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Gradient phonotactic effects: lexical? grammatical? both? neither?

1 Introduction

(1) A well-known effect: gradient acceptability of novel phonological strings (“wug words”)

• “How good would . . . be as a word of English?”

Best stin [stIn] , mip [mIp]
blick [blIk], skell [skEl]

Intermediate blafe [bleIf ], smy [smaI]
bwip [bwIp], smum [sm2m]
dlap [dlæp], mrock [mrak]

Worst bzarshk [bzarSk], shöb [Sœb]

(2) Relation between gradient acceptability and lexical statistics has been demonstrated in many
domains

• Acceptability of novel words

Greenberg and Jenkins (1964), Ohala and Ohala (1986), Coleman and Pierrehumbert
(1997), Vitevitch, Luce, Charles-Luce, and Kemmerer (1997), Frisch, Large, and Pisoni
(2000), Bailey and Hahn (2001), and others

• Likelihood of morphophonological alternations (Eddington 1996; Bybee 2001; Pierrehum-
bert 2002; Ernestus and Baayen 2003, etc.)

• Morphological productivity: (Bybee 1995; Albright 2002a; Albright and Hayes 2003, etc.)

☞ But what is the mechanism? How do these results relate to phonological theory, and grammars?

(3) Three general views

1. Grammar is categorical, but performance is gradient

• The grammar defines what is possible in the language (grammatical vs. ungrammatical)
• Acceptability tasks ask speakers how probable a sequence is, invoking a variety of

different (non-grammatical) calculations
• Performance & task effects create gradient effects beyond what the grammar cares about

2. Grammar itself is probabilistic and gradient

• Phonological grammars encode not only what combinations are possible, but also which
are probable

• Grammaticality is not “all or nothing”, but is a continuous function reflecting the
probability of the sequences involved (Coleman and Pierrehumbert 1997; Frisch, Large,
and Pisoni 2000; Albright and Hayes 2003)

• Gradient acceptability judgments mirror gradient grammaticality intuitions

3. There is no grammar

• Assessing novel words involves assessing the degree of support from existing words
• Assessing the acceptability of novel word = trying to recognize them as real words, and

gauging the degree of support from existing words

(4) How do we distinguish among these possibilities?

• Simply demonstrating that there are gradient effects does not settle the issue

• We need principles that help us decide whether a particular gradient effect is a by-product
of the task or of language use, or whether it constitutes learned knowledge that has been
extracted from the data
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(5) Goal of this study

• Sketch several different computationally implemented models of phonotactic well-formedness,
each embodying a different theory of where gradience comes from, and what factors we
expect to influence acceptability

➢ Factors known to affect on-line performance (neighborhood density, token frequency,
similarity) (Luce 1986; Newman, Sawusch, and Luce 1997; Luce and Pisoni 1998)

➢ Factors that play a role in grammatical generalizations (natural classes, type frequency)

• Compare the performance of the models, using two datasets of gradient phonotactic accept-
ability judgments

➢ Bailey and Hahn (2001), and Albright and Hayes (2003)

• Claim: data currently supports a stochastic grammatical approach to gradient acceptability

➢ Although each model has its own strengths, a model stated in “grammatical” terms
(probabilistic statements about legal sequences of natural classes) captures the broadest
range of data

➢ Models that do not incorporate such statements make unsubstantiated predictions

(6) Outline

• Sketch two different classes of models of gradient acceptability, and their computational
implementations

• Compare the performance of these models on experimental data

• Consider the extent to which the results provide evidence for grammatical status of gradient
acceptability

2 Lexical vs. combinatorial models of gradience

(7) Bailey and Hahn (2001): distinguish between two fundamentally different types of knowledge that
could be used to decide about novel words

• Lexical knowledge

➢ Speakers know the words of their language
➢ Hearing a novel word activates a set of real words, while attempting lexical access
➢ The more words it activates, and the more similar it sounds to them, the more plausible

it is as a possible word

• Phonotactic knowledge

➢ Speakers attend to combinatorial possibilities of different sounds in their language
➢ Novel words are parsed into constituent sounds, and the likelihood of combinations is

assessed
➢ The more probable/“less illegal” the combinations are, the better the word sounds

(8) Why this distinction is useful

• Two simple endpoints in a spectrum of possible models, which make maximally distinct
predictions about the factors that should influence gradient acceptability

• “Lexicon-only” model:

➢ If gradient acceptability depends on consulting the lexicon, then factors that are known
to play a role in lexical access should matter

➢ Lexical (token) frequency, neighborhood density, etc.
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• “Sequences only” model:

➢ If gradient acceptability results from statements about possible sound combinations,
then factors that are relevant in grammatical descriptions should place a role

➢ Type frequency, natural classes, markedness (?), etc.

