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Abstract
We show that multi-path analysis using images from a time-
of-flight (ToF) camera provides a tantalizing opportunity to
infer about 3D geometry of not only visible but hidden parts
of a scene. We provide a novel framework for reconstruct-
ing scene geometry from a single viewpoint using a camera
that captures a 3D time-image I(x, y, t) for each pixel. We
propose a framework that uses the time-image and transient
reasoning to expose scene properties that may be beyond the
reach of traditional computer vision. We corroborate our
theory with free space hardware experiments using a fem-
tosecond laser and an ultrafast photo detector array. The
ability to compute the geometry of hidden elements, unob-
servable by both the camera and illumination source, will
create a range of new computer vision opportunities.

1. Introduction
Camera-based 2D intensity images, I(x, y), have long been

used to observe and interpret scenes. New sensors and al-

gorithms for scene understanding will clearly benefit many

application areas such as robotics, industrial applications,

user interfaces and surveillance. This paper introduces a

novel framework called Transient Light Transport which

allows new properties of scenes to be observed and inter-

preted. In a traditional camera, the light incident at a pixel is

integrated along angular, temporal and wavelength dimen-

sions during the exposure time to record a single intensity

value. Distinct scenes may result in identical projections

(images) and, hence, identical pixel values. Thus, it is chal-

lenging to estimate scene properties which are not directly

observable. Steady-state light transport assumes an equilib-

rium in global illumination. In a room-sized environment, a

microsecond exposure (integration) time is long enough for

a light impulse to fully traverse all the possible multi-paths

introduced due to inter-reflections between scene elements

and reach steady state. Traditional video cameras sample

light very slowly compared to the time scale at which the

transient properties of light come into play.
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Figure 1. Can you look around the corner into a room with no imaging
device in the line of sight? This paper shows that by emitting short pulses

(1-2), and analyzing multi-bounce reflection from the door (4-1), we can

infer hidden geometry even if the intermediate bounces (3) are not visible.

The transient imaging camera prototype consists of (a) Femtosecond laser

illumination (b) Picosecond-accurate detectors and (c) an Ultrafast sam-

pling oscilloscope. We measure the Space Time Impulse Response (STIR)

of the scene (d) containing a hidden 1-0-1 barcode and reconstruct the hid-

den surface. Please refer to supplementary video 8 for more results.

In our transient light transport framework, light takes a

finite amount of time to travel from one scene point to the

other. Recent advances in ultra-high speed imaging have

made it possible to sample light as it travels 0.3 millime-

ter in 1 picosecond. The dynamics of transient light trans-

port in response to a single ray impulse illumination can

be extremely complex, even for a simple scene. Unlike

a traditional 2D pixel, which measures the total number

of photons, transient light transport measures photon ar-

rival rate as a function of time. In Section 3, we propose

a transient imaging camera model which samples incident

light continuously. In Section 4, we propose the theoretical

framework called inverse transient light transport for esti-

mating the geometry of scenes that may contain elements

occluded from both the camera and illumination. Section 5

describes our hardware prototype comprising a femtosec-
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Figure 2. Popular imaging methods plotted in the Space-Angle-Time

axes. With higher dimensional light capture, we expand the horizons of

scene understanding. Our paper uses LIDAR-like imaging hardware, but,

in contrast, we exploit the multi-path information which is rejected in both

LIDAR and OCT.

ond laser and a directionally sensitive, picosecond accurate

photo sensor array. Using our prototype, we demonstrate all

the key functionalities required in a transient imaging cam-

era: geometry, photometry, multi-bounce observations and

free-space functioning. Finally, in Section 6, we experimen-

tally demonstrate how our proposed imaging model enables

novel scene understanding which allows us to look around

the corner without any device in the line of sight (Figure 1).

