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Diffuse Imaging: Creating Optical Images with
Unfocused Time-Resolved Illumination and Sensing
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Abstract—Conventional imaging uses steady-state illumination
and light sensing with focusing optics; variations of the light
field with time are not exploited. We develop a signal processing
framework for estimating the reflectance f of a Lambertian
planar surface in a known position using omnidirectional, time-
varying illumination and unfocused, time-resolved sensing in
place of traditional optical elements such as lenses and mirrors.
Our model associates time sampling of the intensity of light
incident at each sensor with a linear functional of f . The discrete-
time samples are processed to obtain `2-regularized estimates of
f . Improving on previous work, using non-impulsive, bandlim-
ited light sources instead of impulsive illumination significantly
improves signal-to-noise ratio (SNR) and reconstruction quality.
Our simulations suggest that practical diffuse imaging appli-
cations may be realized with commercially-available temporal
light intensity modulators and sensors used in standard optical
communication systems.

Index Terms—light transport, optical imaging, reflectance,
resolution, quantization, sampling, time of flight.

I. INTRODUCTION

IMAGING is distinguished from other forms of sensing by
having the goal of producing an image—a representation

in one-to-one spatial correspondence with an object or scene.
Traditional imaging involves illumination of the scene with
a light source whose intensity does not vary with time.
The image, or the reflectance pattern on scene surfaces, is
acquired by using a lens to focus the reflected light on a two-
dimensional (2D) array of light meters. This letter expounds a
diffuse imaging framework through which a focused image is
produced without optical focus; instead, the image is recon-
structed from time-resolved measurements of light intensity in
response to time-varying scene illumination. Diffuse imaging
opens up possibilities for forming images without lenses and
mirrors and enables practical implementations of challenging
new applications such as imaging occluded scenes [1].

The use of high-speed sensing in photography is associated
with effectively stopping motion [2]. We use time-resolved
sensing differently: to differentiate among paths of different
lengths from light source to scene to sensor. Thus, like in
time-of-flight range measurement systems [3], [4], we are
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Fig. 1. An omnidirectional source (red point) illuminates a planar scene,
and the reflected light is measured at a 4-by-4 array of sensors (blue points).

exploiting that the speed of light is finite. However, rather
than using the duration of delay to infer distances, we use
temporal variation in the intensity of measured light to infer
scene reflectance. This is achieved through an unmixing of the
reflectance information that is linearly combined at the sensor
because distinct optical paths may have equal path length.

Diffuse imaging involves only the use of diffuse or omni-
directional light sources and omnidirectional light sensors. In
conventional photography, the light source is omnidirectional
but the sensor array is focused at the scene. A dual configu-
ration is also possible in which the sensing is omnidirectional
and the light source is directed, with optical focusing [5].

Sections II, III, and IV expand on [1], especially by pro-
viding a precise signal processing model. Sections V and
Section VI show how to improve upon the theoretical and prac-
tical limitations of using impulsive illumination and ultrafast
sensing as proposed in [1]. In particular, simulations suggest
that diffuse imaging can be applied to build practical imaging
systems using non-ultrafast, opto-electronic hardware used in
standard optical communication systems.

II. SCENE RESPONSE TO IMPULSIVE ILLUMINATION

Consider the imaging scenario depicted in Fig. 1, with a
planar surface to be imaged, a single, time-varying, monochro-
matic, omnidirectional illumination source, and omnidirec-
tional time-resolved sensors indexed by k ∈ {1, 2, . . . , K}.
We assume that the position, orientation, and dimensions (L-
by-L) of the planar surface are known. Estimation of these
geometric parameters using diffuse illumination and time-
resolved sensing was recently demonstrated [6]. Formation of
an ideal gray scale image is the recovery of the reflectance
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Fig. 2. Main plots: Time delay from source to scene to sensor is a continuous
function of the position in the scene dk(x). Insets: The attenuation ak(x) of
the light is also a continuous function of the position in the scene (1).

pattern on the surface, which can be modeled as a 2D function
f : [0, L]2 → [0, 1]. We assume the surface to be Lambertian
so that its perceived brightness is invariant to the angle of
observation [7]; incorporation of any known bidirectional
reflectance distribution function would not add insight.