(9) Strategy:

• Construct models that use either lexical or sequential knowledge to predict the acceptability
of novel sequences

• Test to what extent their ability to use different types of information helps their performance
in modeling experimentally obtained ratings

2.1 Lexical models of gradient acceptability

(10) Simplest estimate of lexical support: neighborhood density

• Number of words that differ by n changes (substitutions, additions, deletions)

➢ E.g., novel droff [draf] has (in some dialects) the neighbors trough, prof, drop, doff, dross

• Neighborhood density has been shown to play a role in a wide variety of effects—including
lexical decision times, mishearings, phoneme identification, and, most relevantly, the ac-
ceptability of wug words

➢ Greenberg and Jenkins (1964), Ohala and Ohala (1986), and others

• Generally too crude to model acceptability of novel words accurately, though, since even
relatively “ordinary” wug words often have few or no neighbors

➢ E.g., drusp [dr2sp], stolf [stOlf ], zinth [zInT] all have 0 neighbors

(11) Bailey & Hahn (2001): point out that although such words have no immediate neighbors, they are
fairly similar to many slightly more distant words

• E.g., drusp [dr2sp]: trust, dusk, rusk, truss, dust, etc.

• To capture this, we need to count words that are farther than a single substitution away, while
at the same time paying attention to the severity of different substitutions

(12) Bailey and Hahn’s Generalized Neighborhood Model (GNM)

Lexical support for a novel word = summed similarity of novel word to each existing word

• Exemplar model based on Nosofsky’s Generalized Context Model (GCM), a similarity-based
classification model (Nosofsky 1986; Nosofsky 1990)

• Every word in the lexicon contributes some amount of support, but very similar words
contribute more

➢ Similarity of words is assessed by finding minimum string edit distance (Kruskal 1983/1999;
see also Bailey and Hahn 2001, Albright and Hayes 2003), using metric of segmental
similarity based on shared natural classes (Frisch, Pierrehumbert, and Broe 2004) 1

• Novel words are predicted to be better, the greater the number of words is that they are similar
to, and the greater the similarity is to those words

➢ Support for zin [zIn] includes a number of similar words:
zen 0.609
sin 0.613
din 0.649
in 0.700
zing 0.720

1Ultimately, it would be desirable to weight similarity according to location of mismatches (onsets vs. codas, word-initial vs.
medial, etc.), and prosodic factors like stress. However, since all of the words modeled in section 3 are monosyllabic, reasonable
results can be obtained even without a prosodically sensitive model.
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➢ Support for snulp [sn2lp] is more distant, and similarity drops off more quickly:

snub 1.260
sulk 1.271
slump 1.283
snuff 1.367
null 1.400

• Words with higher lexical frequency also contribute more (according to a parameter)

2.2 Phonotactic models of gradient acceptability

(13) Phonological markedness constraints typically ban particular sounds, or particular combinations
of sounds (cooccurrence restrictions)

• *
[
−back
+round

]
(no front rounded vowels)

• *ti

• *
[

+nas
αplace

][
−son
−αplace

]
(nasal place assimilation)

(14) A simple model of the probability of cooccurrence: n-gram models

• Bigram probability:

➢ Probability of sequence ab =
Number of times ab occurs in the corpus
Total number of sequences in the corpus

• Bigram transitional probability:

➢ Probability of b coming after a =
Number of times ab occurs in the corpus

Total number of times a appears before anything

➢ Probability of a string abcd = P(initial a)× P(b after a)× P(c after b)× P(d after c)

(15) Numerous studies have shown effects of sequence probability on morpheme and word segmen-
tation, age of acquisition, recall of nonwords, and, most relevant to the current study, gradient
acceptability of wug words