2. Related work

Global light transport: Light often follows a complex

path between the emitter and sensor. A description of

steady-state light transport in a scene is referred to as the

rendering equation [1]. Extensions have been described

to include time in light transport [2]. In [3], Raskar and

Davis proposed inverse analysis using a 5D time-light trans-

port matrix to recover geometric and photometric scene pa-

rameters. In addition, Smith et. al. [4] proposed a mod-

ification of the rendering equation via a transient render-

ing framework. Accurate measurement of physical scene

properties is called inverse-rendering [5]. Complex models

have been developed for reconstructing specular [6], trans-

parent [7], Lambertian [8] scenes and joint lighting and re-

flectance [9]. Recent work in image-based modeling and

computational photography has also shown several meth-

ods for capturing steady-state light transport [10]. Our work

is highly influenced by the following pioneering efforts in

steady-state global light transport analysis. Nayar et. al. de-

composed an image into its direct and indirect components

under the assumption that the scene has no high-frequency

components [11]. Seitz et. al. [12] have decomposed im-

ages into multi-bounce components under the assumption

that the scene is Lambertian. Although the dual photogra-

phy approach [10] can see an object hidden from a cam-

era, it requires a projector in the object’s line of sight. Our

method exploits transient, rather than steady-state transport,

to estimate more challenging scene properties.

LIDAR and Time-gated imaging: LIght Detection And

Ranging systems modulate light, typically on the order of

nanoseconds, and measure the phase of the reflected signal

to determine depth [13]. Flash LIDAR systems use a 2D

imager to provide fast measurement of full depth maps [14,

15]. Importantly, a number of companies (Canesta, MESA,

3DV, PMD) are pushing this technology towards consumer

price points. The quality of phase estimation can be im-

proved by simulating the expected shape of the reflected

signal or estimating the effect of ambient light [16]. Sep-

arately detecting multiple peaks in the sensor response can

allow two surfaces, such as a forest canopy and a ground

plane, to be detected, and waveform analysis can detect

surface discontinuities [17]. Time-gated imaging captures

I(x, y, tδ) by integrating the reflected pulse of light over

extremely short windows. Multiple captures at incremental

time windows, tδ , allow the time image I(x, y, t) to be cap-

tured at up to 100 picosecond accuracy. Nanosecond win-

dows are used for imaging tanks at the range of kilometers

and picosecond gating allows imaging in turbid water.

Femtosecond Imaging: Optical coherence tomography

(OCT) [18], an interferometric technique, and two-photon

microscopy [19], using fluorescence, allow high-quality,

micrometer-resolution 3D imaging of biological tissue.

Both these methods are based on pulsed femtosecond illu-

mination. Experiments in this paper are the first attempt

at free-space use of femto-laser illumination in contrast to

their established use in optical fibers or millimeter-scale

biological samples. Streak cameras are ultrafast photonic

recorders which deposit photons across a spatial dimen-

sion, rather than integrating them in a single pixel. Picosec-

ond streak cameras have been available for decades [20].

Modern research systems can function in the attosecond

range [21]. All the existing methods based on time sam-

pling of light make no use of global light transport reason-

ing to infer scene characteristics. They instead image in

a single direction time-gated window to improve SNR and

reject multi-path scattering. This paper shows that com-

plex global reasoning about scene content is possible given

a measured multi-path time profile.



3. Transient Light Transport
The theory of light transport describes the interaction of

light with a scene. Incident illumination causes the first

bounce. This direct bounce is followed by a complex pat-

tern of inter-reflections whose dynamics are governed by

the scene geometry and material properties of the scene el-

ements. At any time instant we only observe a projection

of the complete set of scene light rays. This projection only

comprises the rays that are directed towards the camera.

We consider a scene S composed of M small planar

facets p1, . . . pM with 3D positions zi ∈ R3. Let Z =
[z1, . . . , zM ]. Define relative visibility between patches,

vij = vji = 0 or 1 depending on whether or not patch pi is

occluded from pj . Let D = [dij ] be the Euclidean distance

matrix containing pairwise distances. For analytical conve-

nience, we consider the camera (observer) and illumination

(source) as a single patch denoted by p0. It is straightfor-

ward to extend the following analysis to include multiple

sources and the camera at an arbitrary position in the scene.

We assume that the scene is static and material properties

are constant over sub-nanosecond imaging intervals.

Transient Imaging Camera: Our model comprises a

generalized sensor and a pulsed illumination source. Each

sensor pixel observes a unique patch in the scene. It also

continuously time samples the incoming irradiance, creat-

ing a 3D time image, I(xi, yi, t). The pixel at sensor po-

sition (xi, yi) observes the patch pi over time. The pulsed

illumination source generates arbitrarily short duration and

directional impulse rays. The direction of an impulse ray

aimed at patch pi is specified by (θi, φi). The sensor and

illumination are synchronized for precise measurement of

Time Difference Of Arrival (TDOA).