The light incident at Sensor k is a combination of the time-
delayed reflections from all points on the planar surface. For
any point x = (x1, x2) ∈ [0, L]2, let d(1)(x) denote the dis-
tance from illumination source to x, and let d(2)k (x) denote the
distance from x to Sensor k. Then dk(x) = d(1)(x) + d

(2)
k (x)

is the total distance traveled by the contribution from x. This
contribution is attenuated by the reflectance f(x), square-law
radial fall-off, and cos(θ(x)) to account for foreshortening
of the surface with respect to the illumination, where θ(x)
is the angle between the surface normal at x and a vector
from x to the illumination source. Thus, when the intensity of
the omnidirectional illumination is a unit impulse at time 0,
denoted s(t) = δ(t), the contribution from point x is the light
signal ak(x) f(x) δ(t− dk(x)), where we have normalized to
unit speed of light and

ak(x) = cos(θ(x))/
(
d(1)(x) d

(2)
k (x)

)2
. (1)

Examples of distance functions and attenuation factors are
shown in Fig. 2.

Combining contributions over the plane, the total light
incident at Sensor k is

gk(t) =
∫ L

0

∫ L

0
ak(x) f(x) δ(t− dk(x)) dx1 dx2. (2)

Thus, evaluating gk(t) at a fixed t amounts to integrating over
x ∈ R2 with dk(x) = t. Define the isochronal curve Ct

k =
{x : dk(x) = t}. Then

gk(t) =
∫
ak(x(k, u))f(x(k, u)) du (3)

where x(k, u) is a parameterization of Ct
k with unit speed.

The intensity gk(t) thus contains the contour integrals over
Ct

k’s of the desired function f . Each Ct
k is a level curve of

dk(x); as illustrated in Fig. 2, these are ellipses.

III. SAMPLING THE SCENE RESPONSE

A digital system can use only samples of gk(t) rather than
the continuous-time function itself. We now see how uniform
sampling of gk(t) with a linear time-invariant (LTI) prefilter
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Fig. 3. (a) A single measurement function ϕk,n(x) when h(t) is the box
function (7). Inset is unchanged from Fig. 2(a). (b) When h(t) is the box
function (7), the measurement functions for a single sensor {ϕk,n(x)}Nn=1
partition the plane into elliptical annuli. Coloring is by discretized delay using
the colormap of Fig. 2. Also overlaid is the discretization of the plane of
interest into an M -by-M pixel array.

relates to linear functional measurements of f . This establishes
the foundations of a Hilbert space view of diffuse imaging.

Suppose discrete samples are obtained at Sensor k with
sampling prefilter hk(t) and sampling interval Tk:

yk[n] =
(
gk(t) ∗ hk(t)

)∣∣
t=nTk

, n = 1, 2, . . . , N. (4)

A sample yk[n] can be seen as a standard L2(R) inner product
between gk and a time-reversed and shifted hk [8]:

yk[n] = 〈gk(t), hk(nTk − t)〉. (5)

Using (2), we can express (5) in terms of f using the standard
L2([0, L]2) inner product:

yk[n] = 〈f, ϕk,n〉 where (6a)
ϕk,n(x) = ak(x)hk(nTk − dk(x)). (6b)

Over a set of sensors and sample times, {ϕk,n} will span a
subspace of L2([0, L]2), and a sensible goal is to form a good
approximation of f in that subspace.

For ease of illustration and interpretation, let Tk = T and

hk(t) = h(t) =

{
1, for 0 ≤ t ≤ T ;
0, otherwise (7)

for all k, which corresponds to “integrate and dump” sampling.
Now since hk(t) is nonzero only for t ∈ [0, T ], by (4)
or (5), the sample yk[n] is the integral of gk(t) over t ∈
[(n−1)T, nT ]. Thus, by (3), yk[n] is an a-weighted integral of
f between the contours C(n−1)T

k and CnT
k . To interpret this as

an inner product with f as in (6), we see that ϕk,n(x) is ak(x)

between C
(n−1)T
k and CnT

k and zero otherwise. Fig. 3(a)
shows a single representative ϕk,n. The functions {ϕk,n}n∈Z
for a single sensor have disjoint supports; their partitioning of
the domain [0, L]2 is illustrated in Fig. 3(b).

