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ABSTRACT

Light detection and ranging (LIDAR) systems use time of flight
(TOF) in combination with raster scanning of the scene to form depth
maps, and TOF cameras instead make TOF measurements in paral-
lel by using an array of sensors. Here we present a framework for
depth map acquisition using neither raster scanning by the illumina-
tion source nor an array of sensors. Our architecture uses a spatial
light modulator (SLM) to spatially pattern a temporally-modulated
light source. Then, measurements from a single omnidirectional sen-
sor provide adequate information for depth map estimation at a res-
olution equal that of the SLM. Proof-of-concept experiments have
verified the validity of our modeling and algorithms.

Index Terms— compressed sensing, depth maps, LIDAR, rang-
ing, time of flight

1. INTRODUCTION

Sensing 3D scene structure is an integral part of applications ranging
from 3D microscopy [1] to geographical surveying [2], and it is now
increasingly of interest for consumer applications. While 2D imag-
ing is a mature technology, 3D acquisition techniques have room for
significant improvements in spatial resolution, range accuracy, and
cost effectiveness. In comparison to stereo disparity, depth-from-
focus, depth-from-shape, and depth-from-motion, active range ac-
quisition systems such as LIDAR systems [3] and TOF cameras [4]
are more robust against noise [5], work in real-time at video frame
rates, and acquire range information from a single viewpoint with
little dependence on scene reflectance or texture. Both LIDAR and
TOF cameras operate by measuring the time difference of arrival be-
tween a transmitted pulse and the scene reflection. A LIDAR system
consists of a pulsed illumination source such as a laser, a mechani-
cal 2D laser scanning unit, and a single time-resolved photodetector
or avalanche photodiode [3]. The TOF camera illumination unit is
composed of an array of omnidirectional, modulated, infrared light
emitting diodes (LEDs) [4]. The reflected light from the scene—
with time delay proportional to distance—is focused at a 2D array
of TOF range sensing pixels. A major shortcoming of LIDAR sys-
tems and TOF cameras is low spatial resolution, or the inability to
resolve sharp spatial features in the scene.

This paper presents a new compressive depth acquisition cam-
era (CoDAC) architecture as an alternative to both LIDAR and TOF
camera systems. Like a LIDAR system, CoDAC uses only a sin-
gle omnidirectional sensor. However, rather than raster scanning the
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scene to obtain spatial resolution, CoDAC uses a spatial light modu-
lator (SLM) to serially illuminate subsets of the scene (see Fig. 1(a)).
Spatial resolution equal to that of the SLM is achieved despite using
fewer SLM patterns than the number of pixels in the SLM.

CoDAC is reminiscent of compressed sensing (CS) systems for
photographic (intensity or reflectance) image capture [6], and it cer-
tainly has similarities. However, conventional compressed sensing
techniques [7] are not applicable here because the information of
interest (depths of scene points) appears nonlinearly in the measure-
ments. For example, see the expression for r(t) in Fig. 1(a), where
the depths dA, dB , and dC are nonlinearly combined in all discrete
samples of r(t). A main contribution is thus a reconstruction tech-
nique that works despite the nonlinear mixing of scene depths in the
measured values. Our method exploits approximation of the scene
geometry as piecewise planar. Furthermore, since a scene depth is
generally more compressible than scene reflectance or texture, we
expect a smaller number of measurements to suffice; this is indeed
the case, as our number of measurements is 1 to 5% of the number
of pixels as compared to 10 to 40% for reflectance imaging [6].

In a previous application of the CS framework to LIDAR sys-
tems [8], the authors use spatial patterning of measurements pro-
vided by a digital micromirror device. Incident reflected light is
measured with a photon-counting detector and gated to collect pho-
tons arriving from a priori chosen range intervals. The use of im-
pulsive illumination and range gating make this a conventional CS
problem in that the quantities of interest (reflectances as a function
of spatial position, within a depth range) are combined linearly in
the measurements. This approach achieves 3D imaging with a sin-
gle sensor, but it has two major disadvantages: acquiring a complete
scene depth map requires a full range sweep; and there is no method
to distinguish between objects at different depths within a chosen
range interval.