Space Time Impulse Response of the scene S denoted

by STIR(S) is a collection of time images, each captured

with an impulse ray illuminating a single scene patch pj .

This is a 5D function: STIR(xi, yi, θj , φj , t). We measure

STIR using the following (Figure 3):

1 For each patch pj : j = 1, . . . , M .

1a Illuminate pj with an impulse ray (θj , φj).

1b Record time image {I(xi, yi, t) : i = 1 . . . M ; t =
0 . . . T} = STIR(xi, yi, θj , φj , t).

In still scenes with static material properties, light transport

is a Linear and Time Invariant (LTI) process. Hence, the

STIR of the scene characterizes its appearance under any

general illumination from a given camera view. In this pa-

per, we use the STIR for developing novel algorithms and

models for scene understanding, particularly for seeing hid-

den scene patches.

4. Inverse Geometry
Unlike traditional time-of-flight imaging, our goal is to

compute the direct distances, d0i, using the first bounce, and

the pairwise distances, dij . Instead of using intrinsic camera
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Figure 3. Measuring the STIR of a scene with 3 patches using the transient

imaging camera. We successively illuminate a single patch and record a 3D

time image. Collection of such time images creates a 5D STIR.

calibration, we exploit second and higher order bounces to

estimate scene geometry. First, we use the onset informa-

tion contained in the STIR to estimate pairwise distances.

Then we compute a robust isometric embedding to deter-

mine patch coordinates. We develop our formulation for a

scene with the following strict assumptions:

1 Each patch is visible from all the other patches (vij =
1∀i, j). If not, then we image locally with a set of

patches for which this is true.

2 The reflectance of each patch pi has a non-zero diffuse

component. This assumption ensures that we are able

to estimate direct distances d0i.

In Section 4.3, we discuss the extension our framework to

scenes consisting of patches hidden from the camera and

illumination.

4.1. Distances from STIR
Define O1 = {O1

i |i = 1, . . . , M} as the set of first onsets:

the collection of all time instants, O1
i , when the pixel ob-

serving patch pi receives the first non-zero response while

the source illuminates the same patch pi (Figure 5). O1
i is

the time taken by the impulse ray originating at p0 directed

towards pi to arrive back at p0 after the first bounce; this

corresponds to the direct path p0 → pi → p0. Similarly,

we define O2 = {O2
ij |i, j = 1, . . . , M ; j �= i} as the set

of second onsets: the collection of times when the transient

imaging camera receives the first non-zero response from a

patch pi while illuminating a different patch pj (Figure 5).

This corresponds to the multi-path p0 → pj → pi → p0.

O2
ij = O2

ji. It is straightforward to label the onsets in O1

and O2 because they correspond to the first non-zero re-

sponses in STIR time images.

In order to compute D using O1 and O2, we

construct the forward distance transform, T2, of size



(M(M + 1)/2×M(M + 1)/2) which models the sum of

appropriate combinations of path lengths contained in the

distance vector d = vec(D) and relates it to the vector

of observed onsets O. Then we solve the linear system

T2d = O to obtain distance estimates d̂. As an exam-

ple, consider a scene with 3 patches (M = 3) as shown in

Figure 3. The linear system for this scene is constructed as:

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
0 0 0 0 2 0
0 0 0 1 1 1
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

d01

d12

d13

d02

d23

d03

⎤
⎥⎥⎥⎥⎥⎥⎦

= c

⎡
⎢⎢⎢⎢⎢⎢⎣

O1
1

O2
12

O2
13

O2
1

O2
23

O3
1

⎤
⎥⎥⎥⎥⎥⎥⎦

For any M , matrix T2 is full rank and well-conditioned.

Due to synchronization errors, device delays and response

times the observed onsets have measurement uncertainties

which introduce errors in distance estimates. We use the

redundancy in second onset values (O2
ij = O2

ji) to obtain

multiple estimates, d̂, and reduce error by averaging them.

