot implement very-low volatility (σ ≤ σ ≡ arg max µ(σ)
σ

).

The principal will never implement very-high volatility (σ ≥ σ ≡ max{σ|µ(σ) = 0}).

Intuitively, if the principal tries to implement very-low volatility, such that the Sharpe

ratio (µ(σ)/σ) can be increased by adding volatility, the agent always has a profitable devia-

tion. This results from the fact that µ(σ̂t)
σ̂t

= E[dYt]
Σt

, so if the principal fixes Σt, then increasing

σ̂ increases E [dYt]. At the same time, Σt = f(K̂t)σt implies that increasing σ̂ also frees up

capital to be used for private benefits. Thus, very-low volatility projects are never incentive

compatible, because the agent’s deviation (increasing σ̂) increases both average cash flows

and private benefits.

Further, the principal will never choose to implement a value of σ > 0 that generates

negative expected cash flow. This follows from the fact that the principal can always generate

zero cash flow with zero volatility by giving the agent zero capital, and the principal’s value

function is concave, which we show in the next Section.15

Third, for moderate volatility projects (σt ∈
(
σ, σ

)
), stronger incentives are used to

increase capital intensity and decrease volatility:

Property 3 We have

∂

∂σ
β(σ,K) =

1

λ
f ′(K)β(σ,K)2σµ′′(σ) < 0 (11)

∂

∂K
β(σ,K) = −f

′′(K)

f ′(K)
β(σ,K) > 0 (12)

There are two equivalent ways to understand why βσ < 0. The first is to recall that

the principal can only implement levels of volatility for which the Sharpe ratio (µ(σ)/σ) is

decreasing in σ. This implies that that average cash flow E [dYt] = Σt
µ(σ̂t)
σ̂t

is decreasing in σ

over the intermediate-σ range. Thus, stronger incentives are needed to increase the efficiency

of risk-taking and average cash flows.

15This result is different from Szydlowski (2016), in which the volatility of cash flow cannot be completely
eliminated without terminating the contract. In that model, the principal may implement projects with
negative cash flows if those projects are easy to incentivize.
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The second way is to recall that the agent is tempted to take excessive risks to conceal

his misallocation because of the total volatility constraint f(K̂)σ̂ = f(K)σ. However, the

marginal return to productive projects is decreasing (µ′′(σ) < 0), which implies there is a

cash flow cost to the agent for excess risk-taking. Furthermore, such cost is convex, so the

impact of excessive risk-taking on the average cash flow is lower when volatility is lower.

Consequently, stronger incentives are needed to prevent the agent from excessive risk-taking

when volatility is lower.

In contrast, stronger incentives are needed to implement higher capital intensity (βK > 0),

because the marginal return to productive use of capital (f ′(K)) is decreasing, while the

marginal value of capital in generating private benefits (λ) is constant. In other words, there

is a shortage of good projects but no shortage of bad projects. Thus, stronger incentives

are needed to induce the agent to retain capital for productive purposes when projects are

already large. Agency acts to exacerbate decreasing returns to scale, as it is more difficult

to prevent capital misallocation when there is a large amount of capital in place.

We illustrate the solution to the agent’s problem as well as the features we discussed

above in Figures 1 and 2.

3.2 The Principal’s Value Function

Given the results of Proposition 1, the principal’s problem is to maximize her objective

function (5), subject to the incentive compatibility constraint (7), the law of motion for Wt

(9), and the agent’s participation constraint (Wt ≥ R = 0). The agent’s continuation utility

W is a sufficient state variable to characterize the principal’s maximal payoff under the

optimal contract. Let F (W ) be the principal’s expected payoff (5) for the optimal contract

given the agent’s continuation value. F (W ) can be fully characterized with an ODE with

boundary conditions summarized in the following Proposition:16

Proposition 2 A solution to the principal’s problem F (W ) exists, is unique and is concave

on W ∈ [R,WC ], where WC is chosen so that F ′(WC) = −1 and F ′′(WC) = 0. F (W ) solves

rF (W ) = max
K∈(k0,∞);σ∈(σ,σ)

[
f(K)µ(σ)− rK + γWF ′(W )

+
1

2
β2(K, σ)f 2(K)σ2F ′′(W )

]
(13)

16To reduce the level of mathematical formalism needed and maintain focus on the economic insight, we
make a few largely technical assumptions to simplify the proofs. See the Appendix for details.
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Figure 1: The top-left plot displays β(σ,K) as a function of σ for K = KFB = 8.56
(solid line), K = 2

3K
FB (dashed line), and K = 1

3K
FB (dotted line). The top-right

plot displays β(σ,K) as a function of K for σ = σFB = 0.12 (dashed line), σ = 1
2σ

FB

(dotted line), and σ = 3
2σ

FB (solid line). The bottom two plots display average cash
flows CF (K,σ) = f(K)µ(σ) − rK as a function of σ for each of the three values of K
used in the top row, and as a function of K for each of the three values of σ used in
the top row. These plots are generated using λ = 0.02, r = 0.03, f(K) = 3K

1
2 , and

µ(σ) = 0.07 + 0.5
(
σ2 − 0.052

) 1
2 − 0.55σ.

F (W ) is C3 for all W ∈ [0,WC), and has F (0) = L. {K, σ} are the optimal policies, and

dCt = max(Wt − WC , 0). The agent’s continuation utility evolves as in (9), which has a

unique weak solution.

We now provide an intuitive derivation for Proposition 2. First, the principal will pay

the agent only when the agent’s continuation utility exceeds a given threshold, so that

dCt = max(Wt −WC , 0), with F ′(WC) = −1 and F ′′(WC) = 0. This payment boundary

exists because the agent is risk-neutral with respect to consumption and more impatient

than the principal. WC represents the point beyond which the cost of saving for the agent

(due to his impatience) exceeds the benefit of avoiding contract termination after series of

13
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Figure 2: The top-left plot displays K(β,Σ) as a function of β for Σ = ΣFB = 1.05
(solid line), Σ = 2

3ΣFB (dashed line), and Σ = 1
3ΣFB (dotted line). The top-right plot

displays σ(β,Σ) as a function of β for Σ = ΣFB = 1.05 (solid line), Σ = 2
3ΣFB (dashed

line), and Σ = 1
3ΣFB (dotted line). The bottom two plots display average cash flows

CF (β,Σ) as a function of β for each of the three values of Σ used in the top row, and
as a function of Σ for β = βFB = λ

r = 0.67 (solid line), β = 2
3β

FB (dashed line), and

β = 1
3β

FB (dotted line). These plots are generated using λ = .02, r = .03, f(K) = 3K
1
2 ,

and µ(σ) = 0.07 + .5
(
σ2 − 0.052

) 1
2 − 0.55σ.

negative shocks.17

Second, the principal chooses K > 0 and has F (0) = L. This means that the project is

always running and that if the agent’s continuation utility drops to his outside value, the

contract is terminated. This is a result of our parametric assumptions: L > 0 and the agent’s

17These boundary conditions are the same as those in DeMarzo and Sannikov (2006), in which detailed
argument can be found. The principal can always make a lump-sum payment of dC to the agent, moving
the agent from W to W − dC. This transfer benefits the principal only if F (W − dC)− dC ≥ F (W ), and so
we have no transfers if F ′(W ) ≥ −1. Thus, we define WC = min{W |F ′(W ) ≤ −1}, and the smooth-pasting
condition is F ′(WC) = −1. Since WC is optimally chosen and the principal has linear utility, we have the
super-contact condition F ′′(WC) = 0. See Dumas (1991) for a general discussion of the smooth-pasting and
super-contact conditions.

14



outside value, R = 0.18

Finally, for W ∈ [R,WC), applying Ito’s Lemma to dF (W ), we obtain

dF (Wt) = γWtF
′(Wt)dt+

1

2
β2
t f(Kt)

2σ2
tF
′′(Wt)dt+ βtf(Kt)σtF

′(W )dZt.

Combined with cash flows, this yields the principal’s Hamilton-Jacobi-Bellman (HJB) equa-

tion (13). Because the principal’s value function is concave, the F ′′(W ) term is always

negative, which represents the principal’s cost of providing incentives to the agent. We dis-

cuss properties of the HJB equation and the dynamics of the endogenous variables K(W ),

β(W ), σ(W ) and Σ(W ) in the next subsection.19

3.3 Contract Description

The optimal contract and its key comparative statics can be summarized as the following:

Proposition 3 The optimal contract has the following properties:

1. At W = WC, the optimal contract uses β(W ) = βFB = λ
r

and implements KFB, σFB

and ΣFB.

