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Abstract— A common feature of interactions and opinion
exchanges on social networks, both real and digital, is the
presence of social pressure, which may cause agents to alter
their expressed opinions in order to fit in with those around
them. In such systems, each agent has a true and unchanging
inherent belief but broadcasts a declared opinion at each time
step, influenced by both her inherent belief and the declared
opinions of her neighbors. An important question in this setting
is parameter estimation: how to disentangle the effects of
social pressure and estimate the underlying true beliefs of the
agents from their declared opinions. To address this question,
Jadbabaie et al. [1] formulated the interacting Pólya urn
model of opinion dynamics under social pressure and studied
parameter estimation on complete-graph social networks using
an aggregate estimator. They found that, under these settings,
this estimator asymptotically estimates the true beliefs unless
majority pressure causes the network to approach consensus
over time.

In this work, we consider parameter estimation for the
interacting Pólya urn model on arbitrary networks, and prove
that the maximum likelihood estimator always asymptotically
estimates the true beliefs – including the degree to which those
beliefs are held – even when consensus is approached.

I. INTRODUCTION

Opinion dynamics is the study of how people’s opinions
evolve over time as they interact with others on social
networks. This can provide insights and predictions into how
public opinion develops on a variety of political, social,
commercial and cultural topics. For instance, Ancona et al.
[2] used opinion dynamics models to model the spread of
vaccine hesitancy and to develop marketing strategies to help
combat it. In many opinion dynamics models, there is an
assumption that people are truthful in the opinions they share.
However, in reality this is not always the case, as people
often alter their expressed views to better fit in with their
social environment, which in turn feeds back into the social
environment. The social pressure feedback loop can cause
publicly-expressed opinions to become arbitrarily uniform
over time [3], which can make parameter estimation difficult.

In this work, we study an interacting Pólya urn model for
opinion dynamics under social pressure, originating from [1]
and developed further in [4]. This model captures a system of
agents with stochastic behaviors who additionally might be
untruthful due to a desire to conform to their neighbors. This
model consists of n agents on a fixed network communicat-
ing on an issue with two basic sides, 0 and 1. Each agent has
an inherent (true and unchanging) belief, which is either 0 or
1, and also a bias parameter γ which indicates to what degree
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they are willing to share their inherent belief as opposed
to conforming to their neighbors. Both the agents’ inherent
opinions and bias parameters are hidden from their neighbors
and outside observers. Then the agents communicate their
declared opinions to their neighbors at discrete time steps: at
each step t = 1, 2, . . . , all the agents simultaneously declare
one of the two opinions (i.e. either ‘0’ or ‘1’), which is then
observed by their neighbors; the declarations of all the agents
at any given step are made at random and independently of
each other but with probabilities determined by their inherent
belief, bias parameter, and the ratio of the two opinions
previously observed by the agent up to the current time.
This can represent both scenarios where agents alter their
statements (contrary to their actual beliefs) to better fit in
with the opinions they have observed from others in the past
and scenarios where the agents update their beliefs according
to the declared opinions of others, but retain a bias towards
their original beliefs.

A. Background Literature

We refer the reader to [1] and [4] for in-depth discussion
of prior work. Here, we discuss some relevant highlights.

A highly influential opinion dynamics model is the De-
Groot model [5], where agents in a network average their
neighbors’ opinions in an iterative manner. With this pro-
cedure, on a connected aperiodic graph, the entire group
asymptotically approaches a state where they all share a
single opinion, a phenomenon known as consensus. However
in real social networks, consensus is not always reached. To
deal with this, other opinion dynamics models were created.
Among these is the Friedkin-Johnsen model [6]. Each agent
in the Friedkin-Johnsen model updates her opinion at each
step by averaging her neighbors’ opinions (as in the DeGroot
model) and then averaging the result with her initial opinion.

Ye et al. [7] study a model in which each agent has both
a private and expressed opinion, which evolve differently.
Agents’ private opinions evolve using the same update as
in the Friedkin-Johnsen model, while their public opinions
are updated as the average of their own private opinion and
the average public opinion of their neighbors. Both [3] and
[7] are very similar to [1], since agents’ expressed opinions
may not match their internal beliefs. However, unlike [1], [7]
assumes opinions are precisely expressed on a continuous
interval, which is unrealistic for certain applications. On the
other hand [3] works with binary opinions like [1], though
with a significantly more complex model that includes addi-
tional terms and parameters.

The analysis in [1] is primarily focused on studying
whether inherent beliefs are recoverable using an aggregate



estimator. This is carried out by establishing the convergence
of the dynamics in the network and analyzing the equilibrium
state, though the analysis is limited to the complete graph
and all agents having the same amount of resistance to social
pressure. In [4], the authors study the convergence properties
of the interacting Pólya urn model introduced in [1] on
arbitrary undirected networks, finding that the proportion
of declared opinions of each agent converges almost surely
to an equilibrium point in any network configuration. They
also determined necessary and sufficient conditions for a
network to approach consensus. We note that the definition
of consensus used for the interacting Pólya urn model is that
all agents will declare a single opinion (all ‘0’ or all ‘1’)
with probability tending to 1.