IV. IMAGE RECOVERY USING LINEAR BACKPROJECTION

To express an estimate f̂ of the reflectance f , it is conve-
nient to fix an orthonormal basis for a subspace of L2([0, L]2)
and estimate the expansion coefficients in that basis. For an
M -by-M pixel representation, let

ψi,j(x) =

 M/L, for (i− 1)L/M ≤ x1 < iL/M,
(j − 1)L/M ≤ x2 < jL/M ;

0, otherwise
(8)
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Fig. 4. Visualizing linear system representation A in (10). Contribution from
Sensor 1 is shown. The matrix has 100 columns (since M = 10) and 40 rows
(through choice of T ). All-zero rows arising from times prior to first arrival
of light and after the last arrival of light are omitted.

so that f̂ =
∑M

i=1

∑M
j=1 ci,jψi,j in the span of {ψi,j} is

constant on ∆-by-∆ patches, where ∆ = L/M .
For f̂ to be consistent with the value measured by Sensor k

at time n, we must have

yk[n] = 〈f̂ , ϕk,n〉 =
∑M

i=1

∑M
j=1 ci,j〈ψi,j , ϕk,n〉. (9)

Note that the inner products {〈ψi,j , ϕk,n〉} exclusively depend
on ∆, the positions of illumination and sensors, the plane
geometry, the sampling prefilters {hk}Kk=1, and the sampling
intervals {Tk}Kk=1—not on the unknown reflectance of interest
f . Hence, we have a system of linear equations to solve for
the coefficients {ci,j}. (In the case of basis (8), the coefficients
are directly the pixel values.)

When we specialize to the box sensor impulse response (7)
and basis (8), many inner products 〈ψi,j , ϕk,n〉 are zero so
the linear system is sparse. The inner product 〈ψi,j , ϕk,n〉 is
nonzero when reflection from the (i, j) pixel affects the light
intensity at Sensor k within time interval [(n−1)T, nT ]. Thus,
for a nonzero inner product the (i, j) pixel must intersect the
elliptical annulus between C(n−1)T

k and CnT
k . With reference

to Fig. 3(a), this occurs for a small number of (i, j) pairs unless
M is small or T is large. The value of a nonzero inner product
depends on the fraction of the square pixel that overlaps with
the elliptical annulus and the attenuation factor ak(x).

To express (9) with a matrix multiplication, replace double
indexes with single indexes (i.e., vectorize, or reshape) as

y = A c (10)

where y ∈ RKN contains the data samples {yk[n]}, the first N
from Sensor 1, the next N from Sensor 2, etc.; and c ∈ RM2

contains the coefficients {ci,j}, varying i first and then j. Then
〈ψi,j , ϕk,n〉 appears in row (k−1)N+n, column (i−1)M+j

of A ∈ RKN×M2

. Fig. 4 illustrates an example of the portion
of A corresponding to Sensor 1 for the scene in Fig. 1.

Assuming that A has a left inverse (i.e., rank(A) = M2),
one can form an image by solving (10). The portion of A
from one sensor cannot have full column rank because of
the collapse of information along elliptical annuli depicted in
Fig. 3(a). Full rank can be achieved with an adequate number
of sensors, noting that sensor positions must differ to increase
rank, and—as demonstrated in Section VI—greater distance
between sensor positions improves conditioning.

s(t) gk(t) ⊕ hk(t)

ηk(t)

- - - -?
rk(t)

Fig. 5. Block diagram abstraction for signal sampled at Sensor k.
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Fig. 6. (a) Responses to impulsive illumination gk(t). (b) Responses to
lowpass illumination gk(t) ∗ s(t) are stronger and smoother.

V. ILLUMINATION DESIGN

A Dirac impulse illumination is an abstraction that cannot
be realized in practice. One can use expensive, ultrafast optical
lasers that achieve Terahertz bandwidth as an approximation to
impulsive illumination, as in experimental verification of our
framework [1]. We show that non-impulsive illuminations are
not only more practical for implementation, but they improve
upon impulsive illumination for typical scenes and sensors.