2. For all W < WC, we have K(W ) < KFB, Σ(W ) < ΣFB, and β(W ) < βFB.

3. Define εβ,σ ≡ ∂ lnβ(σ,K)
∂ lnσ

= σ2µ′′(σ)
µ(σ)−σµ′(σ)

< 0 as the elasticity of incentives with respect to

project volatility, which does not depend on K. If εβ,σ < −1, then σt ≤ σFB for all

W < WC. If εβ,σ > −1, then σt ≥ σFB for all W < WC.

4. If we generalize Definition 1 to allow for capital misallocation (private benefits) in opti-

mal contracts, then all optimal contracts implement zero misallocation, except possibly

at WC.

Proposition 3.1 can be found through direct evaluation of (13): because F ′′(WC) = 0,

the maximization problem in (13) is the same as the first-best maximization problem (2).

Intuitively, F ′′(W ) is associated with the cost of incentive provision. The payment boundary

18In a more general model with R > 0, the principal may temporarily shut down the project by setting
K = 0 and allowing the agent’s continuation value (W ) to reflect upwards. We discuss this generalization in
Section 6. Our proof of Proposition 2 shows that this temporary shutdown will only ever occur at Wt = R,
and only for R > 0.

19β(W ) is understood to mean β(σ(W ),K(W )), with β(σ,K) defined in (8). Similarly for Σ(W ) from (3).
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exists because the cost of delaying payment (the agent’s impatience) exactly equals the

benefit (reduced possibility that future sequence of negative shocks moves Wt down to R), so

the principal is effectively risk-neutral with respect to risk in the agent’s continuation utility.

This implies that the principal is temporarily able to implement the first-best project choice

at W = WC .

Between the left and right boundaries, F ′′(W ) < 0, and the cost of incentive prevents the

optimal contract from implementing the first-best project choice. There are two useful ways

of understanding the principal’s choices in this region. The first is to examine the cash-flow

inputs, {K, σ}. These give us capital and risk choices at the investment level. The second is

to examine the principal’s volatility controls, {Σ, β}. These give us volatility and incentive

choices at the relationship level. The mapping between {K, σ} and {Σ, β} is given by the

formulas for Σ and β (3 and 8). Applying such mapping (with a slight abuse of notation),

we can write

E [dY − rKdt] = CF (K, σ) = CF (Σ, β). (14)

We can then use g(K) = λ f(K)
f ′(K)

and h(σ) = σ
µ(σ)−σµ′(σ)

to write the the HJB equation (13)

as:

rF (W ) = max
K,σ

[
CF (K, σ) + γWF ′(W ) +

1

2
g(K)2h(σ)2F ′′(W )

]
; (15)

rF (W ) = max
Σ, β

[
CF (Σ, β) + γWF ′(W ) +

1

2
Σ2β2F ′′(W )

]
. (16)

Because the expected cash flows (CF (Σ, β)) are concave and the costs (Σ2β2) are convex,

the first-order conditions are sufficient to show that Σ(W ) < ΣFB and β(W ) < βFB. A

similar analysis shows that ∂
∂K
CF (K, σ) > 0 if g′(K) > 0 (guaranteed by βK > 0 in Property

3) and ∂
∂σ
CF (K, σ) > 0 if h′(σ) > 0. Thus, we have K(W ) < KFB; σ(W ) < σFB if h′(σ) > 0,

which is equivalent to εβ,σ < −1.

The time series properties, which we will revisit in the implementation can be stated more

strongly: as F ′′(W ) becomes more negative, both β(W ) and Σ(W ) decline, and as F ′′(W )

increases, both β(W ) and Σ(W ) increase. Thus, there is a strong time-series relationship,

which is that the agent’s share of cash flows increases at the same time as volatility limits

increase. This is consistent with the empirical results from [ADD CITE].

The results in Proposition 3.2 and 3.3 show that the agency friction always causes the

principal to reduce incentives below the level that would induce the first-best policies (βt ≤
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βFB), and to do so in a way that reduces cash-flow volatility (Σt ≤ ΣFB). This is not a-priori

obvious: the source of risk for the principal is volatility in the agent’s continuation value,

which can lead to a loss in default or near-default. Importantly, this risk is not driven by the

volatility of the project’s cash flow Σ alone, but by the volatility of the agent’s continuation

value, which equals the product Σβ, and so one can imagine that the principal might reduce

the agent’s share of volatility, imposing weaker incentives and allowing for more volatile cash

flow. However, both Σ and β increase the expected cash flow, and they are complements in

the cost term (1
2
β2Σ2F ′′(W )), so the principal reduces them both. This is not the case with

project-level volatility σ, as we now describe.

A novel result of Proposition 3.3 is that the optimal contract may implement levels of

project-based risk (σ) that are higher or lower than the first-best. The reason is that σ

affects the volatility of the agent’s continuation value through two opposing mechanisms:

on the one hand, Property 3 shows that βσ < 0. That is, implementing a smaller σ (which

leads to a more risk-efficient cash flow) requires stronger incentives. On the other hand,

cash-flow volatility is increasing in project-level volatility since Σ = f(K)σ. The volatility

of the agent’s continuation value is a product of these two effects, Σσ > 0 and βσ < 0, and

so whether the optimal contract implements a higher or lower σ relative to the first-best

depends on which effect dominates.

The elasticity of incentives with respect to project volatility (εβ,σ) captures the effect of

σ on continuation value volatility. When εβ,σ < −1, incentives can be made much weaker for

high levels of project volatility; enough weaker that total volatility of the agent’s continuation

volatility (βΣ) is lower for high project-level volatility. When εβ,σ > −1, incentives can

be made only slightly weaker for high levels of project volatility; the dominant effect is

that higher project-level volatility causes higher total continuation volatility. The critical

distinction here is between cash-flow volatility and continuation-value volatility. The agency

problem dictates that it is the risk of default and termination that generates losses – and

therefore the agent’s continuation value volatility that generates risk – but risky projects

can be implemented by giving the agent a small share of those projects, and this creates low

continuation-value volatility.

While capital K also affects continuation value volatility through both the incentives

and project volatility channels, it does so in the same direction because ΣK and βK are both

positive. More capital implies more total volatility, and stronger incentives are necessary

to prevent shirking with high capital intensity because the marginal return to productive

capital is lower. Thus the optimal contract always features under-investment (Kt ≤ KFB)

17



relative to the first-best.20

Last but not least, we note that because misallocation is assumed to be weakly inefficient

(λ ≤ r), the optimal contract is robust to considering positive capital misallocation in

equilibrium, as shown in Proposition 3.4.

To summarize the results in this subsection, we illustrate an optimal contract in Figure 3.

We label solutions for εβ,σ > −1 and σt ≤ σFB as “Under-σ”; and solutions for εβ,σ < −1

and σt ≥ σFB as “Over-σ”.

4 Implementation

In this section, we show that the optimal contract can be implemented with a simple two-

part tariff on capital. The most critical features of the implementation are that the two-part

tariff is a static function of the agent’s visible choices, and the principal does not keep track

of the agent’s continuation utility. In other words, after setting up the two-part tariff, the

principal’s role is simply to apply the static functions.

The principal offers to rent capital to the agent as a two-part tariff:

• The fixed capital of production (the assets that have liquidation value L) is assigned

a rental price φ.

• The variable capital of production, K, is assigned a unit price (i.e. a hurdle rate) θ.

The agent can freely request any level of capital and cash flow volatility, and even his pay-

for-performance sensitivity (i.e. any combination of {K̃t, Σ̃t, β̃t}. The tilde notation is used

to indicate that those quantities are choices of the agent. The tariff is adjusted based on the

agent’s choices: θ = θ(Σ̃t, β̃t) and φ = φ(Σ̃t, β̃t), and the cost of capital is deducted from the

project’s cash flows:

dY NEW
t ≡ dYt − K̃tθ(Σ̃t, β̃t)dt− φ(Σ̃t, β̃t)dt. (17)

The agent retains β̃tdY
NEW , which is placed into a cash account with balance Mt that the

agent controls. This account grows at interest rate γ but the agent can freely withdraw

20In Section 6 we extend the model and allow general, non-linear private benefit from misallocation.
There, it is possible that weaker incentives are required for larger investment (e.g. βK < 0) and thus the
optimal contract may reduce the volatility of the agent’s continuation utility by increasing K, resulting in
over-investment (Kt ≥ KFB) relative to the first-best.
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Figure 3: All plots are generated using f(K) = 2K
1
2 , L = 0, R = 0, λ = 0.02, r = 0.03,

and γ = 0.05. The ‘Under-σ’ column uses µ(σ) = 1
3σ

1
2 −0.37σ and generates WC = 3.19;

the ‘Over-σ’ column uses µ(σ) = −3σ2 + σ and generates WC = 3.27. In the top row,
the solid line is F (W ), and the dashed line is the right-boundary condition rF (WC) =
max[CF (K,σ)]− γWC . In the second row, the solid line is β(W ) and the dashed line is
Σ(W ).

consumption from the account as long as the balance is positive. That is, the account

balance evolves according to:

dMt = γMtdt+ β̃tdY
NEW
t − dCt. (18)

The original agency friction remains: the agent can still privately invest only a portion of the
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capital given (K̂ ≤ K̃) into project σ̂ and obtain the corresponding private benefit λ(K̃−K̂),

subject to the same volatility constraint as before: f(K̂)σ̂ = Σ̃.