• Coleman and Pierrehumbert (1997): log likelihood of most probable parse into onset/rhyme
constituents

• Frisch, Large, and Pisoni (2000): onset-rhyme frequencies

• Vitevitch and Luce (2004), Vitevitch and Luce (2005): positional bigram frequency

➢ Bigrams counted separately for different positions in the word, and words are weighted
by token frequency

(16) In principle, we could count trigrams, tetragrams, etc. However, for nonce words, we encounter
an issue akin to the “no neighbors” problem in (11) above

• dresp [drEsp]: there are no words containing [Esp] in English, yet native speakers tend to rate
this word as relatively acceptable (4.7 on a scale of 1 to 7; mean=4.0, max=6.5)

• More generally: for larger values of n, the number of possible n-grams grows exponentially,
meaning a much larger corpus is needed to estimate their frequencies accurately

• In this case, our corpus is the lexicon. Since lexicons are of a limited size, we inevitably end
up with many accidental gaps.

➢ I.e., we can’t get more data about whether [Esp] is legal by simply collecting more words

• Many different strategies have been developed to handle this problem (see, e.g., Jurafsky and
Martin 2000), mostly by combining information from shorter and longer values of n

• A strategy of interest to phonologists, though, is to try to reason about well-formedness of
underattested sequences based on natural classes
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(17) The intuition

• Although the [Esp] in dresp is unattested, it does get support from other similar sequences

➢ [Isp] (crisp, wisp, lisp, . . . ), [æsp] (clasp, rasp, asp, . . . ))
➢ [Est] (best, west, rest, . . . ), [Esk] (desk)

• Taken together, they suggest that sequences of [lax vowel + s + voiceless stop] are allowed in
English (Hammond 1999, p. 115)

• To discover this, we must consider not just of particular segments, but also classes of
segments

(18) Comparing sequences to extract more general patterns of natural classes

• The Minimal Generalization approach (Albright and Hayes 2002; Albright and Hayes 2003)

I s p
+ æ s p

→
24 −back
−round
−tense

35 s p

+ E s k

→
24 −back
−round
−tense

35 s

24 −sonorant
−contin.
−voice

35
(19) Not all comparisons yield equally illuminating generalizations, however

æ s p
+ b o a
→ [+voi] seg seg

• Assuming no feature values shared between [s]∼[o] or [p]∼[a], we simply learn that voiced
segments can be followed by two more segments

• In fact, combinations of [+voi] + two more segments are extremely well attested in English!

• Potentially fatal prediction: bzarshk [bzarSk] should be very acceptable, because [bza] and
[rSk] get lots of support from other [+voi] seg seg sequences

(20) The challenge

• Find a way to count over natural classes such that [Isp] and [æsp] provide strong support for
[Esp], while [æsp] and [boa] provide little or no support for [bza] or [rSk]

(21) The leading idea

• Intuitively, [Isp] + [æsp]→ [Esp] is much less of a leap; they practically make [Esp] inevitable

• This is due to the fact that

24 −back
−round
−tense

35sp is so specific

➢ All we need to do is specify the vowel height, and we have [Esp]
➢ To get [Esp] from [+voi] seg seg, we need to fill in very many features

• Put differently:

24 −back
−round
−tense

35sp describes a small set of possible sequences (Isp, Esp, æsp)

➢ If such sequences are legal, the probability of finding any one of them at random is 1/3
➢ The set of [+voi] seg seg sequences is huge; the chance of getting [Isp] or [æsp] at random

is tiny

➢ Although both

24 −back
−round
−tense

35sp and [+voi] seg seg can describe sequences like [Isp] or [æsp],

the former characterization makes it much more likely that we would encounter these
particular sequences
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(22) Maximum likelihood estimation (MLE)

• Find the description that makes the training data as likely as possible

• “English words conform to certain shapes because they have to, not out of sheer coincidence”

• Related to OT ranking principles that seek the most restrictive possible grammar (Prince and
Tesar 2004; Hayes 2004); also related to Bayesian inference

• For an MLE-based approach to n-gram models that refer to classes of items, see Saul and
Pereira (1997)2

(23) Implementation: instantiation costs

• Simple bigram model:

➢ Probability of sequence ab =
Number of times ab occurs in corpus
Total number of two-item sequences

• Stated over natural classes:

➢ Probability of sequence ab, where a ∈ class x, b ∈ class y

=
Number of times xy occurs in corpus
Total number of two-item sequences

× Prob(choosing a from x)× Prob(choosing b from y)

• What is the probability of any particular instantiation a of a natural class x?