CoDAC has two acquisition stages and a two-step reconstruction
procedure. The paper is organized according to these steps:
• Step 1, discussed in Section 3, uses no spatial patterning, i.e., a
fully-transparent SLM configuration. Under the assumption that the
scene is approximately piecewise planar, the continuous-time light
intensity signal at the single photodetector is approximated well in a
certain parametric class. Estimation of the parameters of the signal
implies recovery of the range of depth values present in the scene.
The use of a parametric signal modeling and recovery framework [9]
enables us to achieve high depth resolution relative to the speed of
the time sampling at the photodetector. After discretizing the depths
identified in this step, the remaining problem is to find correspon-
dences between spatial locations and depths to form the depth map.
• Step 2, discussed in Section 4, uses many pseudorandom binary
patterns on the SLM. The assumption that the scene is approxi-
mately piecewise planar translates to the Laplacian of the depth map
being approximately sparse. We introduce a novel convex optimiza-
tion problem that finds the depth map consistent with the measure-



p
a
ra

m
e

tr
ic

 s
ig

n
a

l 

p
ro

c
e

s
s

in
g

spatial light 

modulator

temporal 

intensity 

modulator

focusing 

optics

IN ADC OUT

photodetector

A

B

C

control 

and sync

time sampling
(K samples/period)

N

scene 

response #1

scene 

response #M
reconstructed N-by-N

pixel depth map
O 

C 
Q 

Qx 

O 

C Q 

X 

Y 

Z 

O 

(a) (b)

Fig. 1. (a) Proposed architecture for acquiring depth maps of scenes constituted of piecewise-planar facets. The scene is in far field, i.e., the
baseline b and the dimensions of each planar facet w are much smaller than the distance between the imaging device and the scene. A light
source with periodically-varying intensity s(t) illuminates an N ×N -pixel SLM. The scene is serially illuminated with M spatial patterns.
For each patterned illumination the reflected light is focused at the photodetector andK digital time samples are recorded. TheM ·K samples
are computationally processed using parametric signal processing to reconstruct an N ×N -pixel depth map of the scene. (b) [TBD]

ments that approximately minimizes the number of nonzero entries
in the Laplacian of the depth map. Solving this optimization problem
yields the desired depth map.

To convey the main ideas despite space limitations, Sections 3
and 4 use restrictions to simple rectangular planar facets and omit
many details. More general scenes are discussed in [10]. The full pa-
per [10] also includes details on proof-on-concept experiments and
extensions to scenes with multiple planar facets that are not neces-
sarily rectangular, textured scenes, and non-impulsive illumination.

2. ANALYSIS FOR A SINGLE RECTANGULAR FACET

Consider the setup shown in Fig. 1(b). A chosen SLM pattern is
focused on the scene using a focusing system. The center of the
focusing system is denoted by O and is also the origin for a 3D
coordinate system (X,Y, Z). All angles and distances are measured
with respect to this global coordinate system. The focusing optics
for the SLM illumination unit are chosen such that it has a depth-
of-field (DOF) between distances d1 and d2 (d1 < d2) along the
Z dimension and a square field-of-view (FOV) along the X-Y axes.
Thus, the dimensions of a square SLM pixel projected onto the scene
remains constant within the DOF and across the FOV. We denote
the dimensions of an SLM pixel within the DOF by ∆ × ∆. An
SLM with higher spatial resolution corresponds to a smaller value
of ∆. We also assume that the scene lies within the DOF so that all
planar facets in the scene are illuminated by projection pixels of the
same size. We consider only binary patterns, i.e., each SLM pixel is
chosen to be either completely opaque or fully transparent.

The light reflected from the scene is focused at the photodetec-
tor. We assume that the baseline separation b between the focusing
optics of the detector and the SLM illumination optics is very small

compared to the distance between the imaging device and the scene.
Thus, we may conveniently model O as the effective optical center
of the entire imaging setup (illumination and detector).

Notation. Let OC be the line that lies in the Y -Z plane and is
also perpendicular to the rectangular facet. The following parame-
ters completely specify the rectangular facet (see Fig. 1(b)):

• d⊥ denotes the length of the line OC.
• φ1 and φ2 are angles between line OC and the extreme rays

connecting the vertical corners of the rectangular facet to O.
Also let |φ1 − φ2| = δφ. Clearly, δφ is related to L.

• θ1 and θ2 are angles between line OC and the extreme rays
connecting the horizontal corners of the rectangular facet to
O. Let |θ1 − θ2| = δθ. Clearly, δθ is related to W .

• α is the angle between OC and the Z axis in the Y -Z plane.

Assumptions. We assume that the scene is in the far field, i.e.,
the dimensions of the rectangular facet are small compared to the
distance between the scene and the imaging device, or W � d1

and L � d1. This implies that δφ and δθ are small angles and the
radial fall-off attenuation of light arriving from different points on
the rectangular facet is approximately the same for all the points.
We also assume that the rectangular facet is devoid of texture and
reflectance patterns. Finally, we normalize to unit speed of light.