The most critical property of the implementation is that, although the equilibrium hurdle

rate θ and rental cost φ are time-varying, they are static functions of the agent’s choices

{Σ̃t, β̃t}. The principal does not need make any dynamic adjustment to those functions

based on the agent’s specific policy choices or his performance history. In fact, she does not

even need to track the agent’s continuation utility; the account Mt performs this role. That

is, Wt = Mt in equilibrium, despite the agent can withdraw consumption from the account

at any time.

We formally summarize the implementation as follows:

Definition 2 An implementation is a two-part tariff {φ(Σ, β), θ(Σ, β)} such that for all

t ≥ 0, the agent chooses a set of actions {Σ̃t, β̃t, K̃t, K̂t, dCt} to maximize his expected flow

utility:

β̃dY NEW
t + λ(K̃t − K̂t) (19)

subject to (17) and (18).

An optimal implementation is two-part tariff {φ(Σ, β), θ(Σ, β)} that induces the agent to

choose {Σ̃t, β̃t, K̃t, K̂t, dCt} as in the optimal contract, with dCt = max(Mt −WC , 0), and

the agent quitting when Mt = 0.

To construct the optimal implementation, we will need the map {Σ, β} → {K, σ} con-

sistent with the IC condition. This is the same map we used in Section 3.3 to define average

cash flows as CF (Σ, β). Together, the functional forms for β(K, σ) = λ
f ′(Kt)

× 1
µ(σt)−µ′(σt)σt

(as in 8) and Σ(K, σ) = f(K)σ (3) create such a map. With a slight abuse of notation,

define K(Σ, β) and σ(Σ, β) as the value of K and σ given from {Σ, β} based on (8) and

(3). That is, the values of K and σ are the incentive compatible values given the principal’s

controls. Then, we have

Proposition 4 There exists an optimal implementation with the following properties:

θ(Σ̃, β̃) =
λ

β̃
(20)

φ(Σ̃, β̃) = f(K(Σ̃, β̃))µ(σ(Σ̃, β̃))− θ(Σ̃, β̃)K(Σ̃, β̃) (21)
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where K(Σ̃, β̃), σ(Σ̃, β̃) jointly solve

β̃ =
λ

f ′(K)

1

µ(σ)− σµ′(σ)
(22)

Σ̃ = f(K)σ (23)

Moreover, in equilibrium, E[dY NEW
t ] = 0 for all t.

The optimal implementation is the result of several intuitions about how the agency

problem is constructed. First, every element of the adjusted cash flow dY NEW is observable

to both the principal and the agent. Thus, the underlying moral hazard problem is the same

in the implementation as in the optimal contract. Put differently, while it is usually assumed

that the principal takes the agent’s output from the underlying productive technology as the

performance criterion, the principal can in fact look at any performance criterion that she

likes. This intuition appears to be general: the principal can choose an augmented cash-flow

process that induces the agent to choose the right level of capital, cash-flow volatility, and

cash-flow share.

Second, the agent is indifferent across incentive compatible contracts, and so the agent

can be induced to pick the principal’s desired contract when given a choice. The functions

φ(Σ̃, β̃) and θ(Σ̃, β̃) are constructed with two goals in mind:

1. Given the agent’s choices of {Σ̃, β̃}, the agent’s marginal value of capital is equal to

θ(Σ̃, β̃). The agent’s hidden action optimality implies that the marginal value of capital

in the productive project (E [βtdY ]) will be the same as the marginal value of capital

in private benefits (λ). Thus, we can set the public cost of capital to equal the agent’s

private marginal value of capital, and the agent will have no incentive to ask for more

capital to obtain private benefits. Since the agent is receiving a βt fraction of the

project’s cash flows, and the cost of capital is deducted from those cash flows, it must

be the case that the private marginal value to the agent of new capital is λ
βt

. Setting

θ(Σ̃, β̃) = λ
β̃

ensures that the agent always picks the desired level of capital and puts it

to productive use.

2. Given the agent’s choices of {Σ̃, β̃}, and the value of θ that puts capital to productive

use, the agent will choose {K̃, K̂, σ̃} so as to maximize E
[
dY NEW

]
. φ(Σ̃, β̃) is a fixed

rental fee, and it is set so that this maximum E
[
dY NEW

]
is zero for whatever {Σ̃, β̃}

the agent chooses. Thus, the agent’s expected flow utility is the same for any choice
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Figure 4: These plots are calculated using the values from Figure 2 and depict the
functions in Proposition 4. The two left plots display θ(β,Σ) and φ(β,Σ) as functions of
β for Σ = ΣFB = 1.05 (solid line), Σ = 2

3ΣFB (dashed line), and Σ = 1
3ΣFB (dotted line).

The two right plots display θ(β,Σ) and φ(β,Σ) as functions of Σ for β = βFB = λ
r = 0.67

(solid line), β = 2
3β

FB (dashed line), and β = 1
3β

FB (dotted line). Note that θ(β,Σ)

does not vary with Σ. These plots are generated using λ = .02, r = .03, f(K) = 3K
1
2 ,

and µ(σ) = 0.07 + .5
(
σ2 − 0.052

) 1
2 − 0.55σ.

of {Σ̃, β̃}, and the agent is induced to make the principal’s desired choice. In other

words, the agent receives his full value from the contract in W0 when it is signed, and

the entire flow of expected producer surplus goes to the principal. Since the agent

cannot do better than the principal’s desired choices, the agent is induced to make the

principal’s desired choices.

We illustrate the shape of the two-part tariff in Figure 4.

In this implementation, the hurdle rate θt has several properties worth noting. First, in

the equilibrium, θt = λ/βt implies θt ≥ r because βt ≤ λ/r, with the equality holds only at

W = WC . That is, the principal always sets the hurdle rate above the true cost at which

she obtains capital from external markets. Instead, the cost of capital is determined by the

agency problem.
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Secondly, ∂θ/∂Σ̃ = 0. In other words, the hurdle rate is adjusted for the agent’s choice

of cash flow share, but it is not additionally adjusted for risk. This is exactly because the

agent is already optimizing – the marginal product of capital in productive use must equal

the marginal value of capital in private benefits, and the private value is constant.

Third, the agent can choose his own compensation timing. This is standard (e.g. De-

Marzo and Sannikov (2006) or Biais et al. (2007)), and it results from the fact that giving

the agent access to a hidden savings technology with interest rate γ (equal to the agent’s

discount rate) does not make the risk-neutral agent better off.

Fourth, the agent can choose his own compensation structure – his own pay-performance

sensitivity β̃. This is surprising because the private benefit from capital misallocation, λ, is

fixed. For example, in DeMarzo and Sannikov (2006) the desired pay-performance sensitivity

is implemented with inside equity that is chosen so that the marginal benefit from reporting

additional cash flow is equal to the marginal benefit from capital misallocation. Both are

constant. However, in our implementation, θ is designed such that the agent has to trade off

two different controls, β̃t and K̂t. If β̃t is chosen to be very small, the cost of capital will be

very high, and so the agent has to use the capital productively to avoid a loss of continuation

value. If β̃t is chosen to be high, then capital is cheap, but the gains to capital misallocation

are lower than the agent’s chosen cash-flow residual (pay-performance sensitivity).

Finally, we have written the implementation so that the cost of variable capital (θt) is

deducted from the project cash flow instead of the continuation value. This is not required;

we could deduct the cost of variable capital from the agent’s account M directly. The only

difference is whether we interpret the cost of capital as being paid by the agent or by the

project (e.g. a preferred return to outside investors, or not). We can also take either βt or Σt

out of the agent’s choice set; i.e. we have presented the most decentralized implementation

by giving the agent the choice over both βt and Σt as well as Kt, but that is not required.

5 Empirical Discussion

5.1 Capital Budgeting and the Cost of Capital

There is broad empirical agreement on the basic stylized facts surrounding the use of hurdle

rates for capital budgeting:21

21This list is a summary of results in Jagannathan et al. (2016), Graham and Harvey (2001), Graham and
Harvey (2011), Graham and Harvey (2012), Jacobs and Sivdasani (2012), and Poterba and Summers (1995).
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• Most or almost all firms use DCF methods with a hurdle rate. That hurdle rate

is substantially above both the econometrician-estimated and firm-estimated cost of

capital. For example, Jagannathan et al. (2016) find an average hurdle rate of 15%

compared to an average cost of capital of 8%. They find that this is not likely to be

caused by behavioral biases or driven by managerial exaggeration.