A detailed noise analysis can be found in the supporting

technical report 8.

4.2. Structure from Pairwise Distances
The problem of estimating scene structure, Z, from pair-

wise distance estimates, D, is equivalent to finding an iso-
metric embedding Ẑ ⊂ RM×3 → R3 (Algorithm 1, [22]).

For computational convenience we take p0 to be the ori-

gin (z0 = (0, 0, 0)). A computer simulation that recovers

the scene structure from noisy distance estimates using the

isometric embedding algorithm is shown in Figure 4. We

used the estimated coordinates, Ẑ, iteratively to recompute

robust distance estimates. The use of convex optimization

to compute optimal embeddings in the presence of distance

uncertainties is explained in [22].

Algorithm 1 ISOEMBED [D̂]

1. Compute hij = 1
2

(
d2
0i + d2

0j − d2
ij

)
. Construct Gram

matrix HM×M = [hij ]
2. Compute the SVD of H = UΣV T

3. Pick 3 largest eigenvalue-vectors Σ3×3
3 , UM×3

3 , V 3×M
3

4. Compute embedding Ze = (Σ3)
1/2

V3

5. Rotate and translate to align Ẑ = RZe + T

4.3. Scenes with Occluders
We now consider a scene that contains a set of patches (say

H) hidden from both the camera and the source. Hidden

surface estimation is viewed as two sub-problems: (1) La-

beling third onsets and (2) Inferring distances to hidden

patches from integrated path lengths. To estimate the struc-

ture of the hidden patches, we make the following strong

assumptions:
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Figure 4. (a) Estimating distances in an all-visible scene comprising of

3 rectangles which are discretized as 49 patches. Note that reflectance is

not relevant. (b) Original geometry shows the surface normals in green.

(c) We used noisy 1st and 2nd time onsets (Gaussian noise ∼ N (μ, σ2),

μ = device resolution = 250ps and σ = 0.1) to estimate the distances

using the T2 operator (inset shows enlarged view). (d) This is followed

by isometric embedding and surface fitting. The reconstruction errors are

plotted. Color bar shows %-error in reconstructed coordinate values.

1 The number of hidden patches is known or assumed.

2 All third bounces arrive before fourth and higher order

bounces.

3 No two or more distinct third bounces ar-

rive at the same time in the same time profile

STIR(xi, yi, θj , φj , t = 0...T ).
The second assumption is true for scenes that have no inter-

reflection amongst hidden patches. The third assumption

is generally valid because we measure the STIR one patch

at a time. If a patch, pi, is hidden from p0, then the first

and second onsets involving pi cannot be observed, i.e the

vector of distances dH = [dij ] : pi ∈ H, j = 0, . . . , M
cannot be estimated using just O1 and O2. Hence, we

need to consider the set of third onsets, O3 = {O3
ijk :

i, j, k = 1, . . . , M ; i �= j; j �= k}, that corresponds to third

bounces. Note that there are O(M) first onsets, O(M2)
second onsets and O(M3) third onsets1. Also, Euclidean

geometry imposes that O3
ijk = O3

kji. Labeling the on-

sets contained in O3 is non-trivial. As a simple example,

consider the scene in Figure 5. Assume that the patches

p2 and p3 are hidden. We first compute the distances in-

volving visible patches, d01, d04, d14 as explained in Sec-

tion 4.1. The distances (d21, d24) and (d31, d34) are not

directly observable. Once these distances are estimated,

1An important generalization of the hidden patches scenario is to esti-

mate distances in the case of multiple interactions between hidden patches.

If a hidden patch has at most N inter-reflections with the other hidden

patches, then we need to utilize onsets that correspond to up to (N + 3)
bounces i.e. the sets O1,O2, . . . ,ON+3
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Figure 5. A scene with M = 4 patches. Patches p2 and p3 are hidden.

The blue (first) and green (second) onsets are a result of directly observing

visible patches p1 and p4. The pattern of arrival of third onsets depends

on the relative distance of the hidden patches p2 and p3 from the visible

patches. The onsets that correspond to light traversing the same Euclidean

distance are readily identified. Once the onsets are labeled, they are used

to obtain distances that involve hidden patches.

d02, d03 and d23 can be computed using multilateration.

