
Auctions with Endogenous Initiation∗

Alexander S. Gorbenko

USC Marshall

Andrey Malenko

MIT Sloan

November 2018

Abstract

We study strategic initiation of auctions by potential buyers and the seller. This

problem arises in auctions of companies and asset sales, among other contexts. A

bidder’s decision to approach the seller signals that this bidder is optimistic about

the value of the asset. In common-value auctions, such as battles between finan-

cial bidders, this revelation effect disincentivizes bidders from approaching the seller.

In pure common-value auctions, no bidder ever approaches and auctions are seller-

initiated. By contrast, in private-value auctions, such as battles between strategic

bidders, the effect is the opposite, and equilibria can feature both seller- and bidder-

initiated auctions. The model generates testable implications about the link between

the initiating party, bids, and sale outcomes. It also points to a role of shareholder

activists as intermediaries in auctions of companies.
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1 Introduction

Over the last several decades, auction theory has developed into a highly influential field

with many important practical results.1 In particular, it has been extensively used to

model transactions in the market for corporate control, such as mergers and acquisitions

and intercorporate asset sales.2 To focus on the insights about the auction stage, with rare

exceptions, the literature examines a situation when the asset is already up for sale.

In some cases, exogeneity of a sale is an innocuous assumption. For example, the U.S.

Treasury auctions off bonds at a known frequency. In many cases, however, the decision

to put the asset for sale is a strategic one. For example, the board of directors of a firm

(or an art collector) has a right but not an obligation to sell a division (or an art piece).

In practice, an auction can be either bidder-initiated, when a potential bidder approaches

the seller (e.g., the board of directors of the target company) expressing an interest, in

which case the seller then decides to auction the asset off, or seller-initiated, when the

seller decides to auction the asset off without being approached. To give a flavor of this

heterogeneity, consider the following two deals in the M&A market. The acquisition of

Taleo, a provider of cloud-based talent management solutions, by Oracle on February 9,

2012 for $1.9 billion is an example of a bidder-initiated auction. In January 2011, a CEO of a

publicly traded technology company, referred in the deal background as Party A, contacted

Taleo expressing an interest in acquiring it. Following this contact, Taleo hired a financial

adviser that conducted an auction, engaging four more bidders. Oracle was the winning

bidder, ending up acquiring Taleo. By contrast, the acquisition of Blue Coat Systems,

a provider of Web security, by a private equity firm Thoma Bravo on December 9, 2011

for $1.1 billion is an example of a seller-initiated takeover auction. In early 2011, Elliot

Associates, an activist hedge fund, amassed 9% ownership stake in Blue Coat and forced

its board to auction the company. Twelve bidders participated in the auction, and Thoma

Bravo was the winner. Overall, there exists a considerable heterogeneity with respect to the

1The formal analysis of auctions goes back to Vickrey (1961). The overview of results on auction theory
can be found, for example, in Krishna (2010).

2Among others, see Fishman (1988), Bulow, Huang, and Klemperer (1999), Hansen (2001), and Povel
and Singh (2006). Dasgupta and Hansen (2007) provide a review of application of auction theory to
corporate finance.
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initiator of the contest, which does not appear to be random. For example, acquisitions by

strategic buyers are more likely to be bidder-initiated, while acquisitions by private equity

firms are more likely to be target-initiated (Fidrmuc et al., 2012).3

In this paper, we develop a theory of how potential buyers and the seller choose to initiate

auctions. In particular, we ask the following questions: Which characteristics of auctions

and the economic environment determine whether auctions are bidder- or seller- initiated?

How do bidding strategies and auction outcomes differ depending on how the auction was

initiated? What are the implied ineffi ciencies and what are the potential remedies, if any?

We show that strategic incentives of potential buyers to approach the seller have first-order

effects on the auction timing and outcomes and that they crucially depend on the valuation

environment, i.e., whether bidder have private or common values.

To study these questions, we consider a dynamic framework, in which a seller owns

an asset and faces two potential buyers. Each buyer has a signal about her valuation of

the asset. Either potential buyer may leave the market following an exogenous event, in

which case she is replaced by another buyer with a different signal. Thus, the valuations

of potential buyers change over time. We do not assume that the auction takes place at

an exogenous date and instead treat it as a strategic decision of the seller. Specifically, st

any time each potential buyer decides whether to send a message to the seller indicating

the interest in buying the asset. In turn, the seller decides whether to put his asset up

for sale. Thus, the auction can be initiated by a bidder when the seller auctions the asset

off after receiving an indication of interest, or by the seller when the seller auctions the

asset off without being approached by a bidder. The benefit of waiting for the seller is

that with some likelihood, a bidder with a high valuation will appear and approach the

seller, resulting in a higher expected price. Conversely, the benefit of selling without being

approached is the lack of delay. We focus on stationary cut-off equilibria, in which the

distribution of signals, conditional on no auction in the past, stays the same over time, and

each bidder communicates an indication of interest to the seller if her signal is suffi ciently

high.

The key driving force behind our results is that approaching the seller reveals that the

3Initiation is also related to characteristics of the seller and auction outcomes (Masulis and Simsir, 2013).
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valuation of the initiating bidder is suffi ciently high. In a bidder-initiated auction, ex-ante

identical bidders become endogenously asymmetric at the auction stage: the signal of the

initiating bidder is drawn from a more optimistic distribution. The other bidder uses this

information to choose her bidding strategy and potentially re-value the asset. Similarly,

the lack of an approaching bidder reveals information about valuations of all bidders: in a

seller-initiated auction, each bidder knows that the valuation of the rival is suffi ciently low,

as she would have initiated the auction otherwise.

We show that the interplay between these information effects depends on the sources

of bidders’ valuations. In common-value auctions, e.g., when private equity firms com-

pete to acquire a poorly-managed target, information effects discourage each bidder from

approaching the seller. In pure common-value auctions, this effect is extreme: no bidder

ever approaches, no matter how high her signal is. All auctions are initiated by the seller,

if at all. By contrast, information effects work in the opposite direction in private-value

auctions, e.g., when strategic bidders compete to purchase the asset they plan to integrate

into their existing operations. Given the same signal, a bidder obtains a higher payoff in

the auction she initiates than in an auction initiated by her rival, which gives her incentives

to communicate an indication of interest to the seller.

The intuition behind these results is as follows. Consider a common-value setting:

bidders have the same valuation of the asset but differ in their signals about it. Approaching

the seller reveals information that the signal of the initiating bidder is suffi ciently high:

specifically, it is above a certain cut-off. In turn, observing that the auction is bidder-

initiated, the rival bidder updates her valuation of the asset upwards. As a result, she bids

aggressively not only because she competes against a strong bidder but also because of her

own higher valuation. In a pure common-value setting, this logic implies that the initiating

bidder with the lowest signal among those that lead to initiation wins only when the rival’s

signal is the lowest possible, in which case she pays the total value of the asset, obtaining

no surplus. Such bidder would be better off waiting until either the rival bidder or the

seller initiates the auction, as she would be able to get information rents then. Because

the argument holds for any hypothetical equilibrium cut-off signal that leads to initiation,

bidder-initiated auctions do not occur in equilibrium.
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Next, consider a private-value setting and a bidder with a suffi ciently high signal who

contemplates approaching the seller. In contrast to the common-value setting, observing

that the auction is bidder-initiated, the rival bidder does not update her valuation of the

asset, which therefore remains low. As a result, she only bids aggressively because she

competes against a strong bidder but not because of the valuation update. This logic

implies that the bidder with a suffi ciently high signal can take advantage of the rival’s

low valuation by approaching the seller immediately: she always obtains positive surplus,

even if her signal is the lowest among those that lead to initiation. In contrast, waiting

for an auction initiated by a rival bidder ensures that the bidder will compete against a

strong rival. Even though participating in a rival-initiated auction allows the bidder with

a suffi ciently high valuation to hide it, competing against a weak rival who adjusts her bid

upwards is better than competing against a strong rival who adjusts her bid downwards.

Thus, in contrast to the common-value setting, the bidder would be worse off waiting until

the rival bidder initiates the auction, implying that bidder-initiated auctions can occur in

equilibrium.

In the private-value framework, multiple equilibria often arise, because initiation de-

cisions of bidders and the seller are interdependent. If bidders perceive a seller-initiated

auction to be a very unlikely event, they will have strong incentives to initiate the auction,

because, as described above, a rival-initiated auction makes them worse off and is likely

to occur before the seller-initiated auction. In contrast, if bidders expect the seller to auc-

tion the asset off soon, they will have weak incentives to initiate the auction, because the

seller-initiated auction makes them better off by allowing a bidder with a moderately high

valuation to hide it and is likely to occur before a rival bidder approaches the seller.

These effects have two implications. First, because of multiplicity of equilibria, sales of

otherwise similar assets in different markets (e.g., otherwise similar companies in different

countries) may have very different patterns of initiation. Second, because expectations of

buyers about the likelihood of a seller-initiated auction affect their incentives to approach

the seller, sales of distressed companies would almost always be seller-initiated, regardless

of whether values are private or common. In contrast, sales of companies that are far from

distress would be seller-initiated, if valuations are common, but are likely to be bidder-
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initiated, if valuations are private.

Taken together, our results provide a benchmark with which one can compare empirical

findings on initiation of auctions. For example, our results are consistent with empirical

evidence on target- and bidder-initiated strategic and private-equity deals: approximately

60% (35%) of strategic (private-equity) deals are initiated by the bidders (Fidrmuc et al,

2012). Our explanation of this difference is that financial, but not strategic, bidders have

a large common value component in their valuations for targets. Our analysis also has

implications about how bids and auction outcomes differ depending on whether auctions

are bidder- or seller-initiated. For example, bidders bid more aggressively in a bidder-

initiated auction than in a seller-initiated auction; in a bidder-initiated auction, conditional

on the same valuation, a non-initiating bidder bids more aggressively than the initiating

bidder, while unconditionally the initiating bidder bids more aggressively.

The model generates a set of implications relating bidders’valuations to their bidding

strategies and the identity of initiating bidders. For example, auctions are likely to be

initiated by stronger bidders, who will submit, on average, higher bids and will be more

likely to win than non-initiating bidders. However, conditional on the same valuation, non-

initiating bidders will bid more aggressively than initiating bidders. Similarly, the model

implies that bidders will bid less aggressively in seller-initiated auctions, even conditionally

on having the same valuations.

Beyond the set of main results, the model points to a value-enhancing role of shareholder

activists and investment banks in intermediating intercorporate asset sales. Consider an

ineffi ciently-run firm followed by potential bidders, whose valuations in this case are best

represented by the common-value setting. Our results show that either bidder would be

reluctant to approach the seller, because it would erode her information rents from the

auction. If the firm’s management and board are entrenched, the seller would not initiate

the auction either. The result would be the failure of the market for corporate control as a

corporate governance mechanism precisely in situations when it is most needed: when the

current owner manages the asset poorly. While the market alone may be insuffi cient to re-

solve such ineffi ciencies, an activist investor, such as Elliot Associates in an earlier example,

can use it to acquire a block of shares and force the firm to auction itself off. In this respect,
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shareholder activism and the market for corporate control are complements, rather than

two different mechanisms for turning around poorly managed companies. Alternatively,

an investment bank that intermediates a transaction and can commit (e.g., due to reputa-

tional concerns by being a long-term player) to hide the presence of buyers’indications of

interest would provide strong buyers with incentives to communicate indications of interest.

Lastly, the model points to a potentially value-enhancing role of toeholds, implying that

in a dynamic environment the welfare effect of toeholds trades off allocative ineffi ciency

of the auction against greater incentives of strong bidders to acquire toeholds and initiate

auctions.

Our paper belongs to the large literature on auction theory. Virtually all of it only

considers a stage when the auction takes place. Three exceptions are papers by Board

(2007), Cong (2017), and Gorbenko and Malenko (2018), which also feature strategic timing

of the auction. Board (2007) and Cong (2017) study the problem of a seller auctioning an

option, such as the right to drill oil, where the timing of the sale and option exercise are

decision variables. Gorbenko and Malenko (2018) assume that M&A contests are bidder-

initiated and study the role of stock bids in alleviating bidders’financial constraints. These

papers do not study joint initiation by bidders and the seller and restrict attention to

independent private values, so the issues examined in our paper do not arise.

Second, the paper is related to the literature that studies takeover contests as auctions.

They have been modeled using both the common-value (e.g., Bulow, Huang, and Klemperer,

1999) and private-value framework (e.g., Fishman, 1988; Burkart, 1995; Povel and Singh,

2006).4 Like us, Bulow, Huang, and Klemperer (1999) interpret competition between stra-

tegic (or financial) bidders as a private-value (or common-value) auction. However, these

papers do not study endogenous initiation of takeover contests. Our extension for share-

holder activism relates to recent papers that study interactions between activism and the

market for corporate control focusing on other aspects of the interaction —Burkart and

Lee (2018) focus on the free-rider problem in tender offers, while Corum and Levit (2018)

focus on the commitment problem of the bidder in a proxy fight. Jiang, Li, and Mei (2016)

and Boyson, Gantchev, and Shivdasani (2017) provide empirical evidence on interactions

4Bulow and Klemperer (1996, 2009) provide motivations why running a simple auction is often a good
way for the seller to sell the asset.
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between activism and the market for corporate control, which is broadly consistent with

shareholder activists creating value in the M&A market.

Finally, the paper is related to models of auctions with asymmetric bidders. Most

literature on auction theory assumes that bidders are symmetric in the sense that their

signals are drawn from the same distribution. Some recent literature (e.g., Maskin and

Riley, 2000, 2003; Campbell and Levin, 2000; Lebrun, 2006; Kim, 2008) examines issues

that arise when bidders are asymmetric. The novelty of our paper is that asymmetries at

the auction stage are not assumed: they arise endogenously and are driven by incentives to

approach the seller which differ with the bidder’s information. While bidders are ex-ante

symmetric, at the auction stage they are not: the decision of one bidder to approach the

previously unapproached seller makes it commonly known that bidders’signals come from

different partitions of the same ex-ante distribution of signals.5

The remainder of the paper is organized as follows. Section 2 describes the setup of the

model. Section 3 studies the common-value framework. Section 4 studies the private-value

framework. Section 5 focuses on additional features of the market for corporate control, and

discusses model assumptions. Section 6 lists empirical predictions. Section 7 concludes.

2 The Model Setup

The economy consists of one risk-neutral seller (male) and a set of potential risk-neutral

buyers (female). At each point in time, only two buyers are present, so we index them by

i = 1, 2.6 The seller has an asset for sale. In the context of application to mergers and

intercorporate asset sales, the asset can be the whole company or a business unit. The

seller’s valuation of the asset is normalized to zero. Time is continuous and indexed by

t ≥ 0.

At the initial date t = 0, each potential bidder i ∈ {1, 2} randomly draws a private
signal. Bidders’signals are independent draws from the uniform distribution over [0, ŝ0],

5While on a different topic, the learning effect in common-value auctions is related to Ely and Siegel
(2013) who develop a static model of firms interviewing and hiring workers and show that in equilibrium
only the highest-ranked firm interviews the applicant.

6The model can be extended to N ≥ 2 bidders present at each time with the main qualitative effects
intact.
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where ŝ0 ∈ [0, 1].7 Conditional on all signals, the value of the asset to bidder i is v (si, s−i) ,

where s−i is the signal of the rival bidder.

Assumption 1. Function v (si, s−i) is continuous in both variables, strictly increasing

in si, and satisfies v (0, 0) = 0.

Assumption 1 is standard. Continuity means that there are no gaps in possible valu-

ations of the asset. Strict monotonicity in the first variable means that a higher private

signal is always good news about the bidder’s valuation. This valuation structure follows the

general symmetric model of Milgrom and Weber (1982). It covers two valuation structures

commonly used in the literature:

• The private-value framework: v (si, s−i) = v (si). A bidder’s signal provides

information only about her own valuation, but not about the valuation of her com-

petitors.

• The common-value framework: v (si, s−i) = v (s−i, si), which is symmetric in

both variables. Conditional on both signals, bidders have the same valuation of the

asset. However, bidders can differ in their assessments of it, because their private

signals can be different.

We focus on these two valuation structures. There are two natural interpretations

of common versus private values in the context of auctions of companies and business

units. The first interpretation deals with different types of bidders: we can interpret the

common-value (private-value) auction as a battle between two financial (strategic) bidders.

Intuitively, financial bidders use similar strategies after they acquire the target (i.e., have

“common”value), but may have different estimates of potential gains (i.e., have different

signals about the common value). In contrast, because synergies that strategic bidders

expect to achieve from acquiring the target are often bidder-specific, they provide little

information about valuation of the target to the other bidder. The second interpretation

7Because we assume a general functional form that maps signals into valuations, uniform distribution is
largely a normalization.
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deals with different types of targets rather than bidders. Broadly, value in an acquisition

can be created either because the incumbent target management is ineffi cient or because the

target and the acquirer have synergies that cannot be realized by the stand-alone acquirer.

To the extent that ineffi ciency can be resolved by any bidder, acquisitions of the first type are

common-value deals. At the same time, because synergies are bidder-specific, acquisitions

of the second type tend to be private-value deals.

In practice, the environment changes over time, as either the business nature or man-

agement of a bidder or a target changes, or external economic shocks arrive. To capture

this feature, we assume that at each time the buy side (bidders) and the sell side (the seller)

may experience shocks of the following form.