Light transport is linear and time invariant. Hence, one
can consider the effect of a general illumination intensity
waveform s(t) as the superposition of effects of constant
illuminations over infinitesimal intervals. This superposition
changes the light incident at Sensor k from gk(t) in (2) to
gk(t) ∗ s(t). Thus, the block diagram in Fig. 5 represents
the signal at Sensor k, including its sampling prefilter and
photodetector noise represented by ηk(t). Except at very low
flux, ηk(t) is modeled well as single-independent, zero-mean,
white and Gaussian. The noise variance σ2 depends on the
device physics and assembly; our simulations use σ = 0.1.

A typical natural scene f has a good bandlimited approxi-
mation. Integration over elliptical contours Ct

k further smooths
the signal. Plotted in Fig. 6(a) are continuous-time responses
gk(t) corresponding to Fig. 1. Since these have sharp decay
with frequency, s(t) is best chosen to be lowpass to put signal
energy at frequencies most present in gk(t).

VI. SIMULATIONS

In [1], high-bandwidth illumination and sampling were used
under the assumption that these would lead to the highest re-
construction quality. However, impulsive illumination severely
limits the illumination energy, leading to poor SNR, especially
due to the radial fall-off attenuations in (1).

Here we compare impulsive and lowpass illumination. All
image reconstructions are obtained with (10) regularized by
the `2 norm of the discrete Laplacian, with regularization
parameter optimized for `2 error. This conventional technique
for backprojection [9] mildly promotes smoothness of the
reconstruction; additional prior information, such as sparsity
with suitable {ψi,j}, is beneficial but would obscure the
present contribution. Results are for M = 50 and several
values of sampling period T and sensor array extent W .
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W
=

2
.0

PSNR = 14.90 dB PSNR = 22.62 dB PSNR = 27.24 dB

W
=

4
.0

PSNR = 17.21 dB PSNR = 24.67 dB PSNR = 27.13 dB

Fig. 7. Simulated reconstructions with impulsive illumination and 4-by-4
array of sensors and true scene as in Fig. 1.

In direct analogy with [1], we simulated short-pulsed, high-
bandwidth illumination using a square-wave source with unit
amplitude and time width equal to one-fifth of T . Fig. 7 shows
the results. Reconstruction with good spatial resolution is
indeed possible, and the conditioning improves as W increases
and as T decreases.

Using non-impulsive, low-bandwidth illumination, we show
that high SNR can be achieved while improving the recon-
struction resolution. We chose s(t) to be the truncated impulse
response of a third-order Butterworth filter, with again a unit
amplitude. As illustrated in Fig. 6(b), this choice of s(t) pro-
duces a much stronger scene reflection and hence improves the
SNR at the detector. Note that the critical lowpass portion of
gk(t) is preserved and furthermore amplified. Fig. 8 shows the
resulting improvements in reconstructed images; we can infer
that the improvement in SNR is coming without excessive loss
of matrix conditioning. Hence, the choice of a non-impulsive
illumination is not only practical but demonstrably better in
terms of image reconstruction quality.

VII. SUMMARY

The proof-of-concept experiments in [1] show that diffuse
imaging can succeed in forming image reconstructions. In this
letter we have used signal processing abstractions to show that
using lowpass time-varying illumination instead of impulsive
sources greatly improves the SNR and reconstruction quality.
Our work inspires detailed study of how pixel size, sensor
locations, sampling prefilters, and sampling rates affect the
conditioning of the inverse problem.

Assigning dimensions to our simulation enables the spec-
ification of required device capabilities. Suppose the 50-by-

T = 0.5 T = 0.1 T = 0.02

W
=
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W
=

2
.0

PSNR = 14.79 dB PSNR = 22.12 dB PSNR = 43.46 dB

W
=
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PSNR = 16.84 dB PSNR = 26.70 dB PSNR = 43.66 dB

Fig. 8. Simulated reconstructions with lowpass illumination and 4-by-4 array
of sensors and true scene as in Fig. 1.

50 pixel image reconstruction with W = 4 and T = 0.1
shown in Fig. 8 corresponds to a physical planar scene of edge
length 15 m imaged from 10 m away using an array with 4 m
extent. Then the illumination bandwidth is about 375 MHz
and the sensor sampling frequency is about 750 MHz. The
total energy output of the source is about 44 mJ. Compared to
the 40 THz bandwidth laser (10.5 nJ per pulse) and 500 GHz
streak camera used in [1], our simulations show that diffuse
imaging can be implemented with practical opto-electronic
hardware used in optical communication.
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