Now, we apply our labeling algorithm to identify third on-

sets. The onsets, O3
141 and O3

414, are readily labeled using

TDOA, since we know the distances to patch p1 and p4. The

onsets O3
121, O

3
131, O

3
424, O

3
434, O

3
124, O

3
134, O

3
421, O

3
431 are

disambiguated using the facts that O3
421 = O3

124, O3
431 =

O3
134 and the onsets arrive in different time profiles of the

STIR(S). We sort the remaining onsets based on their ar-

rival times and label them based on the a priori assumption

of the proximity of hidden patches to visible patches. In this

example, w.l.o.g we assume that p2 is closer to p1 than p3.

Hence, the onset O3
121 arrives earlier than O3

131 (see onset

arrival profile in Figure 5). This labeling procedure can be

generalized for multiple hidden patches:

1 Estimate the distances to all the visible scene patches

(Section 4.1) and use the arrival times to label all third

bounce onsets corresponding to visible geometry.

2 Fix an arbitrary ordering of hidden patches based on

their proximity to some visible patch.

3 Use arrival times to identify the third onset pairs cor-

responding to same path length (O3
ijk = O3

kji). Label

them with the ordering of step 2.

4 Sort the remaining onsets according to their arrival

times and use step 2 ordering to label them.

We construct the distance operator, T3, that relates third

bounces arrival times involving hidden patches, OH , and

the distances to the hidden patches, dH . We solve the re-

sulting linear system T3dH = OH and obtain the complete

distance set, D. We then estimate the structure, Z, as dis-

cussed in Section 4.2. An example of reconstructing hidden

3D geometry is shown in Figure 6.

⎡
⎢⎢⎣

2 0 0 0
1 1 0 0
0 0 2 0
0 0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

d21

d24

d31

d34

⎤
⎥⎥⎦ = c

⎡
⎢⎢⎣

O3
121 −O1

1

O2
124 − (O1

1 + O1
4)/2

O3
131 −O1

3

O2
134 − (O1

1 + O1
4)/2

⎤
⎥⎥⎦
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Figure 6. (a) Estimating distances in scenes with hidden patches. Un-

known to the estimation algorithm, the hidden patches are on a plane

(shown in black). (b) Original patch geometry. We use 1st, 2nd and 3rd

bounce onsets, our labeling algorithm and the T3 operator (c) to estimate

hidden geometry. (d) The isometric embedding error plot verifies negligi-

ble reconstruction error and near co-planarity of patches. Onset noise and

color bar schemes are same as Figure 4.

5. Hardware Prototype
We corroborate the framework developed in Section 4 with

experiments conducted using a prototype transient imaging

camera. Our experiments demonstrate feasibility but not

a full-fledged imaging apparatus. In particular, we intend

this prototype (Figure 1) to show that it is feasible to reason

about multi-bounce global transport using the STIR.

We used a commercially-available reverse-biased silicon

photo sensor (Thorlabs FDS02, $72). This sensor has an

active area of 250 microns in diameter and a condensing

lens to gather more light. Photo-currents were digitized by

a 5 GHz oscilloscope. Our least count was 50 ps (1.5cm

light travel). Our ray impulse source was a modelocked

Ti-Sapphire laser with a center wavelength of 810 nm, that

emitted 50 femtosecond long pulses at a repetition rate of

93.68 MHz. The spatial bandwidth of these pulses greatly

exceeds the response bandwidth of the sensor. Average laser

power was 420 milliwatts, corresponding to a peak power of

greater than 85 kW.

We need to sample the incident light with picosecond

resolution and be highly sensitive to a low photon arrival

rate. Our depth resolution is limited by the response time

of the detector and digitizer (250 ps, 7.5cm light travel).

The high peak power of our laser was critical for registering

SNR above the dark current of our photo sensor. Also, our

STIR acquisition times are in nanoseconds, which allows

us to take a large number of exposures and time average

them to reduce Gaussian noise. In absence of a 2D photo

sensor array, we emulated directionality by raster scanning

the scene with a steerable laser and sensor.
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Figure 7. Design and Verification of a Transient Imaging Camera. (a) The ray impulses are recorded after being attenuated by a varying neutral density

filter. The peak pulse intensity decreases linearly with the attenuation. (b) The intensity of the first bounce from a diffuser obeys the inverse square fall-off

pattern. (c) We are able to record pulse intensities that are discernible from the noise floor even after the ray impulse has been reflected by three (2 diffuse

and 1 specular) patches. The time shifts are linearly proportional to the multi-path length.