First, with Poisson intensity λ > 0 each bidder “dies,” in which case she leaves the

market and obtains the payoff of zero. These shocks are independent across bidders. If a

bidder leaves the market, she is replaced by a new potential buyer with a new signal s′i,

which is an independent draw from uniform distribution over [0, 1]. The valuation of the

asset of the new potential bidder becomes v (s′i, s−i), and the valuation of the rival bidder

becomes v (s−i, s
′
i).
8 Thus, at any point in time, only two current signals are relevant for

bidders’valuations, which makes the model tractable.

Second, with Poisson intensity ν > 0 the seller experiences a liquidity shock and has no

choice but to sell the asset immediately. Examples of such liquidity shocks are an arrival

of an attractive investment opportunity that is mutually exclusive with existing assets, a

change in the strategy of the firm, or a bankruptcy in which case the judge liquidates the

target by auctioning its assets among potential bidders.9 As we shall see, the role of this

assumption will be to give the bidder some incentives to wait, because its expected payoff

will be endogenously higher in the auction triggered by a liquidity shock than when she

approaches the seller.10

8We define v (si, s−i) as the discounted expected flow of utility to the bidder (e.g., the present value of
discounted cash flows), which already incorporates possible future shocks.

9As an example of an investment opportunity triggering sale of existing asset, consider the case of the
seller acquiring another firm in a horizontal merger. As a condition for approval, it is common for antitrust
authorities to require a spin-off of some of the existing assets to ensure that the product market does not
become too concentrated.
10In the previous versions of the paper, we considered two alternative formulations of the model that

gave bidders incentives to wait for different reasons. In the first formulation, bidders do not get replaced
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Additionally to the exogenous reason outlined above, the seller has the right to auction

the asset off to the bidders at any time. Turning to the buy side, prior to the auction, each

bidder communicates with the seller by sending a private message to the seller signaling

her interest in acquiring the asset. Communication is costless and follows Crawford and

Sobel (1982) with the binary message space (0 or 1). Without loss of generality, message

mi,t = 1 from bidder i at time t is interpreted as signaling interest in acquiring the asset,

and message mi,t = 0 is interpreted as the lack of communication. As we shall see, we will

examine responsive equilibria in which upon receiving message mi,t = 1, the seller auctions

the asset off immediately.11 We refer to such an event as a “bidder-initiated” auction,

capturing the fact that the auction is triggered by a bidder communicating her interest

to the seller. We refer to an event of the seller auctioning the asset off without receiving

message mi,t = 1 as a “seller-initiated” auction.

Importantly, whether the auction is bidder- or seller-initiated is known to its parti-

cipants. This assumption can be justified as follows. The seller may voluntarily disclose

whether the auction is bidder- or seller-initiated. In many contexts, the disclosed auction

type can be verified ex post —for example, any public U.S. target is required to report the

deal background as part of its SEC filings, and lying there has legal consequences. By the

standard reasoning (Grossman, 1981; Milgrom, 1981), because it is common knowledge that

the seller knows the auction type and this information is verifiable, he will always disclose

it.

Once either party (the seller or one of the two currently present bidders) initiates the

auction, a sealed-bid first-price auction with no reserve price takes place.12 Specifically,

each bidder simultaneously submits a bid to the seller in a concealed fashion. The two bids

are compared, and the bidder with the highest bid acquires the asset and pays her bid.

Once the asset is sold, the game is over. The winning bidder obtains the payoff that equals

and a bidder’s signal changes over time. In the second formulation, an existing bidder obtains a positive
exit payoff X > 0 if she “dies”without acquiring the target. These alternative assumptions do not affect
our results qualitatively. We selected the present formulation because we find it more natural than the
alternatives and because it is slightly more tractable.
11As in any cheap-talk model, there are also “babbling equilibria” in which the seller never reacts to

messages, and all types of buyers adopt the same communication strategy.
12In Section 5.1, we discuss the practical motivation for our choice of the first- versus second-price auction,

and how results would be affected in the latter.
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to her valuation less the price she pays. The losing bidder obtains zero payoff. The seller

obtains the payoff that equals to the winning bid.13

2.1 The equilibrium concept

The equilibrium concept is Markov Perfect Bayesian Equilibrium (MPBE). In the auction,

the strategy of each bidder is a mapping from her own signal si and the knowledge of

whether the bidder, the rival bidder, or the seller initiated the auction, captured by set of

messages (mi,t,m−i,t), into a non-negative bid. Prior to the auction, the communication

strategy of each bidder is a mapping from her own signal si into message mi,t ∈ {0, 1}, i.e.,
to send an indication of interest to the seller or not. Because bidders are ex-ante symmetric,

we look for equilibria in which the bidders follow symmetric strategies prior to the auction.

Furthermore, we look for equilibria in which at any time t prior to the auction a bidder

follows the cut-off communication strategy, such that she sends messagemi,t = 1 if and only

if her signal is above some cut-off ŝt.14 Finally, we are interested in “responsive”equilibria

which we define as equilibria in which the seller reacts to message mi,t = 1 by initiating the

auction.15

For the remainder of the paper, we consider the stationary case, defined as the situation

in which the cut-off ŝt stays constant over time at some level ŝ ∈ (0, 1]. This requires

that the upper bound on the initial signal is ŝ0 = ŝ. Because in practice there is often

13The seller’s private valuation of the asset can also be important for his decision to offer it for sale.
Lauermann and Wolinsky (2016) study common-value first-price auctions in which the seller obtains a
private signal about his value and solicits a different number of bidders at a cost depending on the signal’s
value. Being solicited thus discloses some information about the seller’s signal to bidders. Interestingly,
this solicitation effect can result in non-competitive bids and ineffi cient information aggregation. While
modeling the two-sided private information is beyond the scope of this paper, it is potentially interesting
to examine interactions between seller and bidder initiation in the presence of the solicitation effect.
14Because arbitrarily low types always obtain an arbitrarily low surplus from the auction, it is straight-

forward to show that there is no equilibrium in which low types send the message that triggers the auction,
while high types do not. What is less clear, however, is whether there are equilibria in which communica-
tion strategies are not described by a cut-off (e.g., if there are multiple cut-offs). Because the analysis of
first-price auctions when distributions of valuations have an arbitrary number of gaps is, to our knowledge,
an open problem, we cannot say anything about the possible existence of such equilibria.
15There also exist unresponsive equilibria. First, there can be “babbling” equilibria in which bidders’

messages are completely uninformative. Second, there can be equilibria in which communication is in-
formative but the seller initiates the auction only upon receiving indications of interest from both bidders.
Equilibria of the first type are clearly uninteresting, so we do not consider them. Equilibria of the second
type are similar in spirit to the ones we consider, but are more complicated to analyze.
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no clear starting date, at least, in the applications we look at, focusing on the stationary

solution is reasonable. In Section 5.4 and the online appendix, we provide an analysis of

the non-stationary dynamics, starting at ŝ0 = 1.

3 The Case of Common Values

In this section, we consider the case of pure common value, v (si, s−i) = v (s−i, si).

3.1 Equilibria in bidder- and seller-initiated contests

First, we solve for the equilibrium at the auction stage.

3.1.1 A bidder-initiated takeover contest

Consider a bidder-initiated auction with an exogenous cut-off type ŝ. The equilibrium cut-

off type will be determined at the initiation stage. Denote the initiating and non-initiating

bidder by I and N . Then, from the point of view of bidder N (or bidder I) and the seller,

the type of bidder I (or bidder N) is distributed uniformly over [sI , s̄I ] = [ŝ, 1] (or over

[sN , s̄N ] = [0, ŝ]). Thus, even though all bidders are ex-ante symmetric, initiation based on

a cut-off type endogenously creates an asymmetry between them.

Conjecture that there is an equilibrium in pure strategies. Denote the equilibrium bid of

bidder I and N with signal s by aI (s, ŝ), s ≥ ŝ and aN (s, ŝ), s ≤ ŝ, respectively, and con-

jecture that each is strictly increasing in s in the relevant range. Denote the corresponding

inverses in s by φI(b, ŝ) and φN(b, ŝ). The expected payoffs of bidders I and N with signal

s and bid b are

Πj (b, s, ŝ) = E [v (s, x)− b|x ∈ [sk, φk (b, ŝ)]] =

∫ φk(b,ŝ)

sk

(v (s, x)− b) 1

s̄k − sk
dx, (1)

where j 6= k ∈ {I,N}. The intuition behind the system of equations (1) is as follows.

Consider the initiating bidder who bids b. She wins the auction if and only if the bid of the

non-initiating bidder is below b, which happens if such bidder’s signal is below φN (b, ŝ).

Conditional on winning when the rival’s signal is x ∈ [0, φN (b, ŝ)], the value of the asset
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to the initiating bidder is v (s, x). Integrating over x ∈ [0, φN (b, ŝ)] yields (1) for j = I.

The same intuition explains the expected payoff of the non-initiating bidder. Taking the

first-order conditions of (1), we obtain

∂φj (b, ŝ)

∂b

(
v
(
s, φj (b, ŝ)

)
− b
)
− (φj (b, ŝ)− sj) = 0 (2)

for j ∈ {I,N}. The first and second terms of equations (2) represent the trade-off between
the marginal benefit and the marginal cost of increasing a bid by a small amount. The

marginal benefit is that bidder k wins a marginal event in which the signal of the rival

bidder j is exactly φj (b, ŝ). The marginal cost is that bidder k must pay more in case she

wins. In equilibrium, b = aj (s, ŝ) must satisfy (2) for j ∈ {I,N}, implying s = φj (b, ŝ).

Plugging in and rearranging the terms, we obtain

∂φj (b, ŝ)

∂b
=

φj (b, ŝ)− sj
v
(
φk (b, ŝ) , φj (b, ŝ)

)
− b

. (3)

The system of equations (3) is solved subject to the following boundary conditions. First, in

equilibrium, the highest bid submitted by both bidders must be the same: aj (s̄j, ŝ) ≡ ā (ŝ)

for j ∈ {I,N}. aI (1, ŝ) > aN (ŝ, ŝ) cannot occur in equilibrium, because then types of

bidder I close enough to 1 would reduce their bids and still win the auction with probability

1. Similarly, aI (1, ŝ) < aN (ŝ, ŝ) cannot occur in equilibrium. Second, the lowest bid

submitted by both bidders must be the same: aj
(
sj, ŝ

)
≡ a (ŝ) for j ∈ {I,N}. Suppose

instead that aI (ŝ, ŝ) > aN (0, ŝ). From (1), for type ŝ of bidder I to get non-negative

rents, aI (ŝ, ŝ) cannot exceed E [v (ŝ, x) |x ≤ φN (aI (ŝ, ŝ) , ŝ)]. Consider bidder N with type

φN (aI (ŝ, ŝ) , ŝ) > φN (aN (0, ŝ) , ŝ) = 0, i.e., a bidder who bids exactly aI (ŝ, ŝ). Her payoff is

zero, because the initiating bidder never bids below aI (ŝ, ŝ). However, if this bidder deviated

to bidding b ∈ (aI (ŝ, ŝ) , v (ŝ, φN (aI (ŝ, ŝ) , ŝ))), her payoff would be positive, because her

bid would win with positive probability and, conditional on winning, the payoff would be

positive, as b < v (ŝ, φN (aI (ŝ, ŝ) , ŝ)). Because aI (ŝ, ŝ) ≤ E [v (ŝ, x) |x ≤ φN (aI (ŝ, ŝ) , ŝ)] <

v (ŝ, φN (aI (ŝ, ŝ) , ŝ)) when φN (aI (ŝ, ŝ) , ŝ) > 0, set (aI (ŝ, ŝ) , v (ŝ, φN (aI (ŝ, ŝ) , ŝ))) is non-

empty. Therefore, aI (ŝ, ŝ) > aN (0, ŝ) cannot occur in equilibrium. Similarly, aI (ŝ, ŝ) <

aN (0, ŝ) cannot occur in equilibrium. Hence, the support of possible equilibrium bids for
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both bidders is given by [a (ŝ) , ā (ŝ)].

The upper boundary implies 1 = φI (ā (ŝ) , ŝ) and ŝ = φN (ā (ŝ) , ŝ). Consider the lower

boundary a (ŝ). First, it must be that a (ŝ) ≥ v (ŝ, 0), as otherwise either type ŝ of bidder

I or type 0 of bidder N would find it optimal to deviate and submit a marginally higher

bid. By doing this she can increase the probability of winning from zero to a positive

number, and thus get a positive expected surplus instead of zero. Second, it must be that

a (ŝ) ≤ v (ŝ, 0), otherwise a too high lower boundary would imply that low enough types

get a negative surplus in equilibrium. Thus, we have proved the following lemma:

Lemma 1 (equilibrium in the bidder-initiated CV auction). The equilibrium

bidding strategies of the initiating and the non-initiating bidders, aj (s, ŝ), j ∈ {I,N}, are
increasing functions, such that their inverses satisfy (3), with boundary conditions

1 = φI (ā (ŝ) , ŝ) , ŝ = φN (ā (ŝ) , ŝ) , ŝ = φI (v (ŝ, 0) , ŝ) , 0 = φN (v (ŝ, 0) , ŝ) . (4)

Example 1 in the appendix provides the closed-form solution for the case of additive

valuations, v (si, s−i) = 1
2

(si + s−i), which is linear in a bidder’s signal. Figure 1 illustrates

the equilibrium bids and expected bidder surpluses of Example 1 for the case ŝ = 0.5.

The equilibrium in the auction implies the payoff of type ŝ of bidder I is zero:

Lemma 2. The equilibrium payoff of the initiating bidder of type ŝ is zero.

Proof. ΠI (a (ŝ) , ŝ, ŝ) = 0 follows immediately from a (ŝ) = v (ŝ, 0).

The intuition behind this result is simple. The non-initiating bidder knows that the

initiating bidder communicates her interest to the seller if and only if her signal is at

least ŝ. Therefore, the non-initiating bidder with signal s knows that the lowest possible

valuation is v (s, ŝ) ≥ v (0, ŝ). Similarly, the initiating bidder with signal s knows that the

lowest possible valuation is v (s, 0) ≥ v (ŝ, 0). Because both bidders cannot possibly value

the asset below v (ŝ, 0), no bidder bids less that this amount. Consequently, the initiating

bidder with signal ŝ wins the auction only when the non-initiating bidder’s signal is zero

and at price a (ŝ) = v (ŝ, 0), leaving her with zero surplus. This argument holds for any
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cut-off type ŝ.

The above result extends Engelbrecht-Wiggans, Milgrom, and Weber (1983), who show

that a bidder with access to public information only obtains zero surplus in equilibrium.

An important difference is that bidder I here does retain private information, because her

decision to approach the seller only reveals that her signal cannot be below ŝ. Hence, bidder

I with almost any signal s obtains a positive expected surplus. This can be seen on the

right panel of Figure 1. Only bidder I with the marginal signal, ŝ, obtains zero surplus. In

the common-value framework, to reveal her higher signal through a higher bid, the bidder

must be compensated with a higher surplus, which takes the form of a higher probability

of winning. However, bidder I with signal ŝ has no information rent: in equilibrium, the

cut-off ŝ is known, so type ŝ has no lower types to separate from; hence, she does not get

compensated with rents.

3.1.2 A seller-initiated takeover contest

Suppose that the seller initiates the auction. Conditional on no bidder approaching the

seller, all parties believe that each bidder’s signal is distributed uniformly over [0, ŝ] for

some cut-off signal ŝ. Because the auction is seller-initiated, bidders are symmetric, so the

solution is standard (see, e.g., Chapter 6.4 in Krishna, 2010). Denote the equilibrium bid

by a bidder with signal s by aS (s, ŝ). In the appendix, we prove the following lemma:

Lemma 3 (equilibrium in the seller-initiated CV auction). The symmetric equi-

librium bidding strategies of the non-initiating bidders, aS(s), are increasing functions that

are independent of ŝ and solve (19) with boundary condition aS (0) = v (0, 0). Specifically,

aS (s) =

∫ s

0

v (x, x)
1

s
dx = E [v (x, x) |x ≤ s] . (5)

In contrast to bidder I in the bidder-initiated auction, bidders with all but the lowest

signal 0 obtain positive expected payoff in the seller-initiated auction. In particular, the

cut-off type ŝ obtains a positive payoff. For the case of additive valuations, v (si, s−i) =

1
2

(si + s−i), aS (s) = E [x|x ≤ s] = s
2
.
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3.2 The initiation game

Because the marginal type of the initiating bidder always obtains zero surplus in equilibrium,

it is straightforward to show that pure common-value auctions are never bidder-initiated.

Suppose, by contradiction, that there is an equilibrium with ŝ < 1. Then, a bidder with a

signal just above ŝ obtains a positive but infinitesimal surplus by initiating the auction. In

contrast, if a bidder waits until either the other bidder or the seller initiates the auction,

her expected payoff will be bounded away from zero. Thus, any ŝ < 1 is inconsistent with

equilibrium. Because the seller does not expect a bidder to ever initiate, there is no value

for him in delaying the auction. Thus, the auction is initiated by the seller with no delay:

Proposition 1. There exists a unique equilibrium cut-off ŝ = 1. That is, no bidder

ever communicates her interest to the seller, and the seller initiates the auction immediately

at date 0.