• Firms engage in deliberate capital rationing. This rationing is often a response to

non-financial constraints; more that half of firms report that they pass up apparently

positive NPV projects because of constraints on managerial time and expertise (55.3%,

Jagannathan et al. (2016)).

Our model is consistent with these results on hurdle rates and capital rationing: first

and foremost, we demonstrate in Section 4 that the equilibrium hurdle rate is indeed higher

than the firm’s true cost of capital (i.e. θt = λ/βt ≥ r). This is optimal because the agency

problem imposes a constraint on the use of managerial time and expertise. The principal

must offer the agent a portion of residual cash flow in order to induce the desired project

choice and capital usage. This portion, combined with limited liability on the part of the

manager, creates the possibility of termination, which entails the loss of a high NPV project.

To avoid the larger loss, the principal accepts the smaller loss of reducing the scale of the

agent’s activity in order to lower the volatility of the agent’s residual claim. In short, our

model suggests that extracting the full value of the “time and expertise” of managers is an

agency problem that requires the principal to limit the scale of the agent’s production or

investment activity through capital rationing, created by a high hurdle rate.22

[To Be Added: Lack of risk adjustment, company-wide versus divisional hurdle rates,

and volatility budgets.]

5.2 Risk-Taking and Pay-Performance Sensitivity

Dynamic adjustment in risk-taking (σ) can lead to overly-risky or overly-prudent invest-

ments. The source of this result is the difference between the volatility of the agent’s inside

value – which is what drives the principal’s termination/default risk – and the volatility

of the cash flow. The volatility of the agent’s continuation value is the product of project

22Our model thus offers predictions based on time-series variation in the cost of capital. First, capital
rationing should decrease after success and increase after failure. In particular, the gap between the hurdle
rate and the cost of capital should be smaller after success than after failure. Second, adjustments of the
hurdle rate for idiosyncratic risk should be conditional: larger after failure than after success.
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Figure 5: These plots depict β as a function of σ (equation 8) and the locus of points
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cash-flow volatility and the intensity of incentives. Thus, depending on model specification,

risk reduction can mean reducing project volatility or allowing project volatility to increase

in order to reduce incentive intensity. One result is that actions that look like risk-shifting

can actually be risk-reducing.

The dynamic risk adjustment can generate strong empirical differences between the static

and dynamic responses to incentives – the time series and the cross section might look very

different because of different sources of variation. Consider, for example, the static β(K, σ)

function in (8): we have βσ < 0, meaning that for any given state of the world, stronger

incentives cause lower project risk-taking. However, when we consider the path of incentives

and risk-taking over time (see, e.g. Figure 3), the correlation between incentives and total

risk (β and Σ) is always positive. At the same time, the correlation between incentives and

project risk (β and σ) can be positive (in the ‘under-σ’ specification) or negative (in the

‘over-σ’ specification). Thus, the causal results of incentives and the dynamic correlation

can have opposite signs. We illustrate this in Figure 5, where the solid line is how the

economy evolves as a function of W , and the dashed lines are the function β(K, σ) for two

different values of K.
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Empirically, this result means that our model predicts different results for time series

and cross-sectional tests in the ‘under-σ’ specification, because the source of variation is

different.23 If the dominant source of variation is the history of success or failure (which

changes over time), then we should see a positive relationship between the agent’s share

and volatility. This is movement along the dynamic curve, and may be more likely in time

series variation. If the dominant source of variation is firm characteristics that are stable and

not the history of success or failure, then we might see a negative relationship between the

agent’s share and volatility. Further, an experiment or identification that correctly uncovers

the causal mechanism between the agent’s share and volatility uncovers movement along the

static curve, which generates a negative relationship.

The ‘over-σ’ specification does deliver another empirical test. In settings with easily

scalable investment and in which the relevant risk is agent-separation, rather than default,

increasing project risk after failure should be more common. Investment funds, especially

mutual funds and hedge funds, would seem to be good examples. They have no explicit risk

of default, and to the extent that fund manager skill is real, the primary danger to fund

value is that the high-skill manager leaves. In fact, many empirical results, (e.g. Chevalier

and Ellison (1997), Aragon and Nanda (2011), Huang et al. (2011)) find increasing project

risk after failure to be the case. However, those studies often attribute the increase in risk

to convex incentive schemes. Our mechanism is different: increasing project risk actually

decreases termination risk. A useful empirical test would be to distinguish changes in inside

and outside values, and to see to what extent that difference impacts investment risk.

23The empirical literature has indeed found contradictory results across different settings. while some
studies find that firms increase risk-taking following poor performance (e.g., Eisdorfer (2008)), others find
no such effect (e.g., Andrade and Kaplan (1998)) or a reduction of risk (e.g. Gilje (2016)). The asset
management literature paints a similarly mixed picture (e.g., Rauh (2008), Huang et al. (2011), Aragon
and Nanda (2011), and their discussions of the literature). Note that while these empirical studies address
different institutional backgrounds and may follow different assumptions, our model suggests that more
sophisticated controls will be needed to assess the relationship between risk choice and performance. The
relationship should be consistent in the time series for each firm, but differ in the cross section based on
unobservable characteristics, like investment opportunities.
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6 Further Discussion

6.1 R > 0 and Temporary Shutdown

So far, we have assumed that L > 0 and R = 0, with the result that principal always chooses

K > 0. If we generalize our assumptions to L ≥ 0 and R ≥ 0, the principal may choose

K = 0 for some histories. This represents a temporary shutdown of the firm by the principal.

Proposition 2 becomes

Proposition 5 A solution to the principal’s problem F (W ) exists, is unique and is concave

on W ∈ [R,WC ], where WC is chosen so that F ′(WC) = −1 and F ′′(WC) = 0. F (W ) solves

rF (W ) = max
K∈{0∪(k0,∞)};σ∈(σ,σ)

[
f(K)µ(σ)− rK + γWF ′(W )

+
1

2
β2(K, σ)f 2(K)σ2F ′′(W )

]
(24)

F (W ) is C for all W and C3 for all W ∈ (R,WC), and has F (R) = L > L∗ if K(R) > 0 and

F (R) = L∗ if K(R) = 0. Further, K(W ) > 0 for W ∈ (R,WC ]. The agent’s continuation

utility evolves as in (9), which has a unique weak solution.

This Proposition is what we prove in the appendix. Proposition 2 is a corollary.

The key result is that termination is optional for the principal: if the principal chooses

K(W̃ ) = 0, then the law of motion for Wt (9, with Σ = 0) implies that Wt reflects upwards

at W̃ . Thus, shutdown is temporary. The principal will only optimally choose K = 0 at

W = R, and only when L ≤ L∗, for some constant L∗.

The fact that the principal only chooses K = 0 at W = R arises because setting K = 0

is costly, and so the principal wishes to delay paying that cost as long as possible. There

are two costs to setting K = 0. One is an opportunity cost because any time with K = 0 is

time the principal might otherwise have positive expected cash flow. The second cost is that

by causing Wt to reflect early, the principal is causing Wt to reflect upward at a level that

is closer to the agent’s consumption boundary, so the agent will be awarded consumption

sooner.

The fact that the principal only chooses K = 0 if L is low is economically straightforward:

the principal only avoids default and termination if her value in default is low. If L is high

enough, the principal simply accepts default rather than pay the opportunity cost associated

with K = 0. Note that because of the costs associated with termination, the principal’s value
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function is concave regardless of whether termination occurs in equilibrium. If L > L∗, there

is a direct cost associated with termination as long as L is less than the discounted, first-

best cash flow. This cost makes volatility undesirable, and the principal’s value function

is concave. If L < L∗, there is a direct cost to termination that the principal avoids in

equilibrium, choosing instead to pay the opportunity cost of shutting down the project. The

principal forgoes the project’s cash flow, allowing the agent’s continuation value to reflect

upwards.

Our model’s temporary shutdown is different from that of Zhu (2013), who shows that

the principal can relax incentives to either pay the agent with private benefits instead of

cash or relax incentives to prevent termination/default after bad cash-flow realizations. Zhu

(2013) has fixed project scale, and so when incentives are relaxed the principal cannot also

restrict private benefits to the agent. This makes the principal worse off because of an

inability to control the timing of private benefits separately from the timing of incentives.

Further, the principal might have to shut down incentives before termination would otherwise

happen (incentives can be relaxed at W > R in Zhu (2013)) to make sure that the agent’s

continuation value is high enough to support both private benefits and the continued project.