We conducted four proof-of-concept experiments (Fig-

ure 7) in flatland (2D) to demonstrate the following key

properties of a transient imaging camera: free space func-

tioning, linearity, multi-path light collection, inverse square

intensity falloff and time invariance. We achieved synchro-

nization by triggering our pulses based on a reference photo

sensor. A small part of the laser pulse was deflected into

a reference photo sensor using a semi-reflective glass patch

and all pulse arrivals (onsets) were measured as TDOA w.r.t

the reference pulse.

6. Applications and Experiments
We use the transient imaging prototype and the algorithmic

framework developed in Section 4 to estimate geometry for

objects that do not reflect any light to camera due to specu-

larity or occlusion.

Missing direct reflection: Consider the example shown

in Figure 8(top) comprising a mirror and a diffuser. In

traditional cameras it is difficult to estimate the distance to

a specular surface because there is no direct reflection re-

ceived at the camera. Using transient imaging analysis, we

can estimate the distances to specular surfaces by observing

indirect bounces. If we aim the laser, L, towards a mirror

(in a known direction) it will strike an unknown point on

M . The reflected light will then illuminate points on the

diffuser. Separately, the position of the diffuser, x, is es-

timated via stereo triangulation (using the known angle of

the laser beam) or ToF (Section 4.1). When the laser illu-

minates M , the total path length sensed at a pixel observing

D is (z + y + x). Since x is known, the point M is ob-

tained using conic multilateration. Note that, in dual pho-

tography [10], we create the dual image, i.e. the projector

view, but that does not allow 3D estimation. We conducted

3 raster scans and assumed z1 = z2 = z3 = z. The path

lengths zi+xi+yi, i = 1, 2, 3 were estimated using TDOA.

We incurred a position error of 1.1662 cm and a maximum

distance error of 7.14% in reconstruction by multilateration.



Looking Around the Corner: We show an example of

multi-path analysis in a scene that contains patches which

are not visible to either the camera or the illumination

source. Consider the ray diagram shown in Figure 8(bot-

tom). Only light rays that have first bounced off the diffuser

reach the hidden patches P1, P2, P3. Light that is reflected

from the hidden patches (second bounce) can only reach

the camera once it is reflected off the diffuser again (third

bounce). The position and depth of the points on the dif-

fuser are estimated using first bounce onsets. We then raster

scan across the diffuser length and measure the time differ-

ence of arrival (TDOA) between the first and third bounce

onsets.

In this experiment we imaged a hidden 1−0−1 barcode

using the first and third bounces off of a single diffuser.

We used 2 sensors, S1 and S2, and a femtosecond laser

source, L, neither of which had the barcode in their line

of sight. The patches P1 and P3 were ground mirrors and

P2 was free space. The mirrors were aligned to maximize

the SNR required for registering a third bounce. The max-

imum separation between P1 and P3 was limited to 5 cm

because of SNR considerations. The first bounce, LD1S1,

was recorded by S1, and the two third bounces from the

hidden patches, LD1P1D4S2 and LD1P3D3S2, arrived at

S2 within 200 ps of each other. Our current sensor was not

fast enough and could only record the sum of the two third

bounces. The two bounces can be recorded more accurately

with a faster picosecond detector or separated using decon-

volution using S2’s impulse response. As a proof of con-

cept, we computed a high quality estimate by blocking P1

and P3, one at a time. The reconstruction results are shown

in Figure 8(b). We incurred a maximum error of 0.9574 cm

in coordinate reconstruction.

7. Future Work
To our knowledge, neither the transient light transport the-

ory nor the presented imaging experiments have ever been

conceived in literature. Our work, as it stands, has sev-

eral limitations which make it challenging to generalize the

transient imaging method to more complex, general scenes.

However, with sophisticated modeling and advanced instru-

mentation, it is possible to alleviate these restrictions.