3. RESPONSE TO FULLY-TRANSPARENT SLM PATTERN

Let Q be a point on the rectangular planar facet at an angle of θ and
φ with respect to the line OC as shown in Fig. 1(b). A unit-intensity
illumination pulse, s(t) = δ(t), that originates at the source at time
t = 0 will be reflected from Q, attenuated due to scattering, and
arrive back at the detector delayed in time by an amount proportional
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Fig. 2. (A) All-ones scene illumination. (B) Scene response to all-
ones scene illumination. (C) Diagrammatic explanation of the mod-
eling of the parametric signal p(t).

to the distance 2 |OQ|. Thus the signal incident on the photodetector
in response to impulse illumination of Q is q(t) = a δ(t− 2 |OQ|),
where a is the total attenuation (transmissivity) of the unit-intensity
pulse. Denoting the photodetector impulse response by h(t), the
electrical output rq(t) of the photodetector is

rq(t) = h(t) ∗ a δ(t− 2 |OQ|) = a h(t− 2 |OQ|).

The response to a fully-transparent SLM pattern (see Fig. 2) is
obtained by integrating rq(t) over θ ∈ [θ1, θ2] and φ ∈ [φ1, φ2]. For
notational simplicity, let γ(φ1, θ1) =

√
sec2 φ1 + tan2 θ1. Then

under an appropriate small-angle approximation, we obtain

r(t) =
a

TφTθ
h(t) ∗P(t, T0, Tφδφ, Tθδθ)

where P(t, T0, Tφδφ, Tθδθ) is defined graphically in Fig. 2-C with

Tφ =
2d⊥

γ(φ1, θ1)
tanφ1 sec2 φ1, Tθ =

2d⊥
γ(φ1, θ1)

tan θ1 sec2 θ1,

and T0 = 2d⊥γ(φ1, θ1).
Parameter Recovery. Estimating the function P(t, T0, Tφδφ, Tθδθ)

by processing the digital samples r[k] of function r(t) enables esti-
mation of various parameters including Tmin and Tmax. The detector
impulse response h(t) is generally modeled as a bandlimited low-
pass filter. Thus, the general deconvolution problem of obtaining
P(t, T0, Tφδφ, Tθδθ) from samples r[k] is ill-posed and highly sen-
sitive to noise. However, our modeling shows that the light transport
function P(t, T0, Tφδφ, Tθδθ) is piecewise linear. This knowledge
makes the recovery of P(t, T0, Tφδφ, Tθδθ) a parametric deconvo-
lution problem that we solve using the parametric signal processing
framework described in [11].

The analysis up to this point is independent of the tilt α and
orientation of the rectangular plane with respect to the global coor-
dinate system (X,Y, Z). This is intuitive because the illumination
and sensing are omnidirectional.

4. RESPONSE TO BINARY SLM PATTERN

As discussed in Section 3, the SLM pixels discretize the FOV into
small squares of size ∆ × ∆. We index both the SLM pixels and
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Fig. 3. (A) Binary patterned scene illumination. (B) Scene response
to all-ones scene illumination. (C) Diagrammatic explanation of the
high-resolution SLM (small ∆) approximation. (D) Modeling of
the parametric signal Up(t) as a weighted sum of equally-spaced
Diracs. Note that Up(t) has the same time envelope as the signal
P(t, T0, Tφδφ, Tθδθ).

the corresponding scene points by (i, j), and we illuminate the M
binary SLM patterns by p. Consider the scene shown in Fig. 3 con-
sisting of only a single rectangular planar facet and illuminated with
a binary SLM pattern given by a collection of values {cpij : i =
1, . . . , N, j = 1, . . . , N} where each cpij is either 0 or 1. Let dij
denote the depth in the direction of illumination of SLM pixel (i, j).
The depths for all (i, j) associated with the rectangular facet form
the depth map, D = {Dij : i = 1, . . . , N, j = 1, . . . , N}, where
Dij = dij if rays along SLM illumination voxel (i, j) intersect the
rectangular facet and Dij = 0 otherwise. Also define the binary
valued index map, I = {Iij : i = 1, . . . , N, j = 1, . . . , N}, where
Iij = 1 if Dij 6= 0.

Analysis of the scene response is detailed in [10]. Digital sam-
ples of the received signal rp[k] allow us to recover the depth map
D as follows. The set of distance values, {dij}, contains repeti-
tions; i.e., several (i, j) positions may have the same depth value
dij . All these points will lie on a circular arc on the rectangular facet
as shown in Fig. 3-A. Each dij belongs to the set of equally-spaced
distinct depth values {d1,d2, . . . ,dL} where

L =
Tmax − Tmin

2∆
, d1 = Tmin, d` = d1+2∆` ` = 1, . . . , L.