It is straightforward to extend the model by assuming that the seller gets some disutility

C > 0 from selling the asset. If C is below the expected revenues of the seller from the

auction when both bidders’signals are distributed uniformly over [0, 1], then he initiates

the auction at t = 0. In contrast, if C is above this value, then the sale never happens, as

neither the seller nor the initiating bidder with a signal close to the cut-off benefits from

it. In the application to auctions of companies, it is natural to interpret C as the degree

of entrenchment of the management and board of the target: they will not contemplate a

voluntary (seller-initiated) auction unless the expected revenues exceed C. The following

corollary summarizes this result:

Corollary 1. Let C̄ = E
[
a
(
maxi∈{1,2} si

)
|si ∈ [0, 1] ∀i

]
. If C < C̄, the seller initiates

the auction immediately at t = 0. If C > C̄, the seller does not initiate the auction unless

he is hit by a liquidity shock and no bidder communicates her interest to the seller.
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4 The Case of Private Values

In this section, we consider the case of private values, v (si, s−i) = v (si). In the following

analysis, we impose the following natural restriction on equilibrium bids, which pins down

the unique equilibrium in the auction:

Assumption 2. No bidder bids above her valuation in equilibrium.

The rationale behind this assumption is that bidding above one’s valuation is a domin-

ated strategy.16

4.1 Equilibria in bidder- and seller-initiated contests

First, we solve for the equilibrium at the auction stage.

4.1.1 A bidder-initiated takeover contest

Consider a bidder-initiated auction with a fixed cut-off type ŝ. As before, denote the

equilibrium bid of bidder I and N with signal s by aI (s, ŝ), s ≥ ŝ and aN (s, ŝ), s ≤ ŝ,

respectively. Denote their inverses in s by φI (b, ŝ) and φN (b, ŝ). The expected payoffs of

bidders I and N with signal s and bid b are now

Πj (b, s, ŝ) = E [v (s)− b|x ∈ [sk, φk (b, ŝ)]] = (v (s)− b) φk (b, ŝ)− sk
s̄k − sk

, (6)

where j 6= k ∈ {I,N}. Intuitively, bidder I’s (or bidder N’s) bid exceeds the bid of her rival
with probability φN (b,ŝ)

ŝ
(or φI(b,ŝ)−ŝ

1−ŝ ). Taking the first-order conditions of (6), we obtain

∂φj (b, ŝ)

∂b
(v (s)− b)− (φj (b, ŝ)− sj) = 0 (7)

16As Kaplan and Zamir (2015) show, without this restriction, multiple equilibria in the first-price auction
with asymmetric bidders arise, in which some bidders submit “non-serious”bids (i.e., bids that win with
probability zero) above their valuations. Such equilibria are implausible, because even though “non-serious”
bidders obtain zero surplus in equilibrium, a deviation by the rival results in their negative payoff. Thus,
it is reasonable to rule out these strategies. Assumption 2 pins down the unique equilibrium in the auction
(Lebrun, 2006).
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for j ∈ {I,N}. In equilibrium, b = aj(s, ŝ) must satisfy (7), implying s = φj(b, ŝ). Thus,

∂φj (b, ŝ)

∂b
=

φj (b, ŝ)− sj
v (φk (b, ŝ))− b. (8)

The system of equations (8) is solved subject to the following boundary conditions. Similarly

to the common-value case, the equilibrium maximum and minimum bids that win with a

positive probability, or “serious”bids of both bidders must be the same: aj(s̄j, ŝ) ≡ ā (ŝ)

and aj(sj, ŝ) ≡ a (ŝ). If the maximum bids are not the same, the bidder whose maximum

bid is higher can increase her payoff by reducing her bid by a small amount: Doing so does

not affect the probability of winning, which is one, and reduces the payment conditional on

winning. If the minimum serious bid of bidder N is below that of bidder I, bidder N never

wins with such bid, which violates the definition of a serious bid. If the minimum bid of

bidder I is below that of bidder N , there must be discontinuity in the expected payoff of

bidder N at the signal that results in the minimum serious bid. However, this would imply

that bidder I with signals resulting in non-serious bids just below the minimum serious bid

of bidder N would benefit from a deviation to such bid. Hence, the support of possible

equilibrium bids for both bidders is [a (ŝ) , ā (ŝ)].

The upper boundary implies 1 = φI(ā(ŝ), ŝ) and ŝ = φN(ā(ŝ), ŝ). Next, the lowest

type of bidder I submits the lowest serious bid: ŝ = φI(a(ŝ), ŝ). This lowest bid, in turn,

determines the cut-off on the signal of bidder N , who submits a serious bid: the cut-off

is equal to the lowest bid. If the minimum bid is above such cut-off, bidder N with the

cut-off signal would bid above her valuation, which would violate Assumption 2. If the

minimum bid is below the cut-off, she would profitably deviate to increasing her bid by a

small amount, which would result in a positive expected payoff, exceeding her equilibrium

payoff of zero. Formally, v−1(a(ŝ)) = φN(a(ŝ), ŝ).

Assumption 2 uniquely pins down the minimum “serious”bid (Lebrun, 2006):

a (ŝ) = arg max
b

v−1 (b)

ŝ
(v (ŝ)− b) ⇒ F.O.C.:

v (ŝ)− a (ŝ)

v′ (v−1 (a (ŝ)))
= v−1 (a (ŝ)) . (9)

The following lemma summarizes the unique equilibrium in the bidder-initiated first-price

auction. Existence and uniqueness results follow from Lebrun (2006):
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Lemma 4 (equilibrium in the bidder-initiated PV auction). The equilibrium

is unique (up to the non-serious bids of types s < v−1 (a (ŝ)) of non-initiating bidders).

The equilibrium bidding strategies of the initiating and non-initiating bidders, aj(s, ŝ),

j ∈ {I,N}, are increasing functions, such that their inverses satisfy (8), with boundary
conditions

1 = φI(ā(ŝ), ŝ), ŝ = φN(ā(ŝ), ŝ), ŝ = φI(a(ŝ), ŝ), v−1(a(ŝ)) = φN(a(ŝ), ŝ) (10)

and the lowest serious bid is given by (9).

Example 2 in the appendix provides the closed-form solution for the case v(si) = si.

Figure 2 illustrates the equilibrium bids and expected bidder surpluses for the case ŝ = 0.5.

Denote Π∗j (s, ŝ) = Πj (aj (s, ŝ) , s, ŝ), j ∈ {I,N}. The next lemma shows that the payoff
of the bidder with the cut-off signal, ŝ, is higher when she is an initiating bidder rather

than a non-initiating bidder:

Lemma 5. For any ŝ, Π∗I (ŝ, ŝ) ≥ Π∗N (ŝ, ŝ). The inequality is strict if ŝ < 1.

This result is in stark contrast with the case of common value, in which bidder I with

the cut-off signal always obtains zero expected payoff, which, in particular, is strictly lower

than a payoff of bidder N with the same signal, resulting in unraveling in initiation. In

the private-value framework, all else equal, the bidder with the cut-off signal is better

off initiating the auction rather than being the non-initiating bidder. Intuitively, because

bidders do not update valuations, the strength of competition is endogenous on who the

initiator is and favors the initiator. If a bidder waits until the rival approaches the seller,

she will compete against a rival with a strong signal (above ŝ). In contrast, if a bidder

initiates the auction today, she will compete against a rival with a weak signal (below ŝ).

In turn, the rival adjusts her bid upwards (or downwards) upon the bidder’s (or rival’s)

initiation compared to the symmetric bidder case, believing that she competes against a

strong (or weak) bidder. However, this adjustment, in the absence of valuation updating, is
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second-order on the bidder’s profits and cannot eliminate the benefit of being the initiator.

4.1.2 A seller-initiated takeover contest

Suppose that the seller initiates the auction. Conditional on no bidder approaching the

seller, all parties believe that each bidder’signal is distributed uniformly over [0, ŝ]. Bidders

are symmetric, so the solution is standard (see, e.g., Krishna, 2010). Denote the equilibrium

bid by a bidder with signal s by aS (s, ŝ). In the appendix, we prove the following lemma:

Lemma 6 (equilibrium in the seller-initiated PV auction). The symmetric

equilibrium bidding strategies of the non-initiating bidders, aS(s), are increasing functions

that are independent of ŝ and solve (23) with boundary condition aS(0) = v(0). Specifically,

aS(s) =

∫ s

0

v(x)
1

s
dx = E [v(x)|x ≤ s] . (11)

For the case v(si) = si, aS(s) = E[x|x ≤ s] = s
2
.

Denote the equilibrium expected payoff of a bidder with signal s in a seller-initiated

auction as Π∗S (s, ŝ) = ΠS (aS (s) , s, ŝ). The next lemma shows that a seller-initiated auction

leads to a higher expected payoff to a bidder with signal ŝ than an auction initiated by this

bidder:

Lemma 7. For any ŝ > 0, Π∗S (ŝ, ŝ) > Π∗I (ŝ, ŝ).

The intuition behind Lemma 7 is as follows. Consider a bidder with signal ŝ. If the

auction is initiated by the seller, the rival believes that the bidder’s signal is weak (below

ŝ). In contrast, if the auction is initiated by the bidder, the rival believes that her signal is

strong (above ŝ). In response, the rival adjusts her bid upwards upon the bidder’s initiation

compared to the symmetric bidder case. In turn, the seller-initiated auction leaves a higher

expected payoff to the bidder.

Together, Lemmas 5 and 7 imply that incentives of a bidder to approach the seller

depend on whether her best outside option is to wait for another bidder to approach or for
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the seller to put the asset up for sale. When a bidder expects the seller to sell soon, she

benefits from waiting. In the extreme case of an immediate sale, no bidder approaches the

seller, as Π∗S (ŝ, ŝ) > Π∗I (ŝ, ŝ) for any ŝ > 0. When a bidder expects the rival to approach

the seller soon, she benefits from initiating the deal herself. A practical implication for the

market of distressed assets is as follows. Bidders are reluctant to approach the seller when

they expect him to put the asset up for sale soon regardless of the demand for it, such as

when the seller is close to bankruptcy. This intuition holds regardless of whether the asset

is commonly or privately valued by market participants.

4.2 The initiation game

Having solved for the equilibria in bidder- and seller-initiated auctions for any cut-off ŝ,

we next solve for the equilibrium cut-off. Our analysis proceeds in four steps. First, we

solve a bidder’s problem taking the initiation strategy of the seller and the other bidder

as given. Applying the symmetry condition, we obtain the cut-off on the bidder’s signal,

at which it is indifferent between sending message mit = 1 (an indication of interest) and

mit = 0 (wait) to the seller. Second, we check that bidders with signals above the cut-off

prefer to send message mit = 1, while bidders with signals below the cut-off prefer to send

message mit = 0. The first two steps thus characterize equilibrium initiation strategies

of both bidders for any given initiation strategy of the seller. Third, we solve the seller’s

problem of whether to put the auction up for sale upon first receiving mit = 1, taking the

equilibrium strategy of bidders as given. Fourth, we check that the seller does not prefer to

wait for simultaneous indications of interest from both bidders, mit = 1 and m−it = 1. The

last two steps thus characterize an equilibrium initiation strategy of the seller for any given

initiation strategy of both bidders. We combine the two strategies to obtain equilibria.

4.2.1 A bidder’s problem

Recall that we focus on the stationary case where the distribution of bidders’ signals,

conditional on no auction having taken place, is uniform over [0, ŝ] for some ŝ. Stationarity

and the restriction to Markov strategies imply that the initiation strategy of the seller is

the same at any time t. Let µdt denote the probability with which the seller initiates the

22



auction during any short period of time (t, t+ dt), µ ∈ [ν,∞]. Here, µ = ν means that

the seller only initiates the auction if he is hit by the shock and has no choice but to sell

the asset; µ = ∞ means that the seller initiates the auction over the next instant with

probability one; and µ ∈ (ν,∞) means that the seller auctions the asset off with some

intensity even if he is not hit by the shock or approached by a bidder.

First, we fix µ and solve for the symmetric equilibrium initiation strategy of bidders.

Suppose that a bidder believes that the rival approaches the seller if and only if her signal

exceeds ŝ. Consider the bidder with signal s. Denote the expected continuation value of

this bidder by VB (s, ŝ, µ). This value satisfies

VB (s, ŝ, µ) = max

{
Π∗I (s, ŝ) ,

λ (1− ŝ) Π∗N (s, ŝ) + µΠ∗S (s, ŝ)

r + λ (1− ŝ) + λ+ µ

}
. (12)

The intuition behind (12) is as follows. The continuation value is the maximum of the

expected payoff from immediate initiation, which yields Π∗I (s, ŝ), and waiting, which yields

the second term of (12). Three independent events can occur if the bidder chooses to wait.

First, with intensity λ (1− ŝ), a rival bidder with signal above ŝ indicates the interest to the
seller, and the seller reacts by putting the asset for sale. The non-initiating bidder obtains

Π∗N (s, ŝ) in this case. Second, with intensity µ, the seller puts the asset up for sale, and the

bidder obtains Π∗S (s, ŝ). Third, with intensity λ, the bidder experiences a shock and leaves

the market.

By continuity of Π∗I (·), Π∗N (·), and Π∗S (·) in s, the cut-off type must satisfy

Π∗I (ŝ, ŝ) =
λ (1− ŝ) Π∗N (ŝ, ŝ) + µΠ∗S (ŝ, ŝ)

r + λ (1− ŝ) + λ+ µ
⇒ (13)

(r + λ) Π∗I (ŝ, ŝ) + λ (1− ŝ) (Π∗I (ŝ, ŝ)− Π∗N (ŝ, ŝ)) = µ (Π∗S (ŝ, ŝ)− Π∗I (ŝ, ŝ)) .

This transformed equation is intuitive. For the cut-off type ŝ, the cost of waiting equals the

benefit. The cost of waiting (the left-hand side) comes from two sources. The first source,

represented by the first term on the left-hand side of (13), is discounting due to a positive

discount rate and the possibility that the bidder leaves the market. The second source,

represented by the second term on the left-hand side of (13), is the possibility that a strong
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rival bidder appears and initiates the auction, lowering the expected rents of the bidder

(as implied by Lemma 5).17 The benefit of waiting (the right-hand side) comes from the

possibility that the seller initiates the auction without being approached by a bidder. A

seller-initiated auction leads to a less aggressive bidding by the rival bidder, because she

expects the competing bidder to be weaker than in a bidder-initiated auction (as implied

by Lemma 7).

Existence of the indifferent type ŝ, given by (13), is only a necessary condition for the

equilibrium. We also need to verify that if type ŝ is indifferent, then all types above ŝ

find it optimal to approach the seller, while all types below ŝ find it optimal to wait. The

next proposition shows that this condition holds if and only if µ is below some cut-off level,

denoted by µ̂ (ŝ):

Proposition 2. Fix µ ≥ ν and let ŝ < 1 denote the equilibrium cut-off signal for

bidder-initiated auctions. Then, ŝ satisfies (13) and

µ < µ̂ (ŝ) ≡ v−1 (a (ŝ))

ŝ− v−1 (a (ŝ))
(r + λ)− λ (1− ŝ) . (14)

If ŝ that satisfies (13) and (14), then a bidder finds it optimal to indicate her interest to

the seller if and only if its signal exceeds cut-off ŝ.

4.2.2 The seller’s problem

The previous subsection considered the bidders’problem for a fixed selling strategy of the

seller. Next, we fix ŝ and consider the seller’s problem. The seller’s problem is two-fold.

First, the seller needs to decide whether to initiate the auction upon receiving messages

mi,t = 0, i ∈ {1, 2} (no indications of interest). Second, the seller needs to decide whether
to auction the asset off upon receiving message mi,t = 1 from one of the bidders (an

indication of interest).

First, consider the former problem. If the seller follows the strategy of selling voluntarily

with intensity µ−ν (making the total probability of a seller-initiated auction over an instant
17Recall that this term is a benefit rather than cost in the case of common values: there, the bidder

benefits when a rival bidder with a high signal appears and initiates the auction.
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µdt), then the seller’s expected payoff is:

µRS (ŝ) + 2λ (1− ŝ)RB (ŝ)

r + µ+ 2λ (1− ŝ) ,

where RS (ŝ) and RB (ŝ) are the expected revenues in a seller-initiated and bidder-initiated

auction, respectively. They admit simple integral representations:

RS (ŝ) =

∫ aS(ŝ)

0

bd

((
φS (b, ŝ)

ŝ

)2
)
, RB (ŝ) =

∫ ā(ŝ)

a(ŝ)

bd

(
φI (b, ŝ)− ŝ

1− ŝ
φN (b, ŝ)

ŝ

)
. (15)

The derivative of this payoff in µ is positive if and only if RS (ŝ) > 2λ(1−ŝ)
r+2λ(1−ŝ)RB (ŝ), i.e., if

and only if it takes a long enough time for a bidder to indicate her interest to the seller.

Because RB (ŝ) > RS (ŝ), the seller faces the trade-off between delay and lower expected

revenues.

Second, consider the seller’s problem whether to auction the asset off upon receiving

an indication of interest. In the responsive equilibrium of the cheap-talk game, the seller’s

optimal strategy is to put the asset up for sale upon receiving message mi,t = 1 from one of

the bidders. In this case, the seller obtains RB (ŝ). Alternatively, the seller could deviate

and not auction the asset offupon receiving this message but instead wait until both bidders

present at that time send indications of interest (m1,t = m2,t = 1). By doing this, the seller

could obtain higher revenues from the auction at the cost of additional waiting. In the

appendix (see the next proposition), we show that the condition that the seller is better off

holding an auction upon receiving an indication of interest simplifies to (43).