While our model does feature an incentives shutdown, the mechanism is very different

because the project’s size is endogenous. In our model, the principal has to pay an ongoing

rental cost of capital (rKt) in order to fund the project; the amount of capital determines

the project’s scale and the potential private benefits available to the agent. Since paying

the agent with private benefits delivers benefits that are less than the rental cost of capital

(λ ≤ r), the principal will always couple zero incentives with zero project size. This prevents

the agent from receiving additional negative cash-flow shocks, so the agent’s continuation

value drifts upward, and the project can continue. Because this shutdown is costly, the

principal delays as much as possible, and our firm does not shut down until the last moment,

Wt = R.

6.2 A General Private Benefits Function

We can also extend the model and consider general, non-linear specifications for the agent’s

private benefits from capital misallocation, which we currently assumed to be λ(K − K̂).

This assumption implies that the agent derives a constant marginal benefit from capital

misallocation which, combined with the decreasing returns to scale of f(K), can be inter-

preted as “there is a shortage of good projects but no shortage of bad projects”. While
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constant marginal private benefit is consistent with many existing models of dynamic moral

hazard problems and allows an easy verification of no-misallocation in equilibrium (as long as

λ < r), relaxing such assumption not only affects little of the derivation and implementation

of the optimal contract, but also expands the scope of analytical predictions generated by

our model.

We can still apply the argument used in deriving (8) in Property 3 to derive the incentive

compatibility condition under generic private benefit. We summarize the new condition and

its implication into the following proposition:

Proposition 6 Let Λ(K̂,K) denote the generic private benefit from capital misallocation.

Assuming Λ(K̂,K) is twice-differentiable, the optimal incentive compatibility condition is

β(σt, Kt) =
ΛK̂(Kt, Kt)

f ′(Kt)
× 1

µ(σt)− µ′(σt)σt
(25)

where ΛK̂(K,K) represents ΛK̂(K̂,K)|K̂=K. The optimal contract, following Definition 1,

has the following property that is different from that described in Proposition 3: define g(K) =

ΛK̂(K,K) f(K)
f ′(Kt)

. For all W < WC, if g′(K) > 0, the principal chooses K ≤ KFB. If

g′(K) < 0, then the principal may choose K > KFB under some parameter values.

There are two important differences brought by allowing a generic private benefit function

Λ(K̂,K). The first is how incentive varies with project size, which is captured by:

∂

∂K
β(σ,K) =

(
ΛK̂K

ΛK̂

− f ′′(K)

f ′(K)

)
β(σ,K) (26)

Unlike (12), equation (26) can be either positive or negative depending on the specific func-

tional form of Λ(K̂,K). In our baseline model, we assume the agent’s marginal private

benefit from misallocating an additional dollar of capital is constant (λ). In general though,

it can depend on the project size. If the marginal private benefit of misallocating each dollar

declines with project size, and the decline is faster than the speed of marginal productivity

(f ′(K)) declines, then the agent’s tendency for misallocation is weaker when managing a

larger project. Consequently, the required incentive for no misallocation is lower as project

size grows.24

24An example of such case is when Λ(K̂,K) = λ(K − K̂)/K, (and f(K) = Kα, 0 < α < 1), which implies
βK = − λ

α (1 + α)K−(2+α)β < 0. One can interpret this case as the agent’s private benefit depends on the
fraction – instead of quantity – of capital misallocated. If one re-write the private benefit as a result of effort
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The fact that β may decrease in K implies the second important difference: the possibility

of “over-investment” in the optimal contract, or K(W ) > KFB. This is in contrast to the

baseline model with linear private benefit, which only features “under-investment”. The

intuition is the same as that behind why the optimal contract could feature either “overly-

risky” and “overly-prudent” project choice: as W moves away from WC , the principal seeks

to lower the volatility of W . Under generic, non-linear private benefit, β could be decreasing

in K. If such decrease is fast enough, the principal may achieve a less volatile W with a

high K and thus low β.25 This result complements other studies featuring over-investment

under the optimal contract in which other market frictions and elements are introduced on

top a dynamic moral hazard problem.26

We can even extend the model further by allowing private benefit to be a function of

project risk or total risk (e.g. Λ(K̂,K, σ) or Λ(K̂,K,Σ). We can also consider the case

in which capital misallocation generates no return but some volatility to the cash flow,

instead of no return and no volatility as currently assumed. Nevertheless, the basic agency

friction and how it determines the optimal contract remains the same: the agent has the

tendency to allocate capital towards activities that generate personal benefit and must take

sub-optimally high risk in order to hide such behavior. The strength of the incentive required

to prevent misallocation depends on the marginal private benefit of misallocation and the

gain/loss of marginal return from the productive use of capital due to the increased risk.

Consequently, when the principal wants to lower the degree of the agency friction by lowering

the volatility of the agent’s continuation utility, she may find it optimal to either decrease

total cash flow volatility (lower σ and/or lower K) or decrease incentives (higher σ and/or

higher K), resulting in different combinations of overly-prudent/overly-risky project choices

and under/over-investment in the equilibrium.

Finally, we have been focusing on optimal contracts following Definition 1, i.e. a contract

that eliminates capital misallocation in equilibrium because misallocation is inefficient. This

is standard in the literature such that an incentive compatibility contract is also socially

(as discussed in the next subsection) then it represents the case in which the agent’s effort has a multiplicative
– instead of additive – effect on output.

25In Proposition 6 we note that while g′(K) > 0 is a sufficient condition for under-investment, g′(K) < 0 is
only necessary but not sufficient for over-investment. When g′(K) < 0, the first order condition for K from
the HJB equation (15) implies f ′(K)µ(σ)− r = −h(σ)2F ′′(W )g(K)g′(K) > 0, or f ′(K) < r/µ(σ), which is
not sufficient to deduce K(W ) > KFB since µ(σ) < µ(σFB) = r/f ′(KFB) for all σ 6= σFB . Nevertheless,
we present numerical examples in Figure X that illustrates the existence of over-investment.

26For example, Ai and Li (2015) and Bolton et al. (2017) with limited commitment, Szydlowski (2016)
and Gryglewicz et al. (2018) with multi-tasking, Gryglewicz and Hartman-Glaser (2017) with real options.
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desirable. We can consider the case in which misallocation is efficient: for example when

Λ(K̂,K) = λ(K̂ −K) as in the baseline model but λ > r. However, this changes the right

boundary of F (W ) in an uninteresting way. If capital used for the agent’s private benefit is

δ ≤ δ, the principal’s HJB equation becomes

rF (W ) = max
K,σ, δ

[
f(K)µ(σ)− rK − rδ + (γW − λδ)F ′(W )

+
1

2
β2(K, σ)f 2(K)σ2F ′′(W )

]
The principal would pay private benefits whenever the agent’s continuation utility exceeded

WS, defined by F ′(WS) = − r
λ

(instead of the current boundary condition, F ′(WC) = −1.)

6.3 Dimensionality

Our model uses two-dimensional incentives (β and Σ) to implement a two-dimensional agent’s

choice (K and σ). This raises a potentially interesting question: what would happen if the

agent had more choices, particularly an effort choice. We have assumed that the agent

implements a portfolio of projects with a particular risk-return tradeoff, but what if the

agent could work to improve the tradeoff? What if the relationship between K and σ was

not separable? We might assume that, instead of (1), we have

dYt = α(Kt, σt, et)dt+ ϕ(Kt, σt)dZt (27)

where et is effort. The agent’s private benefits function might then be B(Kt − K̂t, et). In

this setup, the principal then has two controls (β and Σ = ϕ(Kt, σt)) to implement a three-

dimensional choice by the agent. The incentive compatibility condition (7) becomes

{K, σ, e} = arg max
K̂,σ̂,ê

[
βα(K̂, σ̂, ê) +B(K − K̂, ê)

]
(28)

under the constraint that Σ = ϕ(K̂, σ̂).

Because the principal only has two controls, but the agent has three choices, the set

of choices the principal can actually implement is a two-dimensional curve in a three-

dimensional space. Depending on the functional forms of α and ϕ, this implementable

set might be very far from the first-best. Informally, the principal can condition on output

to provide incentives that capital be used efficiently and that total risk is as desired, but her
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controls are not more granular than that; adding an effort choice need not increase the size

of the set of implementable actions.

A key insight of our model of volatility is that it represents a unique setting that cannot

be captured by an economically reasonable hidden effort model, such as a simple variation

of DeMarzo and Sannikov (2006). One might think that our model could be moved in the

opposite direction by giving the principal control over volatility and capital and giving the

agent a hidden effort choice over drift.27 However, this change of variables would put all the

economics into the private benefits function in a completely uninterpretable way.28 Instead,

we give the agent a second choice over per-unit-of-capital volatility, give the principal a

second control over total volatility, and impose economically reasonable assumptions on the

production function f(K)µ(σ). These choices are structured so that equilibrium output

could be obtained with positive probability under both the agent’s true action and under

the principal’s desired action, thus allowing us to use the martingale methods of Sannikov

(2008). In sum, our model demonstrates that agency problems over the composition of

volatility are possible and interesting – total cash-flow volatility (Σ), project volatility (σ),

and agent’s continuation value volatility (βσ) are all meaningfully different.