➢ Simple:
1

Size of x (i.e., number of members)

➢ Weighted: Relative frequency of a× 1
size of x

☞ For reasons I don’t have space to discuss here, it appears that weighting by (type) frequency
is useful; this is what I will assume in the simulations reported here

(24) Example: probability of [Esp]

• Probability of [Esp] using trigram

24 −back
−round
−tense

35sp

= Prob(

24 −back
−round
−tense

35sp)× Prob([E] among lax front vowels) (relatively high)

• Probability of [Esp] using trigram [+voi] seg seg

= Prob([+voi] seg seg )× Prob([E] among voiced)× Prob([s])× Prob([p]) (very low)

• Given multiple possible ways to parse the same string of segments, find the one with the
highest probability (Coleman and Pierrehumbert 1997; Albright and Hayes 2002)

➢ [Esp] can find good support from

24 −back
−round
−tense

35sp

➢ [bza] has no allies that provide such a close fit; it must rely on broader (and weaker)
generalizations like [+voi] seg seg

(25) Local summary

• A method of evaluating sequences of natural classes, to determine which are supported by
the training data

• Result: a set of (stochastic) statements about relative likelihood of different sequences

2Unfortunately, n-gram models based on classes of elements in syntax tend to assume that each item belongs to ideally one, or
exceptionally a few, classes (tree is a verb, of is a preposition, etc.). For phonological applications, we need to consider each segment
as a member of many classes simultaneously, and even a single instance of a segment may be best characterized in different terms
with respect to what occurs before it vs. after it. Ultimately, we seek a ranking algorithm that incorporates the principle of MLE,
without making the simplifying assumptions of existing class-based n-gram models.
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3 Testing the models

(26) Full set of models considered here

• Lexical models

➢ Traditional neighborhood density model (“number of neighbors”), with or without
frequency weighting

➢ Generalized Neighborhood Model (GNM), with or without frequency weighting

• Sequential models

➢ Standard bigram, trigram transitional probability
➢ Average bigram, trigram frequency
➢ Sequential model based on bigrams on natural classes, with instantiation costs, de-

scribed in (17)-(24) above

• “Hybrid” model (for comparison)

➢ Vitevitch and Luce (2004): positional bigram frequencies, weighted for lexical frequency
➢ http://www.people.ku.edu/∼mvitevit/PhonoProbHome.html

☞ In part, a replication of Bailey & Hahn (2001), to allow direct comparison with results from
other studies, and to compare models that they did not consider

(27) Training the models: input file containing all word forms with non-zero frequency in CELEX
(Baayen, Piepenbrock, and van Rijn 1993), in phonemic transcription

• Also tried just lemmas, or just monosyllables; both tend to yield slightly worse results for
tasks described below

• Since CELEX has many “duplicate” entries (same word broken up into two separate entries),
and their token frequencies were combined

• CELEX uses British pronunciation; could impact ability to model results from American
speakers for some sequences, but doesn’t appear to be an issue here

• Vitevitch & Luce model uses its own (smaller) training set and frequencies

Models were then used to derive predictions for novel (wug) words, from two ratings experiments
described in the literature

3.1 Dataset 1: Bailey and Hahn (2001)

(28) Bailey and Hahn (2001)

• Set of 259 monosyllabic non-words, of generally moderate acceptability

➢ E.g., drolf [dr6lf ], smisp [smIsp], pruntch [pr2n
>
tS], stulf [st2lf ], zinth [zInT], glemp [glEmp]

➢ Designed not to contain any overt phonotactic violations, but a handful of words did
contain questionable sequences ([St#] in gwesht, swesht, etc.; sNVN in smimp; etc.)