The next proposition summarizes the best response of the seller:

Proposition 3. Fix ŝ that satisfies condition (43) in the appendix. Then, the seller’s

optimal strategy is: (a) to never initiate the auction unless he is hit by a liquidity shock

(µ = ν) if 2λ(1−ŝ)
r+2λ(1−ŝ)RB (ŝ) ≥ RS (ŝ); (b) to initiate the auction immediately (µ = ∞) if

2λ(1−ŝ)
r+2λ(1−ŝ)RB (ŝ) ≤ RS (ŝ); (c) to randomize between initiating the auction and waiting (any

µ ∈ (ν,∞)) if 2λ(1−ŝ)
r+2λ(1−ŝ)RB (ŝ) = RS (ŝ).
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4.2.3 Equilibria

Combining the previous derivations, we can characterize all equilibrium cut-off signals ŝ.

Because initiation decisions of bidders are strategic complements, there can be multiple

equilibria. If a bidder expects other bidders to only approach the seller if s is very high

(i.e., ŝ ↑ 1), then payoffs of the initiating and non-initiating bidder with the cut-off signal

are close. In turn, a bidder has weak incentives to approach the seller. In contrast, if ŝ

is suffi ciently low so that Π∗I (ŝ, ŝ) − Π∗N (ŝ, ŝ) is high, a bidder has strong incentives to

approach. Note that this argument is the opposite of that in the common-value model.

There, initiation decisions of bidders are strategic substitutes: if a bidder expects her rival

to approach the seller, she has weak incentives to approach herself. The next proposition

shows the existence of at least one equilibrium:

Proposition 4 (equilibrium with only seller-initiated auctions). There always

exists an equilibrium in which all auctions are seller-initiated: ŝ = 1 and µ =∞.

Intuitively, if the seller believes that bidders will not approach, then delaying the seller-

initiated sale is costly. Similarly, if bidders believe that the seller will put the asset up for

sale immediately, approaching the seller earlier is costly.

To have both seller- and bidder-initiated auctions in equilibrium at the same time,

the seller must play mixed strategies. Equivalently, the seller must be indifferent between

initiating the auction himself and waiting until he is approached by a bidder.

Proposition 5 (equilibria with seller- and bidder-initiated auctions). A pair

(ŝ, µ) with ŝ < 1 and µ ≥ ν constitutes an equilibrium if and only if it satisfies (13),

µ < µ̂ (ŝ), (43), and: (a) 2λ(1−ŝ)
r+2λ(1−ŝ)RB (ŝ) = RS (ŝ), if µ > ν; (b) 2λ(1−ŝ)

r+2λ(1−ŝ)RB (ŝ) ≥ RS (ŝ),

if µ = ν.

Condition (a) of Proposition 5 covers the case when the seller sometimes voluntarily

auctions the asset off without being approached by the bidder. The indifference condition

there states that the seller must be indifferent between a seller-initiated auction and a
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delayed bidder-initiated auction. This condition is independent of µ and pins down the

equilibrium cut-off ŝ. Then, given ŝ, (13) pins down equilibrium µ. Condition (b) of

Proposition 5 covers the case when the seller only auctions the asset offupon either receiving

an indication of interest from the bidder or being hit by a liquidity shock.

Example 3 in the appendix considers one set of parameters that gives a single equilibrium

with seller initiation only (v(si) = si) and another set of parameters that gives an additional

equilibrium with both bidder and seller initiation (v(si) = s2
i ). Figure 3 illustrates equilibria

for the second case, ŝ = 1 and µ = ∞, and ŝ = 0.977 and µ = 0.752, when r = 0.05 and

λ = 0.5.

Our analysis of the base model shows that initiation of private- and common-value auc-

tions can be drastically different. While both auctions, in equilibrium, can be voluntarily

initiated by sellers, only private-value auctions can be initiated by bidders. Furthermore,

as Figure 3 illustrates, in the private-value setting the initiation game can have multiple

equilibria, some of which feature infrequent voluntary initiation by the seller or no voluntary

initiation at all. This result suggests that different markets with otherwise similar char-

acteristics can feature very different asset sale initiation patterns and, as a consequence,

different allocation and welfare properties.

5 Extensions and Discussion

The base model is designed to explain broad initiation patterns of endogenous auctions

with our lead application being the market for corporate control. In this section, we discuss

additional features of this market and analyze whether they can alleviate the problem that

bidders are not willing to approach sellers in common-value auctions. Additionally, we

examine robustness of our results to various model assumptions.

5.1 Robustness to auction format

We assume that the sale proceeds as a first-price auction for two reasons. First, under reg-

ularity conditions, it has a unique equilibrium even when signals of bidders are distributed

asymmetrically. In contrast, the diffi culty with analyzing the second-price auction in the
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common value setting is that there exists a continuum of equilibria (see Milgrom, 1981b).

When bidders are symmetric, it is natural to focus on the equilibrium in which both bidders

play identical strategies, which is unique. However, when bidders are asymmetric, as is the

case here, there is no well-established equilibrium selection criterion that selects one equi-

librium from the continuum. Second, a first-price auction highlights how bidders respond to

the perceived aggressiveness of the rival bidder. Such strategic considerations are common

to a variety of auction formats but are often absent from the second-price auction.18

In this section, we extend the model by assuming that the sale may proceed as a a second-

price auction. We consider the cases of common values and private values in sequence.

The case of common values. Consider a bidder-initiated second-price auction, in

which the initiating bidder’s signal is drawn from [ŝ, 1] and the non-initiating bidder’s signal

is drawn from [0, ŝ]. Among a continuum of equilibria, we restrict our attention to natural

equilibria in which bidders only use undominated bids. We show that all such equilibria

have the same key property as the equilibrium in our base model: the equilibrium payoff of

the initiating bidder with the cut-off signal is zero, regardless of the cut-off. Thus, no bidder

communicates her interest to the seller, and the seller puts the asset for sale immediately

at date 0:

Proposition 6 (common values, second-price auction). Suppose that bidders only

submit undominated bids at the auction stage. Then: (a) in any equilibrium of the bidder-

initiated auction, type s ≤ ŝ of the non-initiating bidder does not bid below v (s, ŝ); (b)

Π∗I (ŝ, ŝ) = 0 ∀ŝ, i.e., the expected payoff of the cut-off type of the initiating bidder ŝ is zero
in any equilibrium of the bidder-initiated auction; (c) in the initiating game, there exists

a unique equilibrium cut-off ŝ = 1. That is, no bidder communicates her interest to the

seller, and the seller puts the asset for sale immediately at date 0.

18In practice, the actual format differs across auctions. Typically, there are multiple rounds of informal
bidding, in which bids are contingent on further due diligence and acquisition of financing and can be
retracted, followed by few (often one) rounds of formal bidding, which proceeds as a first-price auction (see
Hansen (2001) for a description). Avery (1998) shows that the outcomes of such a format are close to those
in the first-price auction.
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The case of private values. Each bidder i has a weakly dominant strategy to bid

v (si). First, consider a bidder-initiated auction. As in the base model, let Π∗j (s, ŝ), j ∈
{I,N} denote the expected payoff of the initiating and non-initiating bidder with signal s
when the types ŝ and above initiate the auction. Clearly, Π∗N (s, ŝ) = 0 for any s ≤ ŝ and

any ŝ ∈ [0, 1]. At the same time, Π∗I (s, ŝ) = v (s) − E [v (x) |x ∈ [0, ŝ]]. Second, consider

a seller-initiated auction. The expected payoff of a bidder is Π∗S (s, ŝ) =
∫ s

0
x
ŝ
v′ (x) dx. For

the cut-off type ŝ, we have the following relationship:

Π∗S (ŝ, ŝ) = v (ŝ)− E [v (x) |x ∈ [0, ŝ]] = Π∗I (ŝ, ŝ) > Π∗N (ŝ, ŝ) = 0.

Unlike in the first-price auction, we do not have the result that Π∗S (ŝ, ŝ) > Π∗I (ŝ, ŝ) (Lemma

7). Intuitively, in the first-price auction the non-initiating bidder competes more aggress-

ively in a bidder-initiated auction than in a seller-initiated auction, because she expects the

rival to be stronger. In contrast, in the second-price auction, a bidder’s bidding strategy

is independent of her expectations of how strong the rival bidder is. The equation that

determines the equilibrium at the initiating game becomes:

Π∗I (ŝ, ŝ) =
µΠ∗S (ŝ, ŝ)

r + λ (1− ŝ) + λ+ µ
, (16)

which holds only for ŝ = 0.

Consider the private-value setting in which the seller randomizes between the two mech-

anisms. Specifically, assume that the seller holds the first-price auction with probability q

and the second-price auction with probability 1− q. We denote ΠSPA
j (s, ŝ) and ΠFPA

j (s, ŝ)

for j ∈ {I,N, S} to be the equilibrium expected payoffs of type s from the second-price

and first-price auctions, respectively. Then, the expected payoff from the auction prior

to learning its format is: Π∗j (s, ŝ) = qΠFPA
j (s, ŝ) + (1− q) ΠSPA

j (s, ŝ). By analogies with

Lemma 5 and 7, we have that for any q > 0 and ŝ < 1, Π∗S (ŝ, ŝ) > Π∗I (ŝ, ŝ) > Π∗N (ŝ, ŝ). It

follows that the equilibrium cut-off type ŝ is still characterized by Propositions 4 and 5 of

the base model.

To sum up, this section establishes that our main results, which were established as-
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suming that the seller holds the first-price auction, are robust to the possibility of the

second-price auction. First, in the case of the common values and under a weak restric-

tion on equilibrium bids, the implications for initiation are identical. Second, in the case

of private values, the implications for initiation are identical provided that bidders con-

template a possibility that the seller will hold the first-price auction, q > 0. We only get

qualitatively different implications for initiation when q = 0. However, this belief is un-

natural for two reasons. First, there is significant heterogeneity and likely unpredictability

of selling mechanisms of different firms (Boone and Mulherin, 2007). Second, theoretically,

neither the first-price nor the second-price auction dominates the other in seller’s expected

revenues when bidders are asymmetric (Krishna, 2010).

5.2 Shareholder activists as facilitators of auctions of companies

Corollary 1 shows that if a company is underperforming (inducing common value in potential

bidders), its management is entrenched, and the likelihood of a liquidity shock is low, such

company can remain without a change in ownership for a long time, even when the value

added from the change is large. Thus, the role of takeovers as a corporate governance

mechanism can be limited.

The lack of an incentive for bidders to initiate common-value auctions gives rise to

alternative ways of promoting takeovers, in particular, to shareholder activism. If an activist

finds it beneficial to buy a fraction of the company’s shares and undertake an activism

campaign, which results in putting the target up for same, seller-initiated takeovers can

occur in equilibrium even in the presence of an entrenched management.

In the appendix, we extend the base model by allowing a profit-maximizing activist to

enter the market and characterize the activist’s choice in an equilibrium with seller initi-

ation. Our analysis shows that shareholder activism and the market for corporate control

are not two unrelated mechanisms for disciplining the management but rather complement

each other: activists use the market for corporate control to facilitate transactions of targets,

ineffi ciencies in which would not be corrected otherwise.
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5.3 Toeholds

In common-value auctions of companies, the initiating bidder with the cut-off signal can

obtain a positive expected profit if she secretly acquires a toehold in the target prior to the

auction. Such a bidder can thus find it optimal to indicate her interest to the target in the

first place.

In the appendix, we extend our base model to allow for endogenous toehold acquisition,

derive equilibrium bidding strategies of an initiating and non-initiating bidder, and show

that Π∗I(ŝ, ŝ) > 0 for ŝ > 0, implying the possibility of equilibria with bidder initiation.

Example 4 in the appendix provides a quasi-closed form solution for equilibrium bidding

strategies for the case v(si, s−i) = 1
2
(si + s−i). Additionally, for r = 0.05 and λ = 0.5, the

example illustrates the initiation-stage equilibrium with bidder initiation only. Our analysis

shows that while toeholds are often considered to be a source of ineffi ciency, because in static

models of auctions they can result in the acquisition of an asset by a bidder with a lower

valuation, they help bidders initiate positive-value deals that would not occur otherwise

in our dynamic model. Because toeholds can be valuable, it is important to further study

optimal disclosure requirements of blocks of shares in a dynamic setting.

5.4 Preemption and participation costs

The base model assumes that upon initiation of the auction, both bidders enter it. In prac-

tice, participating in the auction can be costly, and thus bidders with suffi ciently low signals

may prefer to avoid entering the auction. In general, analyzing the effects of participation

costs properly is a diffi cult problem, because the implications can be quite specific to the

assumptions of the setting, in particular to whether the seller can reimburse the particip-

ation costs of the bidders19 and whether the entry of other bidders is observable. In this

section, we analyze one particular extension of the model: common values, no reimburse-

ment of participation costs, and observable entry. The complete analysis of the effects of

participation costs on initiation across many different environments is beyond the scope of

19Because participation has a positive externality on the seller, the seller benefits from subsidizing par-
ticipation. Compensation of due diligence costs is quite common in M&A transactions - see Wang (2018)
for examples.
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this work.

Suppose that a bidder has to pay a cost C > 0 to participate in the auction. A positive

participation cost implies a possibility of a single-bidder auction. This leads to the question

of how the transaction price is determined in this case, and whether it is different upon the

seller receiving a liquidity shock, at which point it has to involuntarily sell the asset.20 It is

natural to assume that the transaction price equals to the seller’s reservation value and that

this reservation value declines when he is hit by the shock. Let the seller’s reservation value

in these two cases be vs > 0 and 0. We keep the same assumptions for the bidder’s signals

and valuations but shift the valuation by vs, so that v (0, 0) = vs. The next proposition

shows the main result of the extension:

Proposition 7. Suppose that C < E [v (1, x)] − vs. Then, the only equilibrium of the

initiation game has cut-off ŝ = 1. That is, no bidder ever communicates her interest to the

seller, and the seller puts the asset for sale immediately at date 0. Each bidder enters this

seller-initiated auction if and only if her signal exceeds cut-off ŝS, defined as:∫ ŝS

0

(v (ŝS, x)− vs) dx = C. (17)

The restriction on C is weak. It simply means that the participation cost does not exceed

the surplus from the auction when one bidder’s signal is the highest possible. The intuition

behind this result is as follows. Because of positive participation costs, a bidder-initiated

auction results in the rival bidder not entering the auction by the unraveling argument

similar to that in the base model. Because of low entry, a bidder-initiated auction results

in low seller’s revenues, and thus from the seller’s point of view there is no benefit from

waiting until he gets approached by the bidder. Thus, in equilibrium the auction is initiated

immediately by the seller.

20These questions were irrelevant in the base model, because both bidders always participated and the
seller’s reservation value was 0 ≤ v (s1, s2) ∀s1, s2.

32



5.5 Investment banks

Our results in the common-value framework rely on the assumption that whether the auction

is bidder- or seller-initiated is known by auction participants. While it is in the ex-post

interest of the seller to disclose the interest of the initiating bidder to other bidders, such

disclosure can be ex-ante suboptimal for all parties combined as it impedes initiation. This

inconsistency between ex-ante and ex-post objectives can create a role for an intermediary,

such as an investment bank, to alleviate the lack-of-commitment problem. The investment

bank can centralize communication among all participating parties, and, because it is a

long-run player that interacts with buyers and sellers over time across a range of different

services, can incentivize the seller to not disclose the ex-post beneficial but ex-ante harmful,

for all parties combined, information in the context of a single transaction.21

5.6 Non-stationary dynamics

The stationary solution restriction of Section 4 does not inform on how quickly the initiation

game reaches stationarity. If the process is slow, the agents are likely to resolve the game

using considerably different strategies. To examine non-stationarity, we specialize to the

case of private values (the case of common values still results in no bidder initiation). It

is reasonable to assume that at time t = 0, both currently present bidders start with

unrestrictedly distributed signals on [0, 1]. In the online appendix, we show that there

exists an equilibrium of the initiation game, in which the cut-off signal, ŝt, is decreasing

over time, such that ŝ0 = 1 and limt→∞ ŝt = ŝ, guaranteeing convergence to the stationary

solution. Examples 6 and 7 in the online appendix illustrate the solution. For r = 0.05 and

λ = 0.5 used throughout the paper, convergence is fast: for example, when the frequency

of involuntary seller initiation is ν = 0.75, 50% of the distance between ŝ0 and ŝ is covered

in 7.5 years. For larger ν, this number can be substantially lower. Hence, it appears that

the focus on the stationary solution in most cases is not overly restrictive.

21Hiding whether the auction is bidder- or seller-initiated gives positive rents to the initiating bidder with
the cut-off signal, because the rival believes that, with some probability, the auction is seller-initiated and
the initiating bidder’s signal is below the cut-off.
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6 Empirical Implications

The model delivers many empirical implications. In particular, they are testable in the con-

text of auctions of companies, because U.S. public targets must file deal backgrounds, which

include information on initiation, with the SEC. We split implications into two groups:

about bidding in bidder- versus seller-initiated auctions and about initiation.

6.1 Implications about bidding

Consider a private-value setting, in which auctions can be either bidder- or seller-initiated

(i.e., ŝ < 1 and µ ∈ (0,∞)). How is bidding by the initiating bidder different from bidding

by the non-initiating bidder? And how is bidding in a seller-initiated auction different from

bidding in a bidder-initiated auction? The model delivers the following implications:

1. In bidder-initiated deals, the initiating bidder is stronger (has, on average, higher

valuations) than the other bidders.

2. In bidder-initiated deals, conditional on the same valuation, the non-initiating bidder

bids more aggressively than the initiating bidder: aN (ŝ, ŝ) > aI (ŝ, ŝ).

3. In bidder-initiated deals, unconditionally on the exact valuation, the initiating bidder

bids more aggressively and wins more often: E [aI (s, ŝ) |s ≥ ŝ] > E [aN (s, ŝ) |s ≤ ŝ].