Experimental: Isolating onsets in practice is inherently

noisy, as onsets do not arrive at discrete instances; rather,

they arrive as a continuous time profile. Though we have

assumed a discrete patch model, future research should in-

clude continuous surface models and utilize tools in differ-

ential geometry to model the transport in general scenes.

Additionally, the ray impulses are low pass filtered by the

sensor response. All these reasons cause a broad tempo-

ral blur, rather than a sharp distinct onset. A noise model

for the transient imaging camera can be found in support-

ing material 8. While working with focusing optics, spa-

tial blur causes some scene patches to correspond to the

same camera pixel. We alleviate this by working within

the camera’s depth-of-field. Every bounce off a diffuse sur-

face creates considerable light loss and, thus, impacts the

SNR. Another challenge is to collect strong multi-path sig-

nals (requiring single photon sensitivity) with ultra-fast time

sampling. Commercial solutions, such as Intensified CCD

cameras, allow image acquisition at very low light levels

and at relatively high gating speeds (200ps or lower). The

illumination source must be powerful enough to overcome

ambient light. Also, our current method will not work for

scenes which have arbitrarily placed highly specular ob-

jects, though reasoning may be improved with the use of

appropriate priors.

Theoretical: Novel noise models for the transient imag-

ing camera are required to account for uncertainties due to

light-matter interplay. If two or more scene patches are oc-

cluded from each other (vij = 0, i, j �= 0), our theoreti-

cal model fails. We circumvent this problem by using our

transient imaging framework locally, with a subset of scene

patches that satisfy our assumptions. The number of STIR

measurements grow polynomially with number of patches,

but the onset labeling complexity is exponential in the num-

ber of bounce orders used for inversion. Our framework will

benefit from optimization-based onset labeling algorithms

to account for time arrival uncertainties. We made a set of

strong a priori assumptions for hidden surface estimation.

Statistical regularization schemes, along with novel scene

geometry priors, will allow us to extend transient reasoning

to complex scenes where hidden surfaces may involve local

scattering.

8. Conclusion
The goal of this paper is to explore the opportunities in

multi-path analysis of light transport. We developed the the-

oretical basis for analysis and demonstrated potential meth-

ods for recovering scene properties for a range of simple

scenarios. Emerging trends in femtosecond accurate emit-

ters, detectors and nonlinear optics may support single-shot

time-image cameras. Upcoming low-cost solid state lasers

will also support ultra-short operation. The key contribution

here is exploration of a new area of algorithms for solv-

ing hard problems in computer vision based on time-image

analysis. This, in turn, has tremendous applications in other

areas such as scatter-free reconstruction in medical imag-

ing, better layout understanding for fire and rescue person-

nel (Figure 1), tracking beyond line of sight in surveillance

and car collision avoidance at blind corners, and robot path

planning with extended observable structure. New research

will adapt current work in structure from motion, segmen-

tation, recognition and tracking to a novel time-image anal-

ysis that resolves shapes in challenging conditions.

Supplementary Material
http://cameraculture.media.mit.edu/femtotransientimaging
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Figure 8. Missing direct reflection (Top): (a) A photo of the setup. (b) Ray diagram describing the light pulse path in 3 raster scans. (c) Plot showing

multilateration using the 3 raster scans data: original and reconstructed scene geometries. (d) Oscilloscope data plot showing the TDOA between the 2nd

bounce and the reference signal. Looking around the corner (Bottom): (a) A photo of the setup showing 101 hidden barcode. The sensors and the laser

are completely shielded from the barcode. (b) Ray diagram tracing the paths of 1st and 3rd bounces in the 2 raster scans. (c) Plot showing the scene

geometry reconstruction, 1st bounce and the two separately recorded 3rd bounces. Note the very small delay (≤ 200 ps) between two 3rd bounce arrivals.

(d) Oscilloscope data plot showing the 1st bounce and the time delayed sum of two 3rd bounces for both raster scans. Please zoom in the PDF version for

details.
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[21] J Itatani, F Quéré, G L Yudin, M Y Ivanov, F Krausz, and
P B Corkum, “Attosecond streak camera”, Physical Review
Letters ’02. 2

[22] J Dattorro, “Convex optimization & euclidean distance ge-
ometry”, Meboo Publishing USA. 4