7 Conclusion

Continuous-time principal-agent models have developed rapidly with applications to expand-

ing areas of economic research. Despite the progress, almost all of the existing models involve

the agent controlling the drift of the output/cash-flow process. We deviate from the litera-

ture by considering the optimal contract when the agent controls the volatility. In the model,

overall cash flow is made up of two components: the individual risk of the project and capital

intensity, both of which are observable only to the agent. The principal must incentivize

the agent to choose the desirable level of project risk and capital intensity. Such setting

represents a unique and different environment than a drift-control model such as modified

27That is, define dYt = f(Kt)etdt+ΣtdZt instead of (1), and use et = f(K̂t)
f(Kt)

µ
(

Σt

f(K̂t)

)
as the hidden action

instead of K̂t. Then, the agent’s private benefits function becomes B(e,K,Σ) = λ
(
K − K̂(e,K,Σ)

)
, where

K̂(et,Kt,Σt) is an inversion of e(K̂,K,Σ).

28First, B(e,K,Σ) has unsigned derivatives (i.e. BK and BΣ must change signs at arbitrary point over
the relevant range of the problem). Second, even the level of private benefits is difficult to assess because the
constraint B(e(K,K,Σ),K,Σ) = 0 is a technological constraint that must be imposed exogenously and has
no clear meaning. These issues are especially prominent under generic, non-linear private benefit Λ(K̂,K).
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versions of DeMarzo and Sannikov (2006) or Biais et al. (2007).

Interestingly, we find the optimal incentives can be implemented without loss of generality

with a simple hurdle rate against which the agent’s performance – the realized cash flow –

is measured. The agent is allowed to propose the amount of capital and the level of risk

he wants, even his own incentive power. Moreover, the principal is freed from the need to

keep track of the agent’s performance. A natural direction of future research is to explore

the implications for asset pricing and portfolio intermediation (e.g. Buffa et al. (2015) with

an optimal contract). The hurdle rate becomes the required return of limited partners or

outside investors, and the joint determination of contracts and equilibrium asset prices is a

natural question to explore.
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Appendix

In this appendix, we provide proofs of propositions included in the main text. We will assume
only that L ≥ 0 and R ≥ 0. The restriction to L > 0 and R = 0, as discussed in the text of
Section 2, is a corollary.

To reduce the level of mathematical formalism in the proofs of the following propositions,
we maintain the following assumptions

Assumption A.1 f(K) and µ(σ) satisfy the following assumptions in addition to those
mentioned in Section 2.1:

1. d2

dK2

(
f(K)
f ′(K)

)2

≥ 0 for all K > 0.

2. d2

dσ2

(
σ

µ(σ)−σµ′(σ)

)2

≥ 0 for all σ ≥ σ with µ(σ) > 0.

3. There is a minimum positive amount of capital that the principal can grant the agent:
K ∈ {0 ∪ [k0,∞)} for some k0 > 0 very small.

The first line ensures that decreasing returns occurs smoothly enough for the principal’s
problem to be strictly concave, so that there are no jumps in Kt. The second ensures that the
variance of the agent’s continuation value is convex in the standard deviation of the project’s
cash flow. Altogether, these restrictions are economically innocuous and consistent with most
commonly used production functions and risk-return relationships. Examples of f(K) that
meets the conditions include f(K) = ln(1+K) and f(K) = Kα, α ∈ (0, 1). Examples of µ(σ)
include µ(σ) = σa− bσ, a ∈

(
0, 1

2

)
; µ(σ) = bσ− σa, a > 1; and µ(σ) = µ+C

√
σ2 − σ2− bσ,

which is the mean-variance efficient frontier if the agent has access to several projects with
normally distributed cash flows. In that case we assume C and µ are not too large.

The final condition simplifies the proof of the existence and uniqueness of the principal’s
Hamilton-Jacobi-Bellman ODE. The proceeding analysis is valid with or without this as-
sumption. One should think of k0 as being very small: e.g. the principal cannot allocate
less than one penny of capital without allocating zero capital. See Piskorski and Westerfield
(2016) for such a proof when the principal’s control can go continuously to zero. Our as-
sumption is a restriction on the principal rather than on the agent: incentive compatibility
conditions will still be required at K = k0.

Proof of Proposition 1

First29, we define the agent’s total expected utility received under a contract conditional on
his information at time t as:

Ut = EK̂, σ̂

[∫ τ

0

e−γudCu +

∫ τ

0

e−γuλ∆̂udu+ e−γτR |Ft
]
,

29This proof a slightly modified version of a proof in Piskorski and Westerfield (2016), which in turn is
based on a similar proof in Sannikov (2008).
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where ∆̂u = Ku−K̂u. We note that the process U = {Ut,Ft; 0 ≤ t < τ} is an Ft-martingale.
The expectation is taken with respect to the probability measure induced by {K̂, σ̂}, such

that
∫ T

0
ΣtdZ

K̂, σ̂
t dt =

∫ T
0
dYt −

∫ T
0
f(K̂t)µ(σ̂t)dt is a Martingale for all T > 0. Recall here

that σt, σ̂t, Kt, and K̂t are all bounded from below by zero and from above by positive
constants, so Σt is also bounded below by zero and above by a positive constant. Then,
by the martingale representation theorem for Lévy processes, there exists a Ft-predictable,
integrable process β such that

Ut = U0 +

∫ t

0

e−γuβuΣudZ
K̂, σ̂
u . (29)

Recall the agent’s continuation value W K̂, σ̂
t defined in (4). We have

Ut =

∫ t

0

e−γudCu +

∫ t

0

e−γuλ∆̂udu+ e−γtW K̂, σ̂
t . (30)

for t ≤ τ . Differentiating (29) and (30), we obtain

dUt = e−γtβtΣtdZ
K̂, σ̂
t = e−γtdCt + e−γtλ∆̂tdt− γe−γtW K̂, σ̂

t dt+ e−γtdW K̂, σ̂
t ,

therefore

dW K̂, σ̂
t = γW K̂, σ̂

t dt− dCt − λ∆̂tdt+ βtΣtdZ
K̂, σ̂
t .

This equation also implies the evolution of promised value given in (6), and the evolution
given in (9) for {K̂, σ̂} = {K, σ}.

Next, define Ũt to be the payoff to a strategy {K̃, σ̃} that consists of following an arbitrary
strategy until time t < τ and then {K, σ} thereafter, then

Ũt =

∫ t

0

e−γudCu +

∫ t

0

e−γuλ∆̃udu+ e−γtWK,σ
t .

Differentiating Ũt and combining terms yields

eγtdŨt = λ
(
Kt − K̃t

)
dt+ βtΣtdZ

K,σ
t

= λ
(
Kt − K̃t

)
dt+ βt(f(K̃t)µ(σ̃t)− f(Kt)µ(σt))dt+ βtΣtdZ

K̃t,σ̃t
t

where the second equality reflects a change in the probability measure from the one induced
by {K, σ} to the one induced by {K̃, σ̃}. Recall here that both {K, σ} and {K̃, σ̃} must
generate the same Σ, per the agent’s constraints. If (7) does not hold on a set of positive
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measure, then the agent could chose {K̃, σ̃} such that

βtf(K̃t)µ(σ̃t)− λK̃t > βtf(Kt)µ(σt)− λKt

that is, the drift of Ũ is always nonnegative and strictly positive on a set of positive measure,
which implies

EK̃,σ̃
[
Ũt

]
> Ũ0 = WK,σ

0 ,

and so the strategy {K, σ} would not be optimal for the agent. If (7) does hold for the
strategy {K, σ} then Ũt is a super-martingale (under measure induced by {K̃, σ̃}) for any
strategy {K̃, σ̃}, that is,

EK̃,σ̃
[
Ũt

]
≤ Ũ0 = W K̃,σ̃

0 .

which proves that choosing {K, σ} is optimal for the agent if and only if (7) holds for the
strategy {K, σ}.

Finally, incentive compatibility requires that β ≥ 0 because otherwise it is impossible for
(7) to hold at K̂ = K > 0. If Kt = 0, then K̂t = 0 and no deviation is possible, so the value
of βt is irrelevant and we say βt = 0.

Proof of Property 3

Substituting σ̂ = Σ

f(K̂t)
into (7) yields a new maximization problem

K = arg max
0≤K̂≤K

βf(K̂)µ

(
Σ

f(K̂)

)
− λK̂ (31)

Taking the first order condition of the objective function and setting it to zero yields

βf ′(K̂)µ (σ̂)− βf ′(K̂)µ′ (σ̂) σ̂ − λ = 0 (32)

which implies (8). Meanwhile the second order condition of the objective function is given
by

βf ′′(K̂) (µ (σ̂)− µ′ (σ̂) σ̂) + βf(K̂)µ′′(σ̂)σ̂2 < 0 (33)

where the inequality follows from f ′′(K) < 0 and µ′′(σ) < 0. Therefore, there is a unique
maximum described by the first-order condition.