In the case of all-ones SLM illumination discussed in Section 3 we
obtain the continuous signal P(t, T0, Tφδφ, Tθδθ), but in the pat-
terned illumination case, we obtain a signal Up(t) satisfying

lim
∆→0

Up(t) =

L∑
`=1

(
N∑
i=1

N∑
j=1

cpijI
`
ij

)
δ(t− 2d`), (1)

where I`ij = 1 if dij = d` and rays along SLM illumination voxel
(i, j) intersect with the rectangular facet and I`ij = 0 otherwise.
Clearly Iij =

∑L
`=1 I

`
ij and Dij =

∑L
`=1 d`I

`
ij . With this new

notation, the depth map D associated with the rectangular facet is
the weighted sum of the index maps {I` : ` = 1, . . . , L}.

LetK denote the total number of samples collected by the ADC
so we have {rp[k] : k = 1, . . . ,K} for each p, and let Rp[k] denote



the discrete Fourier transform of rp[k]. Similarly define Hp[k] for
the impulse response samples hp[k]. Then

Rp[k]

H[k]
=

af

4

L∑
`=1

(
N∑
i=1

N∑
j=1

cpijI
`
ij

)
e−j(4πfd`)k, k = 1, . . . ,K.

(2)
For notational simplicity let

yp` =

M∑
i=1

N∑
j=1

cpijI
`
ij , ` = 1, . . . , L. (3)

The constants a and f are computed using calibration and are
computationally compensated using normalization. Since the values
{d1,d2, ...,dL} are known, Eq. (2) can be represented as a system
of linear equations that can be compactly written as

Rp/H = Vyp (4)

where the division is elementwise and V is a Vandermonde matrix.
We need K ≥ L so that we can uniquely solve the linear system in
(4). Furthermore, a larger value of K allows us to mitigate the effect
of noise by producing least square estimates of yp.

As we illuminate the scene with a total of M � N2 different
binary SLM illumination patterns and process the samples of the
received light signal with (4) for each choice of SLM illumination
pattern, we obtain the transformed data {yp` : ` = 1, . . . , L, p =

1, . . . ,M} which is related to the index images {I` : ` = 1, . . . , L}
via a system of linear equations:

yL×M =
[
I1 . . . I` . . . IL

]
L×N2

C
N2×M

. (5)

This system of equations is under-constrained since there are
L × N2 unknowns (corresponding to the unknown values of[
I1 . . . I` . . . IL

]
) and only L × M available transformed data

observations y.
Algorithms for Depth Map Reconstruction. To enable depth map

reconstruction even though we have much fewer observations than
unknowns, we exploit the structure of scene depth. The depth values
dij correspond to the distances fromO to points that are constrained
to lie on a rectangular facet, and the distances dij are also linearly
spaced between d1 and dL. The planar constraint and linear varia-
tion imply that the depth map D is sparse in the second-finite dif-
ference domain. Thus, it is possible to recover D from y by solving
the following constrained `1-regularized optimization problem:

minimize
D

∥∥∥y − [I1 . . . I` . . . IL
]
C
∥∥∥

F
+ ‖Φ D‖1

subject to
∑L
`=1 I

`
ij = 1,∀i, j

∑L
`=1 d`I

` = D, and

I`ij ∈ {0, 1}, ` = 1, . . . , L, i = 1, . . . , N, j = 1, . . . , N,

where ‖.‖F is the Frobenius norm and Φ is the second-order finite
difference operator matrix.

While this optimization problem already contains a convex re-
laxation in its use of ‖Φ D‖1, it is nevertheless computationally in-
tractable because of the integrality constraints I`ij ∈ {0, 1}. Using
a further relaxation of I`ij ∈ [0, 1] yields the following tractable
formulation:

minimize
D

‖y −
[
I1 . . . I` . . . IL

]
C‖F + ‖Φ D‖1

subject to
∑L
`=1 I

` = 1, ∀i, j
∑L
`=1 d`I

` = D, and

I`ij ∈ (0, 1) ` = 1, . . . , L, i = 1, . . . , N, j = 1, . . . , N.

We solved this convex optimization problem using CVX, a package
for specifying and solving convex programs [12].

5. CONCLUSION

We have presented a method for acquiring 2D depth maps of
piecewise-planar scenes using samples measured by a single pho-
todetector in response to spatiotemporally-modulated scene illumi-
nations. Our acquisition architecture consists of a non-scanning 2D
SLM and a single photodetector. We have demonstrated (see [10])
that it is possible to acquire scene depth at both high range resolution
and spatial resolution with significantly-reduced device complexity
and hardware cost as compared to state-of-the-art LIDAR systems
and TOF cameras. These gains are achieved by developing a depth
acquisition framework based on parametric signal processing that
exploits the sparsity of natural scene structures.
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