• Words presented auditorily in a carrier sentence (“Zinth. How typical sounding is zinth?”)3

• Participants rated words on a scale from 1 (low) to 7 (high)

➢ Ratings were then normalized statistically (see Bailey & Hahn 2001 for details)

3A written version of the experiment was also carried out, but I consider here only the oral task.

http://www.people.ku.edu/~mvitevit/PhonoProbHome.html
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(29) Results at a glance

a. Lexical models

• Number of neighbors (r = 0.385)

drolf

drusp

glemp

greltch

gwesht

krenth

prunth

shandge

slesk

slontch

smisp

snulp

spulsh

shresp

shrupt

stolf

swesk

swustthrelth

trinth

throndge
zinth jinth

binth

blemp

blesk

breltch

brelth

brenth

bresp

brondge
brunth

dinth

dolf

drelf
dreltch

drenth

dresp

drilf

drisp

droff

drosp

drump

drup

drupt
druss

drusk

drust

dusp

dwesk

dwesht

finth

flemp

flesk

flontch

freltch
frenth

frinth

frondgefrunth
frupt

frusp

geltch

gemp

gesht

glem

glep

glimp

glump

gretch

grell

greld

grelm

grentch

gresp

gresht

griltch

grinth
grolf

grondge

grunth

grupt

grusp

gweft

gwelt

gwept

gwesh

gwet

hinth inth

yinth

kenth

kinth

clemp

clenth

clontch

cren

crendge

crend

crentch

crent

cresp

creth

crinth

crondge

crunth

crupt

crusp

quenth

kwesk

lemp

lesk

linth

minth

misp

nulp pinthplemp
plunthpresp

printh

prolf

prundge

pruntch

prunt

prupt
punth

reltch

relth

renth

resp

rinth

rolf

rondge

rupt

rusp

shadge

shan

sandge

shendge

sesk

shesp

shindge

sinth

shinth

sisp

skisp

scolf

scontch

sculp

sculsh

scust

sleck

slemp

slentch

sless

slest

slintch

slisk
slisp

slotch

slon

slulp

sluntch

slusk

slustsmimp

smip

smiss

smist

smustsnalp

snisp

snull

snulf

snulk

snult

snump

snup

snust

spelsh

spesk

spuldge

spulk

spulp

spulse

spust

solf

shondge

sontch
shrapt

shremp

shrep

shrept

shressshrest

shript

shrisp

shruftshruct
shrunt

shrup

shrust

shrut

stelf

stilf
stoff

stulf
stulp

stust

sulp

sulsh

shundge

sweck

swelk

swess

swest

swesht

swisk

swisp

swist

swontch

swuft

swunt

swupt swutt

tolf

threll

treltch

threlm

threlsh

threlt
trenth

tresp

threth

trilth

thrilth

trin

trindge

thrindge
trintch

trithtrolf

thronn

thrond

trupt

thrupt

truspthrusp

twinth

wesk

wesht

winth

wust

zilth

zin

zindge

zintch

zint

2
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• GNM (r = 0.455)
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drusp
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greltch

gwesht

krenth

prunth

shandge

slesk

slontch

smisp

snulp

spulsh

shresp

shrupt

stolf

swesk

swustthrelth

trinth

throndge
zinth jinth

binth

blemp

blesk

breltch

brelth

brenth

bresp

brondge
brunth

dinth

dolf

drelf
dreltch

drenth

dresp

drilf

drisp

droff

drosp

drump

drup

drupt
druss

drusk

drust

dusp

dwesk

dwesht

finth

flemp

flesk

flontch

freltch
frenth

frinth

frondgefrunth
frupt

frusp

geltch

gemp

gesht

glem

glep

glimp

glump

gretch

grell

greld

grelm

grentch

gresp

gresht

griltch

grinth
grolf

grondge
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plunth presp

printh

prolf

prundge

pruntch

prunt

prupt
punth

reltch

relth

renth

resp

rinth

rolf

rondge

rupt

rusp

shadge

shan

sandge

shendge

sesk

shesp

shindge

sinth

shinth

sisp

skisp

scolf

scontch

sculp

sculsh

scust

sleck

slemp

slentch

sless

slest

slintch

slisk
slisp

slotch

slon

slulp

sluntch

slusk

slustsmimp
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smist
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snisp
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snulf
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spulp