The derivatives βK and βσ are direct calculations from (8).
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Proof of Propositions 2 and 5

We prove Proposition 5, of which Proposition 2 is a corollary. We start with four preliminary
results:

Lemma 7 Any solution to the principal’s value function problem must have consumption
awarded to the agent at WC such that Wt ≤ WC, with F ′(WC) = −1 and F ′′(WC) = 0.

These are the value matching and super-contact conditions.

Lemma 8 Let F̂ solve (13). Assume that the boundary conditions in Lemma 7 are met at
some ŴC, but ignore the boundary condition at W = R. Then F̂ ′′(W ) < 0 for all W < ŴC

on which F̂ is defined.

Proof. Taking the derivative (from the left or the right) of the HJB equation (13) with
respect to W and using the envelope theorem yields

0 = (γ − r)F ′(W ) + γWF ′′(W ) +
1

2
Σ2(W )β2(W )F ′′′(W ) (34)

If F ′′ = 0 and F ′′′ < 0 , then (34) implies F ′ > 0. Moreover, from (13), F ′′ = 0 and F ′ > 0
together imply rF > max[f(K)µ(σ)− rK], which is impossible since max[f(K)µ(σ)− rK]
characterizes the solution under the first-best scenario. Therefore F ′′ = 0 and F ′′′ < 0 are
jointly impossible: if F ′′ = 0, then it must be that F ′′′ > 0 (i.e. F ′′ can only cross zero from
below). Therefore if F ′′(ŴC) = 0 for some ŴC then F ′′ < 0 for W < ŴC .

Lemma 9 Let F̂ and F̃ both solve (13) Assume that the boundary conditions in Lemma 7)
are met at ŴC and W̃C, respectively, but ignore the boundary conditions at R. Then the
following four statements are equivalent:

• W̃C < ŴC

• F̃ (W ) > F̂ (W ) for all W ≤ W̃C such that F̂ and F̃ both exist.

• F̃ ′(W ) < F̂ ′(W ) for all W ≤ W̃C such that F̂ and F̃ both exist.

• F̃ ′′(W ) > F̂ ′′(W ) for all W ≤ W̃C such that F̂ and F̃ both exist.

The arguments in Piskorski and Westerfield (2016), Lemma 8, are sufficient.

Lemma 10 Let F̂ solve (13). Assume that the boundary conditions in Lemma 7) are met
at some ŴC, but ignore the boundary condition at W = R. Then, if the principal chooses
K(W̃ ) = 0, the law of motion for Wt (9, with Σ = 0) implies that Wt reflects upward at W̃ .
The principal will optimally choose K = 0 only at W = R.
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Proof. First, any solution to the ODE characterized by (13) with K(W̃ ) = 0 for any
W̃ > R can be improved by moving the K = 0 transition point to the left. The principal
of optimality30 implies that at W̃ for which K(W̃ ) = 0, the HJB equation must follow
(13) with continuous F (W ) (the value-matching condition) and F ′(W ) (the smooth pasting
condition). In addition, if the highest W̃ for which K(W̃ ) = 0 lies in the interior of W (i.e.
W̃ > R), then F ′′(W ) must be continuous as well (the super-contact condition). Finally,
there can be at most one value of W̃ for which a transition exists.

Our problem makes the continuity of F ′′(W̃ ) impossible. At W̃ > R for which K(W̃ ) = 0,
(13) becomes 0 = −rF (W ) + γWF ′(W ) (which generates an analytical solution, F (W ) =
const×W

r
g ). Taking the derivative of the HJB equation, solving for F ′(W ) and substituting

that back into 0 = −rF (W ) + γWF ′(W ) yields rF (W ) = − γ2

γ−rW
2F ′′(W ). Since F (W ) is

bounded above by the first-best, it must be the case that F ′′(W ) is bounded from below by
a constant and this bound does not depend on k0. However, inspection of the first-order
condition of (13) for K, remembering that σ and β are bounded, implies that F ′′(W ) is
arbitrarily negative if k0 is arbitrarily small. This is a contradiction, so the second derivative
cannot be continuous, and the transition from K = k0 to K = 0 cannot be optimal on the
interior of W .

In addition, there cannot be a transition from K > k0 to K = 0 on the interior of W .
Taking the derivative of the HJB equation on either the left or right side of W̃ yields:

0 = (γ − r)F ′(W ) + γWF ′′(W ) +
1

2
Σ2(W )β2(W )F ′′′(W ). (35)

Since F ′ and F ′′ are continuous at W̃ we have 0 = (γ − r)F ′(W̃ ) + γW̃F ′′(W̃ ) (with the
derivative taken on the left-hand side). Since K(W > W̃ ) > 0, it must be the case that
limW↓W̃ F ′′′(W ) = 0. In addition, concavity plus examination of the analytical solution for

W < W̃ shows limW↑W̃ F ′′′(W ) > 0. This jump in F ′′′(W ) at W̃ has the wrong sign for
an optimal jump in K. Thus, there cannot be a transition from K > k0 to K = 0 on the
interior of W .

We now proceed to analyze the HJB equation.31 A necessary condition for optimality
(Lemma 10) is that K ≥ k0 on W ∈ (R,WC ], so we will consider that region first. Re-writing
(13), we have

F ′′(W ) = min
K≥k0;σ∈(σ,σ)

rF (W )− f(K)µ(σ)− rK − γWF ′(W )
1
2
β(K, σ)2K2σ2

(36)

The right-hand-side can be written as the function HK,σ(W,F (W ), F ′(W )), which is
differentiable in all of its arguments. Since K and β are bounded away from zero and

30See Dumas (1991) for a detailed theoretical discussion or Piskorski and Westerfield (2016) or Zhu (2013)
for applications in a similar setting.

31This part of the proof is based on a similar proof in Sannikov (2008), altered to this setting and extended
to include the possibility that the agent’s volatility might be zero.
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infinity, HK,σ has uniformly bounded derivatives in F ′(W ) and F (W ), and HK,σ is Lipschitz
continuous in F (W ) and F ′(W ). It follows that solutions to (36) exist, are C2 and are unique
and continuous is initial conditions.32 Inspection of (36) and (34) shows that the solution is
at least C3, rather than just C2 on W ∈ (R,WC).

To complete our solution, we need to show that our remaining condition can be met:
that for any L, either there exists a WC such that F (R;WC) = L and K(R) > 0 or there
exists a WC such that F (R;WC) ≥ L and K(R) = 0. We need only consider K = 0 at R
from Lemma 10.

Lemma 9 shows that proposed solutions to (13) that obey the right boundary condition
(at WC) can be ranked by the proposed value ŴC . For ŴC = R, we have the highest solution
with rF (R = ŴC) = max [f(K)µ(σ)− rK] − γR. As we increase ŴC , F (W ; ŴC) declines
for all W ; thus, limW→R F (W ; ŴC) declines as ŴC increases.

Within the set of solutions that obey the right boundary condition, we consider the subset
with K(R; ŴC) > 0. Label the infimum value of F (R; ŴC) > 0 as L∗, and the corresponding
value of ŴC as W ∗

C . Any solution with K(R; ŴC) > 0 must be better than the principal’s
value with K = 0 and immediate payment (flow γRdt), which is finite. Thus, L∗ and W ∗

C

are both finite.
Because solutions are continuous in initial conditions, L∗ is also the maximum value

of F (R; ŴC) among all proposed solutions with K(R) = 0. Then, consider the proposed
solution with V ∗C such that K(R,W ∗

C) = 0 and F (W ;W ∗
C) = L∗. This solution can be imple-

mented for any value of L: because K(R;W ∗
C) = 0, there is no termination and L is never

realized. This solution is preferred to all other no-termination solutions by construction.
If, instead, L > L∗, then the principal prefers to allow termination, with K(R) > 0. Since

L is greater than the infimum value of F (R; ŴC) among all proposed solutions with K(R) >
0, and solutions to the ODE are continuous in initial conditions and ordered (Lemma 9),
there exists exactly one solution with ŴC < W ∗

C such that F (R; ŴC) = L.
This shows existence and uniqueness of solutions to the HJB equation with a given

liquidation value L: If L > L∗, then K(W ) > 0 and solutions exist and are unique by the
arguments given above. If L < L∗, then we use the solution that generates K(R) = 0 and
F (R) = L∗, which exists and is unique.

Standard existence and uniqueness results (see e.g. Karatzas and Shreve (1998)), ex-
panded to include Sticky Brownian Motions (see arguments from e.g. Harrison and Lemoine
(1981) or Engelbert and Peskir (2014)) are sufficient to show that (9) has a unique solution
and that Wt is a Sticky Brownian Motion near WR if K(WR) = 0.