4. All else equal, bidders in seller-initiated auctions are weaker (have lower valuations)

than bidders in bidder-initiated auctions.

5. Conditional on the same valuation, bidders bid less aggressively in seller-initiated

deals.

6.2 Implications about initiation

The model links the valuation structure to whether the auction is likely to be seller- or

bidder-initiated. In particular, assuming that a takeover battle between strategic (financial)

bidders is represented by the private-value (common-value) framework, the model delivers

the following implications:
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1. Contests among financial bidders are more likely to be seller-initiated than contests

among strategic bidders.

2. Contests among financial bidders for a target with the entrenched board and man-

agement are often initiated by an activist investor pressuring the board to sell the

company.

3. In bidder-initiated acquisitions by financial bidders, the initiating bidder is likely to

have a toehold.

4. If due diligence is costly (e.g., if the target is complex) and the target does not reim-

burse the costs, a bidder-initiated common-value auction is likely to be uncontested.

7 Conclusion

In this paper, we theoretically examine endogenous initiation of a first-price auction by

potential buyers and the seller. Our model aims to capture many real-world environments

in which initiation of an auction is a strategic choice. Our key application is to corporate

takeovers and intercorporate asset sales. We show that in common-value auctions, such as

battles between financial bidders for the target company, bidders are reluctant to approach

the seller, because this decision erodes their information rents. In pure common-value auc-

tions, this effect is extreme: no bidder ever approaches, and auctions are initiated by the

seller, if at all. By contrast, in private-value auctions, the effect can be opposite: observing

that no bidder has approached the seller yet reveals information that rivals are weak, which

incentivizes suffi ciently strong bidders to approach. Bidder and seller initiation become

substitutes, which leads to multiple equilibria with different initiation patterns. We extend

the model to include various features of the market for corporate control and show that

activist investors and, surprisingly, toeholds held by bidders in the target can alleviate the

ineffi ciencies in common-value auctions and result in more positive-value deals.

Two applied extensions of the paper could be interesting. First, it can be useful to

consider bids in securities, such as a bidder’s stock, and the interaction of securities used

in a bid and initiation decisions. Second, the asset for sale can be made divisible: for
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example, bankrupt companies are often sold piecemeal in a liquidation auction. A more

general extension is to consider multiple sellers with similar assets for sale and allow bidders

to choose which asset to pursue and sellers to choose which bidders to invite to an auction

in a dynamic model of matching.
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Appendix

7.1 Additional proofs

Proof of Lemma 3. Denote the inverse of aS (s, ŝ) in s by φS (b, ŝ). The expected payoff of a
bidder with signal s and bid b is

ΠS (b, s, ŝ) = E [v (s, x)− b|x ∈ [0, φS (b, ŝ)]] =

∫ φS(b,ŝ)

0
(v (s, x)− b) 1

ŝ
dx. (18)

The logic behind (18) and (1) is similar. A bidder with bid b wins the auction if and only if
the signal of the rival bidder is below φS (b, ŝ). Conditional on winning when the rival’s signal is
x ∈ [0, φS (b, ŝ)], the value of the asset to the bidder is v (s, x). Integrating over x ∈ [0, φS (b, ŝ)]
yields (18). Taking the first-order condition and using the fact that in equilibrium b = aS (s, ŝ)
(or, equivalently, s = φS (b, ŝ)), we obtain(

∂aS (s, ŝ)

∂s

)−1

(v (s, s)− aS (s, ŝ))− s = 0. (19)

This equation is solved subject to the boundary condition aS (0, ŝ) = v (0, 0), or, equivalently,
0 = φS (v (0, 0) , ŝ). Intuitively, a bidder with the lowest signal only wins against the rival with the
lowest signal. Upon winning, she re-evaluates the asset to v (0, 0). Because v (0, 0) is the lowest
possible asset value, bidders with the lowest signal bid exactly v (0, 0) in equilibrium.

Re-write (19) as

s
∂aS (s, ŝ)

∂s
+ aS (s, ŝ) = v (s, s) ⇒ d (saS (s, ŝ))

ds
= v (s, s) . (20)
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Integrating and applying the initial value condition aS (0, ŝ) = v (0, 0) yields (5).

Proof of Lemma 5. The equilibrium payoff of bidder I with signal ŝ is

Π∗I (ŝ, ŝ) =
φN (a (ŝ) , ŝ)

ŝ
(v (ŝ)− a (ŝ)) = max

b∈[a(ŝ),a(ŝ)]

φN (b, ŝ)

ŝ
(v (ŝ)− b)

≥ φN (a (ŝ) , ŝ)

ŝ
(v (ŝ)− a (ŝ)) = v (ŝ)− a (ŝ) = Π∗N (ŝ, ŝ) . (21)

Therefore, Π∗I (ŝ, ŝ) ≥ Π∗N (ŝ, ŝ). Moreover, if ŝ < 1, then aI (ŝ, ŝ) = a (ŝ) < ā (ŝ). Therefore, the
inequality in (21) is strict.

Proof of Lemma 6. Denote the inverse of aS (s, ŝ) in s by φS (b, ŝ). The expected payoff of a
bidder with signal s and bid b is

ΠS (b, s, ŝ) = E [v(s)− b|x ∈ [0, φS(b, ŝ)]] = (v (s)− b) φS (b, ŝ)

ŝ
. (22)

Taking the first-order condition and using the fact that in equilibrium, b = aS(s, ŝ) (or, equival-
ently, s = φS(b, ŝ)), we obtain(

∂aS(s, ŝ)

∂s

)−1

(v(s)− aS(s, ŝ))− s = 0. (23)

This equation is solved subject to the boundary condition aS(0, ŝ) = v(0). Applying the trans-
formation similar to that in Lemma 3 yields (11).

Proof of Lemma 7. The equilibrium payoff of a bidder with signal ŝ in a seller-initiated auction
is

Π∗S (ŝ, ŝ) = ΠS (aS (ŝ) , ŝ, ŝ) ≥ ΠS (a (ŝ) , ŝ, ŝ) =
φS (a (ŝ))

ŝ
(v (ŝ)− a (ŝ))

≥ v−1 (a (ŝ))

ŝ
(v (s)− a (ŝ)) = Π∗I (ŝ, ŝ) , (24)

with the strict inequality if φS (a (ŝ) , ŝ) > v−1 (a (ŝ)). The last inequality follows from aS (s) ≤
v (s), which implies φS (b) ≥ v−1 (b). Intuitively, no bidder bids above his valuation, so if a bidder
bids b, then her signal is at least v−1 (b).

Proof of Proposition 1. First, suppose that ŝ ∈ (0, 1), and consider a bidder whose signal
is ŝ + ε for an infinitesimal positive ε. By sending message mi,t = 1 and initiating the auction
immediately, the bidder obtains the expected payoff of Π∗I (ŝ+ ε, ŝ) ≡ ΠI (aI (ŝ+ ε, ŝ) , ŝ+ ε, ŝ),
which converges to zero as ε→ 0. Consider a deviation to the following strategy: the bidder waits
until either the seller or the rival initiates the auction. The expected payoff from this strategy is

λ (1− ŝ) Π∗N (ŝ+ ε, ŝ) + µΠ∗S (ŝ+ ε, ŝ)

r + λ (1− ŝ) + µ+ λ
, (25)
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where µdt ≥ νdt is the probability with which the seller initiates the auction at any short period
(t, t+ dt) in the stationary equilibrium, Π∗N (ŝ+ ε, ŝ) ≡ maxb ΠN (b, ŝ+ ε, ŝ) ≥ Π∗N (ŝ, ŝ) and
Π∗S (ŝ+ ε, ŝ) ≡ maxb ΠS (b, ŝ+ ε, ŝ) ≥ Π∗S (ŝ, ŝ) for any s ∈ [ŝ, 1]. Because Π∗N (ŝ, ŝ) and Π∗S (ŝ, ŝ)

are strictly positive for any ŝ > 0, Π∗N (ŝ+ ε, ŝ) and Π∗S (ŝ+ ε, ŝ) are strictly positive and bounded
away from zero. Therefore, because r is finite, the bidder gets a strictly higher expected payoff
from this deviation than from the conjectured equilibrium strategy for any µ ≥ ν .

Second, consider ŝ = 0 and suppose that the seller receives message mi,t = 1 from bidder i at
time t. If a responsive equilibrium with cut-off ŝ = 0 exists, the seller must be better off auctioning
the asset off immediately upon receipt of such message. If the seller chooses to auction the asset
off, the non-initiating bidder bids v (0, 0) with probability one (because its signal is zero). Hence,
the seller’s revenues from an immediate sale are v (0, 0) = 0. In contrast, if the seller deviates to
auctioning the asset off upon receiving messagesm1,t = m2,t = 1 from both bidders present at that
time, then her expected revenues would be E [E [v (x, x) |x ≤ max {s1, s2}]] > 0. The profitability
of the deviation shows that there is no responsive equilibrium with ŝ = 0.

Proof of Proposition 2. Let ŝ be the signal of a bidder indifferent between sending message
mi,t = 1 and initiating the auction and sending message mi,t = 0 and delaying the auction (i.e.,
ŝ satisfies (13)). A bidder with signal s > ŝ finds it optimal to send mi,t = 1 and a bidder with
signal s < ŝ finds it optimal to send mi,t = 0 if and only if:

Π∗I (s, ŝ) ≥ λ (1− ŝ) Π∗N (s, ŝ) + µΠ∗S (s, ŝ)

r + λ (1− ŝ) + λ+ µ
(26)

for any s > ŝ, and

Π∗I (s, ŝ) ≤ λ (1− ŝ) Π∗N (s, ŝ) + µΠ∗S (s, ŝ)

r + λ (1− ŝ) + λ+ µ
(27)

for any s < ŝ. First, consider s > ŝ. In this range,

Π∗N (s, ŝ) = v (s)− ā (ŝ) ⇒ ∂Π∗N (s, ŝ)

∂s
= v′ (s) ; (28)

Π∗S (s, ŝ) = v (s)− aS (ŝ) ⇒ ∂Π∗S (s, ŝ)

∂s
= v′ (s) . (29)

Thus, the derivative of the right-hand side of (26) in s is

∂RHS

∂s
=

λ (1− ŝ) + µ

r + λ (1− ŝ) + λ+ µ
v′ (s) ∀s > ŝ. (30)

The left-hand side of (26) is equal to

Π∗I (s, ŝ) = max
b

φN (b, ŝ)

ŝ
(v (s)− b) . (31)

By the envelope theorem, the derivative of the left-hand side of (26) in s is

∂Π∗I (s, ŝ)

∂s
=
φN (aI (s, ŝ) , ŝ)

ŝ
v′ (s) . (32)
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Whenever LHS (s) = RHS (s), a bidder with signal s finds it optimal to send mi,t = 1 if and only
if

φN (aI (s, ŝ) , ŝ)

ŝ
>

λ (1− ŝ) + µ

r + λ (1− ŝ) + λ+ µ
. (33)

The left-hand side of (33) is increasing in s (aI (s, ŝ) is increasing in s, so φN (aI (s, ŝ) , ŝ) is also
increasing in s), while the right-hand side is constant in s. Thus, it is suffi cient to verify that the
inequality holds for s ↓ ŝ. Note that aI (ŝ, ŝ) = a (ŝ). Then, φN (a (ŝ) , ŝ) = v−1 (a (ŝ)). Thus, (26)
holds for all s > ŝ if and only if

v−1 (a (ŝ))

ŝ
>

λ (1− ŝ) + µ

r + λ (1− ŝ) + λ+ µ
. (34)

Next, consider s < ŝ. In this range,

Π∗I (s, ŝ) = max

{
v−1 (a (ŝ))

ŝ
(v (s)− a (ŝ)) , 0

}
⇒ ∂Π∗I (s, ŝ)

∂s
=
v−1 (a (ŝ))

ŝ
v′ (s) if v (s) > a (ŝ) . (35)

Applying the envelope theorem,

Π∗N (s, ŝ) = max

{
max
b

φI (b, ŝ)− ŝ
1− ŝ (v (s)− b) , 0

}
⇒ ∂Π∗N (s, ŝ)

∂s
=
φI (aN (s, ŝ) , ŝ)− ŝ

1− ŝ v′ (s) if v (s) > a (ŝ) ; (36)

Π∗S (s, ŝ) = max
b

φS (b, ŝ)

ŝ
(v (s)− b) ⇒ ∂Π∗S (s, ŝ)

∂s
=
s

ŝ
v′ (s) . (37)

Thus, the derivative of the right-hand side of (26) in s is

∂RHS

∂s
=
λ (1− ŝ) φI(aN (s,ŝ),ŝ)−ŝ

1−ŝ + µ sŝ
r + λ (1− ŝ) + λ+ µ

v′ (s) . (38)

Whenever LHS (s) = RHS (s), a bidder with signal s finds it optimal to send mi,t = 0 if and only
if

v−1 (a (ŝ))

ŝ
>
λ (1− ŝ) φI(aN (s,ŝ),ŝ)−ŝ

1−ŝ + µ sŝ
r + λ (1− ŝ) + λ+ µ

, (39)

The right-hand side of (39) is strictly increasing in s, while the left-hand side is constant in s.
Thus, it is suffi cient to verify that the inequality holds for s ↑ ŝ. Note that lims↑ŝ aN (s, ŝ) = ā (ŝ).
Then, lims↑ŝ φI (aN (s, ŝ) , ŝ) = φI (ā (ŝ) , ŝ) = 1. Thus, the equilibrium condition on ŝ and µ,
again, simplifies to (34), which is equivalent to (14). Thus we have the “if and only if”result: if
µ is below the cut-off in (14), then ŝ satisfying (13) yields a cut-off equilibrium (given µ), while if
µ is above the cut-off in (14) (except µ =∞), then no cut-off equilibrium exists.

Proof of Proposition 3. It is instructive to first specify bidders’information sets when the
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seller is approached by a bidder. First, we assume that if the seller is approached but decides
not to put the auction up for sale, the non-initiating bidder remains unaware of the rival bidder’s
indication of interest. Second, if the seller is approached and decides to auction the asset off, both
currently present bidders learn about all current indications of interest (either from a single bidder
or from both bidders).

Consider the response of the seller upon receiving message mi,t = 1. We conjecture exist-
ence of a responsive equilibrium and derive parameter restrictions for its existence. If the seller
plays the equilibrium strategy of auctioning the asset off upon receiving mi,t = 1, he obtains
the expected payoff of RB (ŝ). If the seller deviates and does not put the auction up for sale,
then, because the deviation is not observed by the rival bidder, the rival bidder’s communication
strategy is unaffected: she sends message m−i,t = 0 if and only if her signal is below ŝ. Because
the communication strategy of the rival bidder remains the same and the bidder expects the seller
to continue playing a Markov strategy of auctioning the asset off upon receiving message 1 from
any of the bidders, she finds it optimal to follow the same strategy of sending message mi,t = 1 if
and only if her signal exceeds ŝ. Thus, if the seller deviates to not putting the auction up for sale
upon receiving mi,t = 1 at time t, both bidders continue to play the same strategy.

It follows that the seller does not benefit from the deviation if and only if RB (ŝ) exceeds his
expected payoff from waiting until he receives m1,t = m2,t = 1 for the first time and auctioning
the asset off then. Because upon the start of the sale process, all current indications of interests
are learned by both bidders prior to submitting the bids, in such deviation the seller would have
an auction with symmetric bidders whose signals are distributed over [ŝ, 1]. By the same proof as
in Lemma 6, the equilibrium bidding strategy of each bidder would be

aD(s) = E [v(x)|x ∈ [ŝ, s]] for s ∈ [ŝ, 1] . (40)

The expected revenue of the seller from such deviation would be
RD (ŝ) = E [v (x) |x ∈ [ŝ,max {s1, s2}] , s1 ∈ [ŝ, 1] , s2 ∈ [ŝ, 1]]. Let R̃D (ŝ) denote the discounted
expected revenue of the seller from the deviation, and let R̂D (ŝ) denote the discounted expected
revenue of the seller from holding the auction upon receiving m1,t = m2,t = 1, conditional on
receiving message 0 from both bidders today. These discounted revenues must satisfy:

rR̃D (ŝ) = λ (1− ŝ)
(
RD (ŝ)− R̃D (ŝ)

)
+ λ

(
(1− ŝ) R̃D (ŝ) + ŝR̂D (ŝ)− R̃D (ŝ)

)
+ ν

(
RB (ŝ)− R̃D (ŝ)

)
; (41)

rR̂D (ŝ) = 2λ (1− ŝ)
(
R̃D (ŝ)− R̂D (ŝ)

)
+ ν

(
RS (ŝ)− R̂D (ŝ)

)
, (42)

Deriving R̂D (ŝ) from the second equation and plugging it into the first equation, we obtain that
the seller does not benefit from the deviation if and only if

RB (ŝ) ≥ R̃D (ŝ) = ω1RD (ŝ) + ω2RS (ŝ) + ω3RB (ŝ) , (43)
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where

ω1 =
λ (1− ŝ)

r + λ+ ν − 2λ2ŝ(1−ŝ)
r+2λ(1−ŝ)+ν

,

ω2 =

λŝν
r+2λ(1−ŝ)+ν

r + λ+ ν − 2λ2ŝ(1−ŝ)
r+2λ(1−ŝ)+ν

,

ω3 =
ν

r + λ+ ν − 2λ2ŝ(1−ŝ)
r+2λ(1−ŝ)+ν

.

Because RB (ŝ) > RS (ŝ), it is always satisfied if ŝ is high enough. For any ŝ, it is always satisfied
if r is high enough.