spulse
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b. Sequential models
• Average biphone freq (r = 0.125)
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drusp

glemp

greltch

gwesht

krenth

prunth

shandge

slesk

slontch

smisp

snulp

spulsh

shresp

shrupt

stolf

swesk

swustthrelth

trinth

throndge
zinthjinth

binth

blemp

blesk

breltch

brelth

brenth

bresp

brondge
brunth

dinth

dolf

drelf
dreltch

drenth

dresp

drilf

drisp

droff

drosp

drump

drup

drupt
druss

drusk

drust

dusp

dwesk

dwesht

finth

flemp

flesk

flontch

freltch
frenth

frinth

frondgefrunth
frupt

frusp

geltch

gemp

gesht

glem

glep

glimp

glump

gretch

grell

greld

grelm

grentch

gresp

gresht

griltch

grinth
grolf

grondge

grunth

grupt

grusp

gweft

gwelt

gwept

gwesh

gwet

hinth inth

yinth

kenth

kinth

clemp

clenth

clontch

cren

crendge

crend

crentch

crent

cresp

creth

crinth

crondge

crunth

crupt

crusp

quenth

kwesk

lemp

lesk

linth

minth

misp

nulp pinthplemp
plunth presp

printh

prolf

prundge

pruntch

prunt

prupt
punth

reltch

relth

renth

resp

rinth

rolf

rondge

rupt

rusp

shadge

shan

sandge

shendge

sesk

shesp
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• Average triphone freq (r = 0.195)
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• Natural class-based likelihood (r = 0.296)
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• Vitevitch & Luce (2004) (r = 0.234)
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• Transitional probabilities score substantially worse (not shown)

(30) Highlights: somewhat inconclusive

• All models capture a certain amount of the variance, though no model does extremely well

• GNM is overall best (though some of its numerical success comes from sparse group of
outliers)
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3.2 Dataset 2: Albright and Hayes (2003)

(31) Albright and Hayes (2003)

• 92 wug words used in pre-test, as control for a past tense study

• 62 items estimated ahead of time to be relatively acceptable; 30 “foils”, at varyingly lesser
degrees of acceptability (full set in Appendix)

➢ Moderate to high acceptability: kip [kIp], stire [staIr], pank [pæNk], fleep [flip], blafe [bleIf ]
➢ Some marginal sequences:

[pw2dz] (*pw)
[TôOIks] (*[OIk])
[SwuZ] (*Sw)
[skIk], [sn2m] (*sC1 VC1 , *sNVN)

➢ A few items with unattested rhymes: [smErg], [smi:lT]
➢ One very ill-formed word: [bzarSk], used during training as an example of a word that

most English speakers feel would not be a possible word

• Words presented auditorily in random order, in a carrier sentence (“Blafe. I like to blafe4.”)

• Participants repeated word aloud, and rated on a scale from 1 (“impossible as an English
word”) to 7 (“would make a fine English word”)

➢ If word was repeated incorrectly, rating for that trial was excluded from analysis

• 20 participants (1 excluded for too many incorrect repetitions)

➢ High level of agreement! Correlation between participants 1-10 vs. 11-19: r = 0.864

4All words in this study were presented as verbs. It is not clear what effect this had on the final results.
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(32) Results at a glance

a. Lexical models
• Number of neighbors (r = 0.675)
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• GNM (r = 0.560)
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b. Sequential models
• Average biphone freq (r = 0.191)
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• Average triphone freq (r = 0.215)
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• Natural class-based likelihood (r = 0.757)
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• Vitevitch & Luce (2004) (r = 0.216)
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(33) Points to note

• In this task, the model based on natural classes comes out significantly ahead

➢ Not only the best model for this task, but overall the cleanest result of the whole study

• Simple NNB model also surprisingly effective! However, only when token frequency is not
taken into account (more below)
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3.3 Discussion

(34) Summary of modeling results over both datasets

• Bailey & Hahn: lexical models show better performance, but no model does particularly well

• Albright & Hayes: sequential model based on natural classes comes out ahead (and does
quite well)

(35) Questions to be addressed

• Why do all the models do so poorly on the Bailey & Hahn data?

• Why does a model based on possible combinations of natural classes do better on the
Albright & Hayes data?