The proof is completed with a standard dynamic-programming verification argument.
We illustrate F (W ) under various parameter choices in Figure 6.

32To see these conditions directly, use one of the first order conditions (K or σ) to solve out F ′′, and
observe that for regions in which {K,σ} are interior, (36) is a first-order ODE that can be solved through
direct integration, taking K(W ) and σ(W ) as unknown, bounded functions. Similarly, in regions in which
K = k0, we have constant or bounded coefficients and standard results imply existence and uniqueness there
(see e.g. Piskorski and Westerfield (2016) or Zhu (2013)). We use the more powerful Lipschitz continuity to
show the solution is C2.
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Figure 6: We generate solutions to the HJB equation by varying the right boundary
point WC along the line described by rF (WC) = max(CF ) − γWC (dashed grey line),
which has F ′(WC) = −1 and F ′′(WC) = 0. Our parameter choice implies L∗ = 0. The
solid line is the solution with F (R = 0) = 0 = L∗. The small circles indicate values
of W with K(W ) = 0, at which point W reflects upward. The dotted lines connecting
W with K(W ) = 0 (small circles) to WC also solutions to the HJB, but they have
K(W > R) = 0 and achieve lower values for the principal that the solid black line. The
dashed lines above the solid line are solutions with default in equilibrium, F (R) = L > L∗

and K(R = 0) > 0. The plot uses µ(σ) = 0.07+.5
(
σ2 − 0.052

) 1
2−0.55σ (e.g. the efficient

frontier for a mixture of normally distributed payoffs) and f(K) = 3K
1
2 .

Corollary 11 If R = 0, then L∗ = 0. L > 0 implies the principal chooses K > 0 for all W ,
and the boundary value is F (R = 0) = L, and F (W ) is C3.

Proof. If R = 0 and K = 0, then dW = 0dt, and no further consumption is realized for
either party. Thus, the principal chooses to obtain L if L ≥ 0, i.e. L∗ = 0.

Proof of Proposition 3

Part 1:
Direct substitution of the boundary conditions at WC into (13).

Parts 2 and 3:
The principal’s HJB equations (15 and 16) and the accompanying first-order conditions
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are

rF (W ) = max
K,σ

[
CF (K, σ) + γWF ′(W ) +

1

2
g(K)2h(σ)2F ′′(W )

]
FOC(K) : CFK(K, σ) + g′(K)g(K)h2(σ)F ′′(W )

FOC(σ) : CFσ(K, σ) + g2(K)h′(σ)h(σ)F ′′(W )

and

rF (W ) = max
Σ, β

[
CF (Σ, β) + γWF ′(W ) +

1

2
Σ2β2F ′′(W )

]
FOC(Σ) : CFΣ(Σ, β) + Σβ2F ′′(W )

FOC(β) : CFβ(Σ, β) + Σ2βF ′′(W )

where CF (K, σ) = f(K)µ(σ) − rK, g(K) = f(K)/f ′(K), h(σ) = λσ/(µ(σ) − σµ′(σ)).
Assumption A.1 is sufficient to ensure strict concavity of the HJB equation with respect
to K and σ. Signing g′(K) and h′(σ), remembering that F ′′(W ) ≤ 0, and evaluating the
first-order conditions directly, are sufficient to demonstrate the statement of the property
with respect to K and σ.

Next, we rewrite the cash flow as CF (β,Σ) = CF (K(β,Σ), σ(β,Σ)). Because the
first-best has CFK(KFB, σFB) = CFσ(KFB, σFB) = 0, there is a corresponding value of
(βFB,ΣFB) which has CFK(K(βFB,ΣFB), σ(βFB,ΣFB)) = CFσ(K(βFB,ΣFB), σ(βFB,ΣFB)) =
0. The second order conditions for the HJB equation (16), evaluated at {βFB,ΣFB} are

SOC(β)|(βFB ,ΣFB) : CFKK · (Kβ)2 + CFσσ · (σβ)2 < 0 (37)

SOC(Σ)|(βFB ,ΣFB) : CFKK · (KΣ)2 + CFσσ · (σΣ)2 < 0, (38)

where the inequalities follow from CFKK < 0 and CFσσ < 0. Because the first-best is unique,
with CFβ = 0 and CFΣ = 0, we also have that CFβ > 0 implies β < βFB and CFΣ > 0
implies Σ < ΣFB. Combining this with the first-order conditions (16) yields the statement
of the property.
Part 4:

Assume that the principal offers the agent a recommended level of capital misallocation,
δt, to go with the assigned level of capital, Kt+δt. Then the contract is incentive compatible
if it implements K̂t = Kt and δ̂t = δt. The incentive compatibility condition (7) becomes

{Kt, δt, σt} = arg max
K̂t+δ̂t=Kt+δt; f(K̂t)σ̂t=f(Kt)σt

[
βtf(K̂t)µ(σ̂t) + λ

(
Kt + δt − K̂t

)]
. (39)

Note that the agent-controlled portion of the right-hand side is the same as in the original
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IC condition (7). The first order conditions imply that βt becomes

βt = β(σt, Kt) =
λ

f ′(Kt)
× 1

µ(σt)− µ′(σt)σt
. (40)

The evolution of the agent’s continuation value becomes

dWt = γWtdt+ βtΣtdZt − λδtdt− dCt . (41)

The principal’s HJB equation (13) becomes

rF (W ) = max
K+δ∈{0∪[k0,∞)};σ∈(σ,σ)

[
f(K)µ(σ)− rK − rδ + (γW − λδ)F ′(W )

+
1

2
β2(K, σ)f 2(K)σ2F ′′(W )

]
(42)

For any given choice of K, the objective function of (42) is linear in δ with coefficient
−r − λF ′(W ). Since F ′(W ) ≥ −1, we have −r − λF ′(W ) < 0. Therefore, δ = 0 is (weakly)
optimal.

Proof of Proposition 4

Consider the implementation in two stages. First, we solve the agent’s problem conditional
on an arbitrary choice of {β̃, Σ̃}. The principal offers the agent the adjusted technology with

dỸ NEW
t = f(K̂t)µ

(
Σ̃t

f(K̂t)

)
dt− K̃tθ(β̃t, Σ̃t)dt− φ(β̃t, Σ̃t)dt+ Σ̃tdZt. (43)

Then, the probability measure induced by {K̂, σ̂, K̃} is such that

Σ̃tdZ
K̂,σ̂,K̃
t =

(
dỸt − f(K̂)µ

(
Σ̃

f(K̂)

)
dt+ K̃tθ(β̃t, Σ̃t)dt+ φ(β̃t, Σ̃t)dt

)

is an an Ft-martingale (following the construction in Proposition 1). The incentive compati-
bility arguments in Proposition 1 also follow, with the modification that the agent’s incentive
compatibility condition is

{K̃, K̂} = arg max

[
β̃tf(K̂)µ

(
Σ̃

f(K̂)

)
− β̃tK̃tθ(β̃t, Σ̃t) + λ(K̃t − K̂t)

]
(44)
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Plugging in θ = λ
β̃t

(20) yields

{K̃, K̂} = arg max

[
β̃tf(K̂)µ

(
Σ̃

f(K̂)

)
− λK̂t

]
(45)

and the observation that the agent is indifferent across choices of K̃t ≥ K̂t, and so will pick
K̃t = K̂t (the principal’s desired level, which is strictly preferred to K̃t < K̂t). In addition,
a comparison of (45) and (7), or direct calculation, shows that the agent’s choice of K̂t will

be given by (8), with σ̂t = Σ̃t

f(K̂t)
.

Second, writing K̃ = K̂ = K(Σ̃, β̃) and σ̂t = σ(Σ̃, β̃) (from 22 and 23), we obtain

dỸ NEW
t = f(K(Σ̃, β̃))µ

(
Σ̃t

f(K(Σ̃, β̃))

)
dt−K(Σ̃, β̃)θ(β̃t, Σ̃t)dt−φ(β̃t, Σ̃t)dt+Σ̃tdZt. (46)

Using (21) and (20), we see that (46) reduces to dY NEW
t = Σ̃tdZt: the drift is identically

equal to zero for any {β̃, Σ̃}. Thus we have dWt = γWtdt+ β̃Σ̃dZt−dCt from the arguments
in Proposition 1 and dMt = γMtdt+ β̃Σ̃dZt − dCt from (18) and (46). Standard arguments
(see DeMarzo and Sannikov (2006) or Biais et al. (2007)) imply that this is sufficient for
Wt = Mt and dCt = max(Mt −WC , 0). The indifference across {β̃, Σ̃} allows the agent to
pick the principal’s desired level of {β̃, Σ̃}.
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