Proof of Proposition 4. First, consider the decision of the seller to delay the auction. For
ŝ = 1, 2λ(1−ŝ)

r+2λ(1−ŝ)RB(1) = 0, while RS (1) > 0. Thus, by Proposition 3, the seller does not benefit
from the delay. Second, consider the decision of a bidder to initiate the auction. Note that

Π∗I(1, 1) < Π∗S(1, 1) = lim
µ→∞

λ (1− ŝ) Π∗N (s, ŝ) + µΠ∗S (s, ŝ)

r + λ (1− ŝ) + λ+ µ
(44)

by Lemma 7, implying that a bidder with signal 1 does not benefit from immediate initiation.
Further, from (35), (38), and (39) in Proposition 2 it follows that Π∗I(s, 1) < Π∗S(s, 1), so no bidder
with signal s < 1 benefits from immediate initiation.

Proof of Proposition 6. Consider the non-initiating bidder with signal s. First, we show that
any bid b below v (s, ŝ) is dominated. Suppose that instead of bidding b, the non-initiating bidder
with signal s bids v (s, ŝ). We compare his payoffs from both strategies for any realization of the
rival bidder’s bid br. If the competing bid is br < b, the non-initiating bidder wins the auction
and pays br in both cases. Thus, his payoff is identical in both cases. If the competing bid is
br > v (s, ŝ), the non-initiating bidder loses the auction. Thus, his payoff is again identical in both
cases. Finally, if the competing bid is br ∈ (b, v (s, ŝ)), the non-initiating bidder loses the auction
and gets zero with bid b, but wins the auction at price br and gets v (s, s2)− br ≥ v (s, ŝ)− br > 0

with bid v (s, ŝ). Thus, any bid b < v (s, ŝ) is dominated by bid v (s, ŝ). Second, given that the
non-initiating bidder with signal s does not bid below v (s, ŝ), the initiating bidder with signal ŝ
cannot get a positive payoff for any realization of signal s of the non-initiating bidder. Hence,
Π∗I (ŝ, ŝ) = 0. Finally, the proof of the last statement is identical to the proof of Proposition 1, so
we omit it for brevity.

Proof of Proposition 7. Consider any hypothetical equilibrium with cut-off ŝ. First, consider
a bidder-initiated auction. We argue that the non-initiating bidder N never enters the auction.
By contradiction, suppose the opposite and let ŝN denote the lowest type of bidder N that enters
the auction. Upon entry, the initiating bidder I re-values the asset to v(sI , ŝN ) ≥ v(ŝ, ŝN ), where
sI ∈ [ŝ, 1] is her signal. Then, no bidder pays less than v(ŝ, ŝN ) in equilibrium. In turn, bidder N
with signal ŝN wins the auction only when bidder I’s signal is ŝ, so that she submits v(ŝN , ŝ). Upon
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winning, bidder N re-values the asset to v(ŝN , ŝ), leaving her without surplus and with negative
net surplus once participation costs are accounted for. Such a bidder therefore is better off not
entering the auction. This argument holds for any cut-off type ŝN , so the auction is uncontested.
In this case, bidder I bids vs and obtains the expected net payoff of

Π∗I (ŝ, ŝ) = E [v(s, x)|x ∈ [0, ŝ]]− vs − C, (45)

while bidder N obtains the payoff of zero. The seller obtains the revenues of vs.
Second, consider a seller-initiated auction. Let ŝS,ns and ŝS,s be signal cut-offs, above which

each bidder enters the auction, if the seller puts the asset up for sale voluntarily and due to the
liquidity shock, respectively. Because the cut-off type of the bidder loses the auction with certainty
if the rival bidder enters, ŝS,ns and ŝS,s must satisfy:∫ ŝS,ns

0
(v (ŝS,ns, x)− vs)

1

ŝ
dx = C, (46)∫ ŝS,s

0
v (ŝS,s, x)

1

ŝ
dx = C. (47)

Let s′ be defined as the unique solution to E [v (s′, x) |x ∈ [0, s′]] = vs + C. First, we argue that
there is no equilibrium with ŝ ∈ (0, s′). By contradiction, suppose the opposite. Consider a
bidder-initiated auction by type ŝ. Because (45) is negative, the expected payoff of this bidder
is negative, which contradicts the premise that there is an equilibrium with ŝ ∈ (0, s′). Second,
consider ŝ = s′, and a bidder-initiated auction by type s′. Now, the expected payoff of this
bidder is zero. In contrast, if type s′ waits, her expected payoff will be positive because there is a
possibility that the seller will receive a liquidity shock and ŝS,s < s′. Second, we argue that there
is no equilibrium with ŝ ∈ (s′, 1). By contradiction, suppose the opposite. Then, the left-hand
side of (46) strictly exceeds C at ŝS,ns = ŝ. Therefore, ŝS,ns < ŝ. Thus, if the seller initiates an
auction without being receiving a liquidity shock and without being approached by a bidder, his
expected payoff strictly exceeds vs. In contrast, the revenues from a bidder-initiated auction equal
vs. Therefore, if the seller receives an indication of interest from a bidder, he prefers to wait, which
contradicts the premise that there is an equilibrium with ŝ ∈ (s′, 1).

Finally, immediate initiation is an equilibrium, because the seller only loses from waiting, as
his payoff from a bidder-initiated auction equals to vs and his expected payoff if it receives a
liquidity shock is below vs by the argument in the preceding paragraph. The cut-off ŝS , above
which each bidder enters the auction, is such that type ŝS’s expected payoff from the auction
equals C, yielding (17). Condition C < E [v (1, x)] − vs simply means that equation (17) has a
solution ŝS < 1.

Model with shareholder activism. We extend our base model by adding an activist investor,
and show how it can be beneficial in facilitating auctions of companies. Suppose that there is an
activist that arrives to the market (e.g., by discovering the target) with intensity λA > 0. After
it arrives, the activist can submit an order to buy fraction α of the target. In addition, there is
a liquidity trader that arrives with intensity λL > 0 and submits an order to buy fraction α of
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the target.22 If an activist buys fraction α, it can undertake an activism campaign at cost A > 0,
which results in putting the target up for sale. Assume that a competitive market-maker prices
the block at its expected value conditional on receiving the order. In this setup, the activist cannot
create value outside of the campaign, so it can only be optimal to buy fraction α to subsequently
undertake the campaign. Suppose that upon discovering the target, the activist buys fraction α
with probability q. Then, the price of fraction α must be23

αP (q) = αRS(1)
λAq

λAq + λL

(
1 +

λL
r + λAq

)
. (48)

Intuitively, the activist invests with intensity λAq. Hence, an order of fraction α comes from it
with probability λAq

λAq+λL
and from the liquidity trader with probability λL

λAq+λL
. In the former

case, the target value is RS (1), the expected seller revenue in the absence of bidder initiation. In
the latter case, the activist has not arrived yet, so the target value is a discounted value of RS (1).

The activist’s payoff from undertaking a campaign, net of cost of acquiring fraction α, is

αRS(1)− αP (q)−A = αRS(1)
rλL

(qλA + λL) (r + qλA)
−A. (49)

Equation (49) is strictly decreasing in q. Hence, if (49) is non-negative at q = 1, then the activist
buys fraction α with probability one and undertakes the campaign. If (49) is negative at q = 1,
then the activist buys fraction α with probability q ∈ (0, 1) at which (49) equals zero, and then
undertakes the campaign. The next proposition summarizes the equilibrium:

Proposition 8. In equilibrium, upon discovering the target, the activist acquires the block with

probability q, given by: (a) q = 1 if A ≤ A ≡ rλLαRS(1)
(λA+λL)(r+λA) ; (b) q =

√
(r+λL)2+4λLr

αRS(1)−A
A

−(r+λL)

2λA

if A ∈
(
A, Ā

)
; (c) q = 0 if A ≥ Ā ≡ αRS(1). The implied price of the block is given by (48).

Proof of Proposition 8. We compute the implied price of the target, P (q), conditional on the
market-maker receiving the order from either the activist or the liquidity trader. If the activist
acquires fraction α with probability q upon discovering the target, the Bayes’rule implies that the
probability that the order comes from the activist, conditional on receiving the order, is λAq

λAq+λL
.

Therefore, the price of the target equals

P (q) =
λAq

λAq + λL
RS(1) +

λL
λAq + λL

∫ ∞
0

e−rtRS(1)qλAe
−qλAtdt = RS(1)

λAq

λAq + λL

(
1 +

λL
r + λAq

)
. (50)

Hence, the activist’s expected payoff from acquiring fraction α and undertaking the campaign is
αRS(1) − αP (q) − A, yielding (49). If (49) is above zero, the activist is better off acquiring the
block; if (49) is below zero, it is better not acquiring the block; and if (49) is equal to zero, it is
indifferent. Because (49) is strictly decreasing in q ≥ 0, the statement of Proposition 6 follows,

22Here, α is an exogenous parameter but it can be endogenized in a richer model.
23See the proof of Proposition 8 for the derivation.
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with q, in the case of A ∈
(
A, Ā

)
, given by the quadratic equation

rλLαRS(1)

A
= (qλA + λL) (r + qλA)⇒ q1,2 =

− (r + λL)±
√

(r − λL)2 + 4λLr
αRS(1)
A

2
. (51)

Because q ∈ [0, 1] by definition and the lower root is negative, the upper root is the relevant one.

Model with toeholds. Consider a common-value framework. Suppose that a bidder who
considers approaching the target can submit an order to acquire fraction α of the target without
disclosing her intent. In addition, there is a liquidity trader that arrives with intensity λL > 0
and submits an order to buy fraction α of the target. A competitive market-maker prices the
block at its expected value conditional on receiving the order. This setup captures, in reduced
form, the U.S. practice that a bidder may acquire up to 5% of a company’s outstanding shares
secretely, beyond which she is required to publicly file Schedule 13(D). For simplicity, assume that
the holding cost of the target’s shares is infinite, i.e., a bidder never acquires a toehold unless she
approaches the target immediately after. Suppose that a bidder that considers approaching the
target acquires fraction α with probability q. By analogy with (48), the Bayes’rule implies that
the probability that the order comes from one of the two bidders, conditional on receiving the
order, is 2λ(1−ŝ)q

2λ(1−ŝ)q+λL . Therefore, the price of the target equals:

P (q) =
2qλ (1− ŝ)

2qλ (1− ŝ) + λL
RB (ŝ) +

λL
2qλ (1− ŝ) + λL

×
∫ ∞
0

e−rt
(

2qλ (1− ŝ)
2qλ (1− ŝ) + µ

RB (ŝ) +
µ

2qλ (1− ŝ) + µ
RS (ŝ)

)
(2qλ (1− ŝ) + µ) e−(2qλ(1−ŝ)+µ)tdt

=
2qλ (1− ŝ)

2qλ (1− ŝ) + λL
RB (ŝ) +

λL
2qλ (1− ŝ) + λL

2qλ (1− ŝ)RB (ŝ) + µRS (ŝ)

r + 2qλ (1− ŝ) + µ
. (52)

Rearranging the terms, we obtain

P (q) =
2qλ (1− ŝ)

2qλ (1− ŝ) + λL

(
1 +

λL
r + 2qλ (1− ŝ) + µ

)
RB (ŝ)+

µλL
(2qλ (1− ŝ) + λL) (r + 2qλ (1− ŝ) + µ)

RS (ŝ) .

(53)
To simplify the exposition, we focus on the case in which the seller does not voluntarily initiate
the auction and is not hit by a liquidity shock, and q = 1. When q = 1, (53) simplifies to

P =
2λ (1− ŝ)

2λ (1− ŝ) + λL

(
1 +

λL
r + 2λ (1− ŝ) + µ

)
RB (ŝ) +

µλL
(2λ (1− ŝ) + λL) (r + 2λ (1− ŝ) + µ)

RS (ŝ) .

(54)
When, additionally, µ = 0, the expression further simplifies to

αP = αRB (ŝ)
2λ (1− ŝ)

2λ (1− ŝ) + λL

(
1 +

λL
r + 2λ (1− ŝ)

)
. (55)

Intuitively, a bidder initiates the auction with intensity λ (1− ŝ). Hence, an order of fraction
α comes from one of the bidders with probability 2λ(1−ŝ)

2λ(1−ŝ)+λL and from the liquidity trader with

probability λL
2λ(1−ŝ)+λL . In the former case, the target value is RB (ŝ), the expected seller revenue

from the bidder-initiated auction in the presence of the toehold. In the latter case, the interested
bidder has not arrived yet, so the target value is a discounted value of RB (ŝ).
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Consider a bidder-initiated auction when bidder I has toehold α. The expected payoffs of
bidders I and N with signal s and bid b are

Πj (b, s, ŝ) =

∫ φk(b,ŝ)

sk

(v (s, x)− (1− αj) b)
1

s̄k − sk
dx+

∫ s̄k

φk(b,ŝ)
αjak (x, ŝ)

1

s̄k − sk
dx, (56)

where j 6= k ∈ {I,K} and (αI , αN ) = (α, 0). For intuition, consider bidder I. The first term in
(56) captures the payoff of bidder I upon winning. In this case, bidder I acquires the remaining
1−α shares at bid b, and obtains asset value v (s, x). The second term in (56) captures the payoff
of bidder I upon losing. In this case, bidder I sells fraction α to the rival at her bid aN (s, ŝ).
Bidder N only obtains the payoff if she wins. Taking the first-order conditions of (56), we obtain

∂φj (b, ŝ)

∂b

(
v
(
s, φj (b, ŝ)

)
− (1− αk) b− αkaj

(
φj (b, ŝ) , ŝ

))
− (1− αk)

(
φj (b, ŝ)− sj

)
= 0 (57)

for j 6= k ∈ {I,N}. Compared to (2) in the model without toeholds, (57) includes an additional
term. In equilibrium, b = aj (s, ŝ) must satisfy (57) for j ∈ {I,N}, implying s = φj (b, ŝ). Also,
note that aj

(
φj (b, ŝ) , ŝ

)
= b. Plugging in and rearranging the terms, we obtain

∂φj (b, ŝ)

∂b
=

(1− αk) (φj (b, ŝ)− sj)
v
(
φk (b, ŝ) , φj (b, ŝ)

)
− b

. (58)

The system of equations (58) is solved subject to the following boundary conditions: aj (s̄j , ŝ) ≡
ā (ŝ) and aj

(
sj , ŝ

)
≡ a (ŝ), so that the support of possible equilibrium bids for both bidders is

[a (ŝ) , ā (ŝ)]. In turn, the equilibrium inverse bidding functions solve (58) subject to boundary
conditions 1 = φI (ā (ŝ) , ŝ), ŝ = φN (ā (ŝ) , ŝ), ŝ = φI(v(ŝ, 0), ŝ), 0 = φN (v(ŝ, 0), ŝ).

The payoff of bidder I with signal ŝ from the auction, net of the cost of acquiring toehold, is

Π∗I (ŝ, ŝ)− αP = α

(∫ ŝ

0
aN (x, ŝ)

1

ŝ
dx−RB (ŝ)

2λ (1− ŝ)
2λ (1− ŝ) + λL

(
1 +

λL
r + 2λ (1− ŝ)

))
, (59)

where Π∗I (ŝ, ŝ) = ΠI (a (ŝ) , ŝ, ŝ) and RB (ŝ) = E [max {aI (s1, ŝ) , aN (s2, ŝ)}]. A necessary condi-
tion for a bidder to acquire a toehold and initiate the auction is that (59) is positive. Condition
(59) is never satisfied if ŝ is low enough and always satisfied if ŝ is high enough. Intuitively, if too
many types are expected to initiate, the price of a toehold is high, so it is too expensive for the
bidder with signal ŝ. Thus, factors that increase the price of a toehold also limit bidder initiation.

For an equilibrium, a bidder with signal ŝ must be indifferent between approaching the seller
and waiting. The cut-off signal is determined from the indifference condition (13) computed at
µ = 0. As in Proposition 3, the seller never initiates the auction if 2λ(1−ŝ)

r+2λ(1−ŝ)RB (ŝ) ≥ RS (ŝ).
We complete the extension by briefly discussing the general case of q ∈[0,1] and µ ≥ 0. In this

case, the payoff to bidder I with signal ŝ from the auction, net of the cost of acquiring toehold, is

Π∗I (ŝ, ŝ)−αP = α

(∫ ŝ

0
aN (x, ŝ)

1

ŝ
dx− 2qλ (1− ŝ)RB (ŝ)

2qλ (1− ŝ) + λL

(
1 +

λL

r + 2qλ (1− ŝ) + µ

)
− µλLRS (ŝ)

(2qλ (1− ŝ) + λL) (r + 2qλ (1− ŝ) + µ)

)
.

(60)

For an equilibrium, first, a bidder with signal ŝ must be indifferent between approaching the seller
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and waiting. The cut-off signal is determined from the indifference condition (13). Second, to have
seller initiation in equilibrium, for some µ > 0 the seller must be indifferent between initiating the
auction and waiting: 2λ(1−ŝ)

r+2λ(1−ŝ)RB (ŝ) = RS (ŝ) .

Example 4 in the appendix provides a quasi-closed form solution for the case v(si, s−i) =
1
2(si + s−i). For r = 0.05, λ = 0.5, and λL = 0.5, the equilibrium with no seller initiation is
ŝ = 0.934, the equilibrium with both seller and bidder initiation is ŝ = 0.96 and µ = 0.16, and the
equilibrium with immediate seller initiation is ŝ = 1.