• What does this tell us about the nature of gradient acceptability?

• What kinds of data are still needed to settle the issue?

(36) Why does the Bailey & Hahn data set appear to be so noisy?

Two possible reasons for the difference:

• Differences in tasks

➢ Participants did not repeat words (can’t flag mishearings, less incentive to pay attention)
➢ Instructions asked a different question: “How typical sounding is . . . ” (as opposed to

“how possible is . . . as an English word”)

• Differences in wug words

➢ Bailey & Hahn items were all of intermediate acceptability (low: gweft ; high: crendge)
➢ Albright & Hayes items involved training on “endpoints” (low: bzarshk; high: kip), and

included more variability between test items themselves
➢ Perhaps this variability helps anchor endpoints, so participants can use the scale in a

more meaningful/consistent way?

☞ Possible lesson for future studies

➢ Given that unlikely words are frequently “repaired” in perception, having participants
repeat words seems to be an important check

➢ Bailey and Hahn use intermediate items for statistical reasons (see their discussion on
this point), but a compromise is possible
◦ Large number of intermediate items, but including enough “endpoint” items to

anchor the scale

(37) A more important reason why it is important to include items with phonotactic violations

• Illegal sequences (cooccurrence restrictions, or constraints on possible combinations of
sounds) are at the heart of what phonology traditionally aims to explain

• Even if an exemplar model does very well at predicting that kip sounds better than shresp, if
it can’t explain why dlap or mrut are worse than any of these intermediate words, we can’t
claim to have gotten very far

• This is significant, because similarity-based models are, on the face of it, rather ill-suited for
capturing facts about violations

(38) An example: [sru:]

• The nonwords [fru:] and [sru:] both have many neighbors (brew, crew, drew, grew, roux,
screw, shrew, etc.), but [sru:] contains a phonotactic violation (*sr)

• GNM predictions for these words:
fru: 1.96
sru: 1.68

➢ Point of comparison: [l2m] 1.59, [wIs] 1.59, [tark] 1.68; all rated >5 out of 7 in Albright &
Hayes study
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• I suspect that this highly overestimates the goodness of [sru:]

☞ Forms like this are probably just the tip of the iceberg! Data like that in Bailey & Hahn
(2001) allow us to probe only a tiny part of the overall picture of how well models account
for gradient acceptability

(39) So why does a sequential model based on natural classes do better on the Albright and Hayes data?

• This dataset contains some words with (mild) phonotactic violations

• The 20 forms from the Albright & Hayes dataset which the GNM most seriously overestimates:

➢ TôOIks, SwuZ, raInt, frIlg, krIlg, smEôg, trIlb, smi:lT, smEôf, Twiks, ploUmf, dwoU
>
dZ, ploUnT,

daIz, TeIpt, sminT, spôaôf, baIz, pw2dz, bzaôSk
➢ The majority of these contain some type of violation, which the GNM is not able to pick

up on

• The 20 forms that the GNM most seriously underestimates

➢ sleIm, staIô, pæNk, snEl, ræsk, trIsk, stIp, pleIk, mIp, wIs, graInt, skEl, spæk, stIn, SIlk, skwIl,
gEô, pri:k, glIt, mr

"
n

➢ These are mostly fine sequences, which just happen to be a bit isolated in the lexicon

(40) Summarizing the discussion thus far:

• Poor performance on the Bailey & Hahn items seems to stem from the fact that it’s overall a
rather messy dataset, perhaps because of the way the experiment was set up

• In a cleaner data set with a wider range of items, we see that the ability to pay attention to
possible sequences is important in modeling human intuitions

☞ Gradient acceptability reflects knowledge about the relative probability of different combi-
nations of natural classes, not knowledge of words directly

(41) One last “unlexical” effect

• None of the models explored here derived any advantage from their ability to take token
frequency into account

➢ GNM and simple NNB models did best when frequency weighting was turned off
➢ Vitevitch and Luce model, which has frequency weighting built in, does not come out

ahead because of it

• An apparent difference from Bailey and Hahn (2001), who found significant contribution of
token frequency

➢ However, even there, only a tiny numerical boost was observed (r2 gain of .01?)
➢ I was unable to replicate this effect, even on their data