7.2 Examples

Example 1: auction stage, the common-value framework. Suppose that v (si, s−i) =
1
2 (si + s−i). To find the equilibrium, let φj (b, ŝ) = αj + βjb, j ∈ {I,N}. Then, the first two
boundary conditions in (4) become:

1 = αI + βI ā(ŝ), ŝ = αN + βN ā(ŝ) ⇒ 1 + ŝ = αI + αN + (βI + βN ) ā(ŝ). (61)

The second two boundary conditions become:

ŝ = αI + βI
ŝ

2
, 0 = αN + βN

ŝ

2
⇒ ŝ = αI + αN + (βI + βN )

ŝ

2
. (62)

The difference between (61) and (62) yields βI + βN = 1
ā(ŝ)−ŝ/2 . Next, plugging φj (b, ŝ) into

differential equations (3) yields:

βj =
αj + βjb− sj

1
2(αI + αN + (βI + βN ) b)− b

. (63)

Adding the two equations up at b = ā(ŝ) results in βI + βN = 1
(1+ŝ)/2−ā(ŝ) . Combining the two

equations for βI + βN yields ā(ŝ) = 1+2ŝ
4 and the range of bids b ∈

[
ŝ
2 ,

1+2ŝ
4

]
for both bidders.

With ā(ŝ) known, the coeffi cients in φj (b, ŝ) can be found from boundary conditions. The resulting
inverses of bidding strategies are:

φI (b, ŝ) = ŝ(2ŝ− 1) + 4(1− ŝ)b, φN (b, ŝ) = −2ŝ2 + 4ŝb. (64)

The bidding strategies given signals are, in turn, inverses of φj (b, ŝ). They are linear in own
signals:

aI (s, ŝ) =
s+ ŝ(1− 2ŝ)

4(1− ŝ) , aN (s, ŝ) =
s+ 2ŝ2

4ŝ
. (65)

Example 2: auction stage, the private-value framework. Suppose that v(si) = si. The
solution to the system of differential equations (8) subject to boundary conditions (10) and the
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minimum serious bid ŝ
2 obtained from (9), derived by Kaplan and Zamir (2012), is

φI (b) = ŝ+
ŝ2

(ŝ− 2b) cIe
− ŝ
ŝ−2b − 4b

, φN (b) =
ŝ2

(ŝ− 2b) cNe
ŝ

ŝ−2b + 4 (ŝ− b)
, (66)

where constants cN and cI are determined from boundary conditions φI
(
ŝ− ŝ2

4

)
= 1 and

φN

(
ŝ− ŝ2

4

)
= ŝ. The range of bids is b ∈

[
ŝ
2 , ŝ−

ŝ2

4

]
for both bidders.

Example 3: initiation stage, the private-value framework. We consider one set of
parameters that gives a single equilibrium with seller initiation only, and one set of parameters
that gives an additional equilibrium with both bidder and seller initiation. Let ν → 0. First,
suppose that v(si) = si. Using (6) and bidding strategies in Example 2, Π∗I(ŝ, ŝ) = ŝ

4 and

Π∗N (ŝ, ŝ) = ŝ2

4 . By Lemma 6, the equilibrium in the seller-initiated auction is aS (s) = s
2 , implying

Π∗S(ŝ, ŝ) = ŝ
2 .

Consider the initiation game. The indifference condition for ŝ, (13), simplifies to a cubic
equation

(r + λ)
ŝ

4
+ λ(1− ŝ)

(
ŝ

4
− ŝ2

4

)
= µ

(
ŝ

2
− ŝ

4

)
. (67)

This equation has closed-form solutions ŝ1 = 0, which, by Proposition 1, is not an equilibrium,

and ŝ2,3 = 1±
(
− r+λ−µ

λ

)1/2
if condition µ > r + λ is satisfied. Note however that this condition

contradicts restriction µ < µ̂ (ŝ), which in this case simplifies to µ < r + λŝ.24 Intuitively, while
a bidder with the cut-off signal is indifferent between sending indication of interest mi,t equal to
0 or 1, a bidder with signal immediately above (or below) the cut-off has incentives to switch her
mi,t from 1 to 0 (or from 0 to 1). By Proposition 4, ŝ = 1 and µ =∞ is the only equilibrium; in
it, all auctions are seller-initiated.

Second, suppose that v(si) = s2
i . Repeating all computations, Π∗I(ŝ, ŝ) = 2

3
√

3
ŝ2, Π∗N (ŝ, ŝ) =

ŝ2 − ā(ŝ), and Π∗S(ŝ, ŝ) = 2
3 ŝ

2, where ā(ŝ) is found numerically. The indifference condition (13)
simplifies to

(r + λ)
2

3
√

3
ŝ2 + λ(1− ŝ)

((
2

3
√

3
− 1

)
ŝ2 + ā(ŝ)

)
= µ

((
2

3
− 2

3
√

3

)
ŝ2

)
. (68)

The seller’s best response is characterized in Proposition 3 and is computed numerically. For
the case r = 0.05 and λ = 0.5, Figure 3 illustrates the bidders’and seller’s best responses, and
two equilibria, with seller initiation only (ŝ = 1 and µ = ∞) and with both bidder and seller
initiation (ŝ = 0.977 and µ = 0.752). It is easy to check that the second equilibrium satisfies
restriction µ < µ̂ (ŝ), which in this case is equal to µ < 1√

2−1
r +
√

2λ+ λŝ = 1.316. Additionally,

if ν ∈ (0.752, 1√
2−1

r +
√

2λ + λŝ) and ŝ solves (13) for µ = ν, there is an additional equilibrium,
in which the seller does not voluntarily initiate an auction, ŝ and µ = ν. For example, if ν = 1

then ŝ = 0.43 and µ = 1 is such an equilibrium.

24This can be seen from µ̂ (ŝ) = a(ŝ)
ŝ−a(ŝ) (r + λ)− λ (1− ŝ) = r + λŝ.
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Example 4: the common-value framework with toeholds. Suppose that v (si, s−i) =
1
2 (si + s−i). The general solution to the system of differential equations (58) is given by

φI(b, ŝ) = ŝ+ c1 ((1− α)φN (b, ŝ))
1

1−α , (69)

b =
φN (b, ŝ)

2(2− α)
+ c2φN (b, ŝ)−

1
1−α +

ŝ

2
+
c1

4
((1− α)φN (b, ŝ))

1
1−α . (70)

First, use boundary conditions ŝ = φI(v(ŝ, 0), ŝ) and 0 = φN (v(ŝ, 0), ŝ) to show that (70) can only
be satisfied with equality if c2 = 0. Second, plug in 1 = φI(ā(ŝ), ŝ) and ŝ = φN (ā(ŝ), ŝ) in (69) to
obtain c1 = 1−ŝ

((1−α)ŝ)
1

1−α
.

Plugging ŝ = φN (ā(ŝ), ŝ) and expressions for c1 and c2 into (70), we obtain ā(ŝ):

ā(ŝ) =
1 + ŝ

4
+

ŝ

2(2− α)
. (71)

The upper boundary on bids is increasing in α, consistent with the intuition that toeholds result
in a more aggressive bidding. Additionally, (70) becomes

b =
φN (b, ŝ)

2(2− α)
+
ŝ

2
+

1− ŝ
4

(
φN (b, ŝ)

ŝ

) 1
1−α

. (72)

Equivalently, the equilibrium bid of bidder N with signal s is

aN (s, ŝ) =
s

2(2− α)
+
ŝ

2
+

1− ŝ
4

(s
ŝ

) 1
1−α

. (73)

Plugging the expression for c1 into (69), we obtain

φI(b, ŝ) = ŝ+ (1− ŝ)
(
φN (b, ŝ)

ŝ

) 1
1−α

. (74)

Substituting the non-linear term in (74) using (72), we obtain

φI(b, ŝ) = 4b− ŝ− 2φN (b, ŝ)

2− α , (75)

Equivalently, the equilibrium bid of bidder I with signal s is

aI(s, ŝ) =
s+ ŝ

4
+
φN (aI(s, ŝ), ŝ)

2(2− α)
, (76)

where φN (aI(s, ŝ), ŝ) is the signal of bidder N corresponding to bid aI(s, ŝ) made by bidder I with
signal s. For the case α = 0 (no toeholds), φN (aI(s, ŝ), ŝ) = 4ŝaI(s, ŝ) − 2ŝ2, and we have the
same solution as in Example 1. For the case α > 0, a numerical inversion is needed.

To solve for ŝ using the indifference condition (13), we compute the equilibrium payoff from
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the auction of bidder I with signal ŝ:

Π∗I (ŝ, ŝ) = α

∫ ŝ

0
aN (s, ŝ)

1

ŝ
ds = α

(
1− α (1− ŝ)

4 (2− α)
+
ŝ

2

)
. (77)

Equilibrium payoffs of bidders N and both bidders in a seller-initiated auction with signals ŝ are

Π∗N (ŝ, ŝ) =

∫ 1

ŝ

(
ŝ+ x

2
− a(ŝ)

)
1

1− ŝdx =
ŝ

2

1− α
2− α ; (78)

Π∗S(ŝ, ŝ) =

∫ ŝ

0

(
ŝ+ x

2
− aS(ŝ)

)
1

ŝ
dx =

ŝ

4
. (79)

Next, we need to calculate the equilibrium price of fraction α of the seller. Let HB (b, ŝ) denote
the c.d.f. of the winning bid b in the bidder-initiated auction:

HB (b, ŝ) = Pr (aI (s1, ŝ) ≤ b, aN (s2, ŝ) ≤ b) = Pr (s1 ≤ φI (b, ŝ) , s2 ≤ φN (b, ŝ))

=
φI (b, ŝ)− ŝ

1− ŝ
φN (b, ŝ)

ŝ
=

4b− 2ŝ− 2φN (b,ŝ)
2−α

1− ŝ
φN (b, ŝ)

ŝ
, (80)

so that the corresponding p.d.f. is

hB(b, ŝ) =
4− 2

2−αφ
′
N,1(b, ŝ)

1− ŝ
φN (b, ŝ)

ŝ
+

4b− 2ŝ− 2
2−αφN (b, ŝ)

1− ŝ
φ′N,1(b, ŝ)

ŝ

=
4φN (b, ŝ) + 4bφ′N,1(b, ŝ)− 2ŝφ′N,1(b, ŝ)− 4

2−αφN (b, ŝ)φ′N,1(b, ŝ)

ŝ(1− ŝ) . (81)

Here, φN (b, ŝ) is the numerical solution of (72). Applying the implicit function theorem to (72),

φ′N,1(b, ŝ) =
1

1
2(2−α) + 1−ŝ

4
1

1−αφN (b, ŝ)
1

1−α−1ŝ−
1

1−α
. (82)

P.d.f. hB(b, ŝ) can be calculated numerically. Finally, using (59), the necessary condition for a
bidder to acquire a toehold and initiate the auction when the seller does not initiate auctions
(µ = 0) is

α

(
1− α (1− ŝ)

4 (2− α)
+

1

2
ŝ

)
− 2λ (1− ŝ)

2λ (1− ŝ) + λL

(
1 +

λL
r + 2λ (1− ŝ)

)∫ ā(ŝ)

a(ŝ)
bhb(b, ŝ)db. (83)

7.3 For online publication: Complete dynamics with private values

We focus on the case of private values. Assume that at date t = 0, each potential bidder randomly
draws a private signal from the uniform distribution [0, 1]. Thus, in this extension, the distribution
of initial and subsequent bidders’signals is the same. However, to the extent that there exists
a stationary cut-off signal ŝ < 1, to which the game eventually converges, the game becomes
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non-stationary in the meantime. To simplify the analysis, we consider non-stationary equilibria,
in which the seller does not voluntarily initiate the auction but can be hit by a liquidity shock
(µ = ν > 0). We conjecture and later confirm that the cut-off ŝt is a decreasing function of time:
ŝ′t < 0.

In a conjectured non-stationary equilibrium, at any time a bidder can initiate the auction for
two reasons. First, a new bidder with signal s ≥ ŝt replaces an old bidder. Second, over time the
decreasing cut-off ŝt reaches one of the currently present bidders’signal. Upon the start of the
auction, the non-initiating bidder learns about the rival bidder’s indication of interest but cannot
distinguish between these two events.

7.3.1 Equilibria in bidder- and seller-initiated auctions

First, we solve for the equilibrium at the auction stage. For the remainder of this subsection, to
make the notation simpler we omit the subscript for time in ŝt.

7.3.1.1 A bidder-initiated auction. Because cut-off ŝ, by conjecture, is decreasing over
time, the probability over a short interval of time dt that bidder I is a new bidder with signal
at or above ŝ is λdt(1− ŝ), while the probability that bidder I is an old bidder whose signal was
reached by decreasing cut-off ŝ is −ŝ′dt/ŝ. The Bayes’rule implies that conditional on initiation,
bidder N believes the first event occurs with probability p = −ŝ′/ŝ

λ(1−ŝ)−ŝ′/ŝ , while the second event
occurs with probability 1− p.

We define equilibrium bidding strategies through cumulative distribution functions. Specific-
ally, let Fj (b, ŝ, p), j ∈ {I,N} denote the probability that bid b by bidder I (or bidder N) wins
against a randomly drawn, from her perspective, bid of bidder N (or bidder I). We conjecture
that the equilibrium takes the following form. The set of “serious" bids is [a(ŝ, p), a(ŝ, p)]. Bidder
N with signal s bids aN (s, ŝ, p) ∈ [a(ŝ, p), a(ŝ, p)], si ≥ a(ŝ, p). Bidder I with signal ŝ plays the
mixed strategy of bidding over interval [a(ŝ, p), â(ŝ, p)] for some â(ŝ, p) ∈ [a(ŝ, p), a(ŝ, p)]. Bidder
I with signal si > ŝ bids aI (s, ŝ, p) ∈ [â(ŝ, p), a(ŝ, p)]. Note that FI (â(ŝ, p)) = p.

The expected payoff of bidder N with signal s and bid b is

ΠN (b, s, ŝ, p) = E[v(s)− b|x = ŝ or x ∈ [ŝ, 1]] = (v(s)− b)FI (b, ŝ, p) . (84)

Intuitively, bidder N’s bid exceeds the bid of her rival with probability FI(b, ŝ, p). In equilibrium,
b = aN (s, ŝ, p), implying s = φN (b, ŝ, p) such that φN (b, ŝ, p)/ŝ = FN (b, ŝ, p). Therefore, taking
the first-order condition of (84) and using the equilibrium condition, for any b ∈ (a(ŝ, p), a(ŝ, p)),

∂FI (b, ŝ, p)

∂b
(v(FN (b, ŝ, p) ŝ)− b) = FI (b, ŝ, p) . (85)

Next, consider bidder I with signal ŝ. Randomization among bids b ∈ [a(ŝ, p), â(ŝ, p)] requires
that for any such b and some constant C, her expected payoff is

ΠN (b, ŝ, ŝ, p) = E[v(ŝ)− b|x ∈ [0, ŝ]] = (v(ŝ)− b)FN (b, ŝ, p) = C. (86)

If this condition does not hold, bidder I would deviate to the most profitable set of bids.
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Finally, the expected payoff of bidder N with signal s > ŝ and bid b is

ΠN (b, s, ŝ, p) = E[v(s)− b|x ∈ [0, ŝ]] = (v(s)− b)FN (b, ŝ, p) . (87)

In equilibrium, b = aI(s, ŝ, p) for s > ŝ, implying s = φI(b, ŝ, p) such that p+ (1− p)φI(b,ŝ,p)−ŝ
1−ŝ =

FI(b, ŝ, p). Intuitively, the probability for bidder N to win with bid b ≥ â(ŝ, p) against bidder
I is pPr[s < φI(b, ŝ, p)|s = ŝ] + (1 − p) Pr[s < φI(b, ŝ, p)|s ∈ [ŝ, 1]] = p + (1 − p)φI(b,ŝ,p)−ŝ

1−ŝ .
Therefore, taking the first-order condition of (87) and using the equilibrium condition, for any
b ∈ [â(ŝ, p), a(ŝ, p)],

∂FN (b, ŝ, p)

∂b

(
v

(
ŝ+

FI (b, ŝ, p)− p
1− p (1− ŝ)

)
− b
)

= FN (b, ŝ, p) . (88)

The system of three equations, (85), (86), and (88), is solved subject to boundary conditions

1 = Fj (a(ŝ, p), ŝ, p) , 0 = FI (a(ŝ, p), ŝ, p) ,
v−1(a(ŝ, p))

ŝ
= FN (a(ŝ, p), ŝ, p) , p = FI (â(ŝ, p), ŝ, p)(89)

for j ∈ {I,N}. These conditions are similar to (10) but also account for randomization by bidder
I with signal ŝ. From the third boundary condition and (86), for any b ∈ [a(ŝ, p), â(ŝ, p)],

FN (b, ŝ, p) =
v−1(a(ŝ, p))

ŝ

v(ŝ)− a(ŝ, p)

v(ŝ)− b . (90)

The minimum bid a(ŝ, p) must be optimal for bidder I with signal ŝ. Therefore,

v−1(a(ŝ, p))

ŝ
(v(ŝ)− a(ŝ, p)) ≥ FN (b, ŝ, p) (v(ŝ)− b) , ∀b. (91)

In equilibrium, bidderN never bids above her valuation: aN (s, ŝ, p) ≤ v(s). Therefore, φN (b, ŝ, p) ≥
v−1(b), which implies FN (b) ≥ v−1(b)

ŝ . Hence,

v−1(a(ŝ, p))

ŝ
(v(ŝ)− a(ŝ, p)) ≥ v−1(b)

ŝ
(v(ŝ)− b) , ∀b. (92)

Therefore,

a(ŝ, p) = arg max
b

v−1(b)

ŝ
(v(ŝ)− b) ⇒ F.O.C.:

v (ŝ)− a (ŝ, p)

v′ (v−1 (a(ŝ, p)))
= v−1 (a(ŝ, p)) . (93)

Note that in equilibrium, a(ŝ, p) ≡ a(ŝ). The following lemma summarizes the equilibrium in the
bidder-initiated first-price auction in the non-stationary setting:

Lemma 8 (equilibrium in the bidder-initiated PV auction, the non-stationary set-
ting). The equilibrium is unique (up to the non-serious bids of types s < v−1 (a (ŝ, p)) of non-
initiating bidders). The equilibrium probabilities of the initiating and non-initiating bidders to win
with bid b, Fj (b, ŝ, p), j ∈ {I,N}, satisfy (85), (86), and (88), with boundary conditions (89) and
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the lowest serious bid given by (93).

Example 6 derived below provides the closed form solution for the case v(si) = si. Figure 4
illustrates the equilibrium bids for the case ŝ = 0.5 and p = 0.5.

7.3.1.2 A seller-initiated auction. If the auction is initiated by the seller, all parties believe
that each bidder’s signal is distributed uniformly over [0, ŝ]. As a result, auction outcomes are
identical to those derived in Lemma 6. The following lemma summarizes the equilibrium:

Lemma 9 (equilibrium in the seller-initiated PV auction, the non-stationary set-
ting). The equilibrium is unique. The symmetric equilibrium bidding strategies of the non-
initiating bidders, aS(s), are increasing functions that are independent of ŝ and p and solve (23)
with boundary condition aS(0) = v(0). Specifically, aS(s) is given by (11).

7.3.2 The initiation game

We solve for symmetric Markov Perfect Bayesian equilibria, in which the seller does not voluntarily
initiate the auction (µ = ν). We also derive the conditions, for which this strategy of the seller is
optimal.

Suppose that a bidder believes that a rival bidder approaches the seller either because it
replaced the previous rival and received a signal in excess of ŝt, which occurs with probability
λ(1− ŝt)dt, or because the current rival’s signal is reached by decreasing cut-off ŝt, which occurs
with probability −ŝ′tdt/ŝt. Denote the expected continuation value of this bidder by VB (s, t, ν) ≡
VB (s, ŝt, pt, t, µ = ν). This value satisfies

VB (s, t, ν) = max

{
Π∗I (s, ŝt, pt) ,

V ′B,t(s, t, ν) + (λ (1− ŝt)− ŝ′t/ŝt) Π∗N (s, ŝt, pt) + νΠ∗S(s, ŝt)

r + λ (1− ŝt)− ŝ′t/ŝt + λ+ ν

}

= max

{
Π∗I (s, ŝt, pt) ,

V ′B,t(s, t, ν) + λ 1−ŝt
1−ptΠ

∗
N (s, ŝt, pt) + νΠ∗S(s, ŝt)

r + λ 1−ŝt
1−pt + λ+ ν

}
, (94)

The intuition behind (94) is as follows. The continuation value is the maximum of the expected
payoff from immediate initiation, which yields Π∗I (s, ŝt, pt), and waiting, which yields the second
term of (94). The change in the continuation value with time in a non-stationary setting is
captured by V ′B,t(s, t, ν). Four independent events can occur if the bidder chooses to wait. First,
with intensity λ (1− ŝt), a new rival bidder with signal above ŝt indicates the interest to the
seller, and the seller reacts by putting the asset up for sale. The non-initiating bidder obtains
Π∗N (s, ŝt, pt) in this case. Second, with intensity −ŝ′t/ŝt = pt

1−ptλ(1 − ŝt), a current rival bidder’s
signal is reached by decreasing cut-off ŝt, so that she indicates the interest to the seller, thereby
triggering a sale. The non-initiating bidder, again, obtains Π∗N (s, ŝt, pt). Third, with intensity ν,
the seller puts the asset up for sale, and the bidder obtains Π∗S(s, ŝt). Fourth, with intensity λ,
the bidder experiences a shock and leaves the market.
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By continuity of Π∗I (·), Π∗N (·), and ΠS(s, ŝt) in s, the cut-off signal must satisfy

Π∗I (ŝt, ŝt, pt) =
V ′B,t(ŝt, t, ν) + λ 1−ŝt1−pt Π∗N (ŝt, ŝt, pt) + νΠ∗S(s, ŝt)

r + λ 1−ŝt1−pt + λ+ ν
⇒ (95)

(r + λ)Π∗I (ŝt, ŝt, pt) + λ
1− ŝt
1− pt

(Π∗I (ŝt, ŝt, pt)−Π∗N (ŝt, ŝt, pt)) = V ′B,t(ŝt, t, ν) + µ(Π∗S(ŝ, ŝ)−Π∗I (ŝt, ŝt, pt)).

In addition, the smooth-pasting condition at ŝt must be satisfied:

V ′B,t(s, t, ν) = Π∗′I,ŝt (ŝt, ŝt, pt) ŝ
′
t + Π∗′I,pt (ŝt, ŝt, pt) p

′
t. (96)

Lemma 10 (Smooth-pasting condition for the value function, the non-stationary
setting). The smooth-pasting condition for a bidder with signal ŝt is

V ′B,t(s, t, ν) = − pt
1− pt

λŝt(1− ŝt)
∂FN (â(ŝt, pt), ŝt, pt)

∂ŝt
(v(ŝt)− â(ŝt, pt)), (97)

where FN (â(ŝt, pt), ŝt, pt) = v−1(a(ŝt,pt))
ŝt

(
v(ŝt)−a(ŝt,pt)
v(ŝt)−â(ŝt,pt)

)
.

Proof. First, take a partial derivative of Π∗I (s, ŝt, pt) = ΠI (aI(s, ŝ, p), s, ŝt, pt) with respect
to ŝt and compute it at point s ↓ ŝt, using that for bidder I, lims↓ŝt aI(s, ŝt, pt) = â(ŝt, pt):

Π∗′I,ŝt (ŝt, ŝt, pt) =

(
∂FN (â(ŝt, pt), ŝt, pt)

∂aI

∂â(ŝt, pt)

∂ŝt
+
∂FN (â(ŝt, pt), ŝt, pt)

∂ŝt

)
(v(ŝt)− aI(ŝt, pt))

−FN (â(ŝt, pt), ŝt, pt)
∂â(ŝt, pt)

∂ŝt
. (98)

The first-order condition for bidder I, (88), computed at s ↓ ŝt, reduces to

∂FN (â(ŝt, pt), ŝt, pt)

∂aI
(v(ŝt)− aI(ŝt, pt)) = FN (â(ŝt, pt), ŝt, pt). (99)

Plugging (99) into (98), we obtain

Π∗′I,ŝt (ŝt, ŝt, pt) =
∂FN (â(ŝt, pt), ŝt, pt)

∂ŝt
(v(ŝt)− aI(ŝt, pt)). (100)

From (90), FN (â(ŝt, pt), ŝt, pt) = v−1(a(ŝt,pt))
ŝt

(
v(ŝt)−a(ŝt,pt)
v(ŝt)−â(ŝt,pt)

)
immediately follows. Second, take a

partial derivative of Π∗I (s, ŝt, pt) with respect to pt and compute it at point s ↓ ŝt, using that for
bidder I, lims↓ŝt aI(s, ŝt, pt) = â(ŝt, pt):

Π∗′I,pt (ŝt, ŝt, pt) =

(
∂FN (â(ŝt, pt), ŝt, pt)

∂aI

∂â(ŝt, pt)

∂pt
+
∂FN (â(ŝt, pt), ŝt, pt)

∂pt

)
(v(ŝt)− aI(ŝt, pt))

−FN (â(ŝt, pt), ŝt, pt)
∂â(ŝt, pt)

∂pt
. (101)
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Again, using the first-order condition for bidder I at s ↓ ŝ (t),

Π∗′I,pt (ŝt, ŝt, pt) =
∂FN (â(ŝt, pt), ŝt, pt)

∂pt
(v(ŝt)− aI(ŝt, pt)). (102)

Note that FN (â(ŝt, pt), ŝt, pt) does not depend on pt other than through its first argument. Hence,

Π∗′I,p (ŝt, ŝt, pt) = 0. (103)

Finally, by definition of pt, pt and st are linked through differential equation ŝ′t = − pt
1−ptλŝt(1− ŝt).

This concludes the proof.

Equation (95) is a differential equation on ŝt: pt is a function of ŝ′t. The initial condition
is ŝ0 = 1. Its solution gives the evolution of ŝt over time. This equation is intuitive. For the
cut-off type ŝt, the cost of waiting equals the benefit. The cost of waiting (the left-hand side)
comes from two sources. The first source, represented by the first term on the left-hand side of
(95), is discounting due to a positive discount rate and the possibility that the bidder leaves the
market. The second source, represented by the second term on the left-hand side of (95), is the
possibility that either a strong rival bidder appears or an existing rival bidder with a suffi ciently
high signal decides to abandon waiting; such a rival then initiates the auction lowering the expected
rents of the bidder. The benefit of waiting (the right-hand side) comes from the possibility that
the seller initiates the auction without being approached by a bidder, and from the increase in
the continuation value due to the decrease in cut-off ŝt over time. This decrease increases the
profitability of the bidder-initiated auction for the cut-off type ŝt, because such a bidder faces a
marginally weaker rival bidder.

For ŝt to be the equilibrium cut-off, we need to verify that the seller does not benefit from
early voluntary initiation. At each time t, the expected payoff to the seller from strategy µ = ν,
denoted by VS (t, ν) , needs to satisfy

rVS (t, ν) = V ′S,t (t, ν) + 2 (λ (1− ŝt) + pt)RB (ŝt, pt) , (104)

where RB (ŝt, pt) is the seller’s expected revenue in the bidder-initiated auction. The seller does
not benefit from early voluntary initiation if and only if VS (t, ν) ≥ RS (ŝt) for any t, where RS (ŝt)

is his expected revenue in the seller-initiated auction.
The equilibrium admits a quasi-closed form solution and is solved for numerically. Example

7 derived below provides the solution for the case v(si) = si. Figure 5 illustrates the behavior
of the inference about the cause of bidder initiation pt as a function of the current cut-off ŝt and
the speed of convergence to the stationary cut-off ŝ = 0.368 for the case r = 0.05, λ = 0.5, and
ν = 0.75.

Example 6: auction stage, the private-value framework, the non-stationary setting.
Suppose that v(si) = si. From (93), a(ŝ, p) = ŝ

2 . Multiplying (85) by
1−ŝ
1−p , multiplying (88) by ŝ
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and adding the equations up, we obtain

1− ŝ
1− p

F ′I,b (b, ŝ, p) (FN (b, ŝ, p) ŝ− b) + ŝF ′N,b (b, ŝ, p)

(
ŝ+

FI (b, ŝ, p)− p
1− p

(1− ŝ)− b
)

=
1− ŝ
1− p

FI (b, ŝ, p) + ŝFN (b, ŝ, p)

⇒ d

(
ŝFN (b, ŝ, p)

(
ŝ+

FI (b, ŝ, p)− p
1− p

(1− ŝ)
))

= d

(
1− ŝ
1− p

FI (b, ŝ, p) b+ ŝFN (b, ŝ, p) b

)
⇒ ŝFN (b, ŝ, p)

(
ŝ+

FI (b, ŝ, p)− p
1− p

(1− ŝ)
)

=
1− ŝ
1− p

FI (b, ŝ, p) b+ ŝFN (b, ŝ, p) b+ c, (105)

for some constant c. This equation holds for b ∈ [â(ŝ, p), a(ŝ, p)]. Evaluating at a(ŝ, p) gives c:

c = ŝ (1− a(ŝ, p))− 1− ŝ
1− pa(ŝ, p). (106)

Evaluating (105) at â(ŝ, p) gives an alternative expression for c, which we use to obtain â(ŝ, p) as
a function of given â(ŝ, p):

c =
ŝ2

4
− 1− ŝ

1− ppâ(ŝ, p) ⇒ a(ŝ, p) =
ŝ− ŝ2

4 + 1−ŝ
1−ppâ(ŝ, p)

ŝ+ 1−ŝ
1−p

. (107)

In the stationary setting, p = 0 so a(ŝ, p) = ŝ2

4 − ŝ, as before. What remains is to solve for â(ŝ, p).
Plugging c into (105),

ŝFN (b, ŝ, p)

(
ŝ− b+

FI (b, ŝ, p)− p
1− p (1− ŝ)

)
=

1− ŝ
1− pFI (b, ŝ, p) b+

ŝ2

4
− 1− ŝ

1− ppâ(ŝ, p), (108)

implying that in the range b ∈ [â(ŝ, p), a(ŝ, p)],

ŝFN (b, ŝ, p) =

1−ŝ
1−pFI (b, ŝ, p) b+ ŝ2

4 −
1−ŝ
1−ppâ(ŝ, p)

ŝ− b+ FI(b,ŝ,p)−p
1−p (1− ŝ)

. (109)

Inserting (109) into v(·) in (85) and transforming,

F ′I,b (b, ŝ, p)

 1−ŝ
1−pFI (b, ŝ, p) b+ ŝ2

4 −
1−ŝ
1−ppâ(ŝ, p)

ŝ− b+ FI(b,ŝ,p)−p
1−p (1− ŝ)

− b

 = FI (b, ŝ, p)

⇒ F ′I,b (b, ŝ, p) =

(
ŝ− b+ FI(b,ŝ,p)−p

1−p (1− ŝ)
)
FI (b, ŝ, p)

ŝ2

4 −
1−ŝ
1−ppâ(ŝ, p)− bŝ+ b2 + p

1−p (1− ŝ) b
. (110)

The boundary condition is

FI(a(â(ŝ, p))) = FI

(
ŝ− ŝ2

4 + 1−ŝ
1−ppâ(ŝ, p)

ŝ+ 1−ŝ
1−p

, ŝ, p

)
= 1. (111)

This differential equation has a closed-form solution which is omitted for brevity and available
from the authors upon request. The remaining value, â(ŝ, p), is numerically determined from the
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second boundary condition:
FI(â(ŝ, p), ŝ, p) = p. (112)

It can be shown that ŝ
2 ≤ â(ŝ, p) ≤ 3ŝ

4 and â(ŝ, p) is strictly increasing in p. In particular,
â(ŝ, 0) = ŝ

2 , so that the solution converges to that of the base model; â(ŝ, 1) = 3ŝ
4 . In addition,

3ŝ
4 ≤ a(ŝ, p) and a(ŝ, p) is strictly decreasing in p. In particular, a(ŝ, 1) = 3ŝ

4 , so that at p = 1,
bidder I always randomizes between bids. This is because at p = 1, ŝ = 1, so bidder I always has
exactly the cut-off signal.

Example 7: auction stage, the private-value framework, the non-stationary setting.
Suppose that v(si) = si. Using bidding strategies in Example 6, Π∗I (ŝ, ŝ, p) = a(ŝ,p)

ŝ (ŝ− a (ŝ, p)) =
ŝ
4 and Π∗N (ŝ, ŝ, p) = ŝ− a (ŝ, p). Additionally, from Lemma 9, Π∗S(ŝ, ŝ) = ŝ

2 .
The indifference condition for ŝt, (95), simplifies to

(r + λ)
ŝt
4

+ λ
1− ŝt
1− pt

(
a(ŝt, pt)−

3ŝt
4

)
=

pt
1− pt

λŝt(1− ŝt)
1

2

(
â(ŝt, pt)− ŝt

2

ŝt − â(ŝt, pt)
+

1

2

)
+ ν

(
ŝ

2
− ŝ

4

)
,

(113)
where a(ŝt, pt) and â(ŝt, pt) are numerically determined from (111) and (112). Equation (113) sets
up a differential equation for ŝt. Specifically, first, (113) is used to obtain p(ŝt); second, differential
equation ŝ′t = − p(ŝt)

1−p(ŝt)λŝt(1− ŝt) with the initial condition ŝ0 = 1 is numerically solved.
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Figure 1: Equilibrium bids and expected payoffs of bidders in a bidder-initiated
common-value auction. The left panel plots the equilibrium bids as functions of signals
for the initiating bidder (the normal line) and the non-initiating bidder (the dashed line).
The right panel plots the corresponding expected surpluses of each bidder.
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Figure 2: Equilibrium bids and expected payoffs of bidders in a bidder-initiated
private-value auction. The left panel plots the equilibrium bids as functions of signals
for the initiating bidder (the normal line) and the non-initiating bidder (the dashed line).
The right panel plots the corresponding expected surpluses of each bidder.
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Figure 3: Equilibria with seller- and bidder-initiated auctions. For the case of
no involuntary seller initiation, ν → 0, the figure plots best responses of the seller (the
normal line) and each bidder (the dashed line), as well as multiple equilibria (circles).
With involuntary seller initiation, ν > 0, there may be an additional equilibrium with ŝ
determined by the bidder’s best response and µ = ν.
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Figure 4: Equilibrium bids in a bidder-initiated private-value auction in the non-
stationary setting. The figure plots the equilibrium bids as functions of signals for the
initiating bidder (the normal line) and the non-initiating bidder (the dashed line).
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Figure 5: The dynamics pt and ŝ in the non-stationary setting. The left panel plots
the behavior of the conditional probability that bidder I’s signal is exactly at the cut-off,
pt, as a function of the cut-off, ŝt. The right panel plots the behavior of the cut-off as a
function of time.
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