• In most cases, taking token frequency into account doesn’t change the predictions at all

➢ Most words in the lexicon are very low frequency, so a boost for high token frequency
only gives more influence to a small set of words

• When it does make a difference, though, it tends to be a deleterious one

➢ Compared predictions of GNM with and without token frequency, to find those words
which changed the most when token frequency was considered

[zeI] (say), [gEr] (there), [paInt] (mine), l2m (come), [gli:d] (need)
➢ For all five of these words, the frequency-sensitive model was farther from the human

ratings (overestimated goodness)
➢ Further evidence that pattern strength is related to type, not token frequency (Bybee

1995; Albright 2002b; Albright and Hayes 2003; Hay, Pierrehumbert, and Beckman 2004)

(42) I take this finding to be at odds with the idea that gradient acceptability arises as a by-product of
consulting the lexicon.

☞ Lexical access is known to be highly sensitive to frequency, yet gradient acceptability appears
to be completely impervious to it
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4 Conclusion

(43) Based on currently available data, it appears that gradient phonotactic acceptability bears the
markings of a grammatical effect

• It seems to reflect knowledge about sequences, stated in terms of natural classes

• It is not sensitive to lexical frequency, unlike other known performance effects

(44) Many respects in which the current data is inadequate to truly compare these different models

• Data sets do not contain sufficient information to calibrate the scale of unacceptability
(including “truly unacceptable” sequences

• They don’t contain items specifically designed to test the possible contribution of token
frequency

➢ Post-hoc comparisons appear to show no effect, but this is based on relatively few items

• Data from monosyllables is unable to test a whole range of questions about higher level
prosodic restrictions

(45) Two immediate goals

• Experimental studies expanding the range of wug words that the model can be tested on, and
comparing different sources of evidence (ratings, reaction times, incorrect repetitions, etc.)

• Modeling sequential restrictions by constraint ranking, in OT-theoretic grammar

5 Appendix: list of wug words from Albright & Hayes data set

Word Rating Word Rating Word Rating Word Rating Word Rating Word Rating
Si: 6.00 trIsk 5.21 t2Nk 4.84 gEz 4.21 zeIps 3.47 TôOIks 2.68
froU 5.94 ôæsk 5.21 neIs 4.84 zeI 4.16

>
tSu:l 3.42 fôIlg 2.68

kIp 5.84 spæk 5.16 skwIl 4.83 drIt 4.16 SaInt 3.42 Swu:Z 2.68
wIs 5.84 gEô 5.11 l2m 4.79 fli:p 4.16 gwEn

>
dZ 3.32 tôIlb 2.63

sleIm 5.84 Sr
"
n 5.11 p2m 4.79 skraId 4.11 SôUks 3.32 smErg 2.58

pInt 5.67 taôk 5.11 splIN 4.72 kIv 4.05 n2N 3.28 kôIlg 2.58
pæNk 5.63 deIp 5.11 gôEl 4.63 skIk 4.00 skwalk 3.26 Twi:ks 2.53
raIf 5.53 skEl 5.11 tES 4.63 flEt 4.00 twu: 3.17 smi:lT 2.47
stIp 5.53 glIt 5.11 ti:p 4.63 noUld 4.00 sm2m 3.05 smErf 2.47
mIp 5.47

>
tSeIk 5.05 baIz 4.58 brE

>
dZ 3.95 snOIks 3.00 ploUmf 2.42

staIô 5.47 gli:d 5.05 glIp 4.53 kwi:d 3.95 sfu:nd 2.94 dwoU
>
dZ 2.29

mr
"
n 5.42 pôi:k 5.00 plIm 4.37 skOIl 3.89 pwIp 2.89 ploUnT 2.26

pleIk 5.39 graInt 5.00
>
tSaInd 4.37 draIs 3.84 raInt 2.89 TeIpt 2.26

snEl 5.32 SIlk 4.89 gu:d 4.32 flI
>
dZ 3.79 sklu:nd 2.83 smi:nT 2.06

stIn 5.28 daIz 4.84 bleIf 4.21 blIg 3.53 smi:ôg 2.79 spôaôf 2.05
pw2dz 1.74
bzarSk 1.50
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