B. Contributions

In [1], the authors consider when it is possible to asymp-
totically determine the inherent beliefs of the agents based
on their history of declared opinions and those of their
neighbors. They study a simplified case in which the social
network is an (unweighted) complete graph and all agents
have the same, known, degree of bias towards their true
beliefs, and consider a specific aggregate estimator which
tries to first estimate the proportion of agents with true
belief 1 and then determine which agents those are. In this
setting, they show that the aggregate estimator estimates the
proportion of agents with true belief 1 if and only if the
agents do not asymptotically approach consensus (where a
large majority causes all agents declare the same opinion
with probability approaching 1).

In this work, we consider the problem of estimating the
agents’ parameters in the general setting presented in [4]
(which analyzed the convergence properties of the interacting
Pólya urn model); we also remove the restriction that the
social network’s graph needs to be undirected:

1) the social network is an arbitrary weighted (and con-
nected) graph, possibly directed and with self-loops;

2) the agents can have heterogeneous bias parameters,
indicating different levels of resistance to social pressure
or certainty in their inherent beliefs.

Both the agents’ inherent beliefs and bias parameters are
unknown and must be inferred from observing the behavior
of the network. This greatly increases the applicability of the
model, as real-life social networks have a variety of different
structures and people have varied reactions to social pressure.

In this setting, we study the maximum likelihood estimator
(MLE), which estimates bias parameters from the history
of declared opinions, rather than the aggregate estimator
from [1]. We also derive a simplified estimator for inherent
beliefs from the MLE, which takes a clean form with a
low-dimensional sufficient statistic, consisting of two values
which are simple to update at each step. We show that
if the history of the agents’ declared opinions is known,
the MLE almost surely asymptotically converges to the
correct inherent beliefs and bias parameters of all the agents
in all such networks (even when the network approaches

consensus). This resolves the fundamental question posed in
[1] of whether such estimation is always possible.

II. MODEL DESCRIPTION

We use the model from [4], which is a generalization of
the model from [1]. We refer the reader to [4, Sec II] for
more details on the model and in particular [4, Sec II F] for
intuition on the model.

A. Graph Notation

Let graph G = (V,E) (possibly directed and including
self-loops) be a network of n agents (corresponding to the
vertices) labeled i = 1, 2, . . . , n. For each edge (i, j) ∈ E,
there is a weight ai,j ≥ 0, where by convention ai,j = 0
if (i, j) ̸∈ E. We denote the matrix of these weights as
A ∈ Rn×n. We denote the weighted degree of vertex i as
deg(i) =

∑
j ai,j . We assume that G is connected.

B. Inherent Beliefs and Declared Opinions

We define the interacting Pólya urn model of opinion dy-
namics under social pressure by defining the key parameters
governing the behavior of the agents and their relationship
to each other. The basic concept of the model is: each
agent i declares at each step t an opinion ψi,t ∈ {0, 1}; in
expectation, agent i imitates the (weighted) average opinion
they have observed declared by their neighbors (including
themselves via self-loops), but biased by an internal bias
parameter γi ≥ 0 towards their inherent belief ϕi ∈ {0, 1}.
The value of γi denotes how an observation of a neighbor
declaring ‘1’ is weighted compared to the same neighbor
declaring ‘0’, e.g. γi = 2 denotes that each observation of
neighbor j declaring ‘1’ counts twice as much as when they
declare ‘0’, while γi = 1/2 denotes the converse.1

Thus, the inherent belief of agent is i is the opinion they
are biased toward:

ϕi =

{
1 if γi > 1

0 if γi < 1
(1)

If γi = 1 then the agent is unbiased and is considered to
not have an inherent belief; since the goal is to estimate the
inherent beliefs of the agents, for the remainder of this work
we assume that the agent under consideration is not unbiased.

To formally state the model, let b0i , b
1
i > 0 be the initializa-

tion of agent i’s declared opinions, where b0i + b
1
i = 1. Then

we define the declared proportion of 0’s (or 1’s) declared by
agent i up to time t as:

β0
i (t) =

b0i
t
+

1

t

t∑
τ=2

(1− ψi,τ ) (2)

β1
i (t) =

b1i
t
+

1

t

t∑
τ=2

ψi,τ . (3)

We note that by definition β0
i (t)+β

1
i (t) = 1; thus to specify

these values it is sufficient to specify just βi(t)
△
= β1

i (t) (i.e.

1The honesty parameter in [1] is equivalent to the bias towards the agent’s
true belief, i.e. a honesty parameter of γ with a true belief of 0 corresponds
to a bias parameter of 1/γ.



the proportion of agent i’s declared opinions up to time t
that were 1’s).

For any agent i we also denote the total (weighted)
proportion of opinions 0 and 1 she has observed by time
t from her neighbors (including herself via self loop) as

µ0
i (t) =

1

deg(i)

n∑
j=1

ai,jβ
0
j (t) (4)

and µ1
i (t) =

1

deg(i)

n∑
j=1

ai,jβ
1
j (t) ; (5)

as before, µ0
i (t) + µ1

i (t) = 1 by definition so it suffices
to specify µi(t)

△
= µ1

i (t). This corresponds to the social
environment that agent i finds herself in at time t.

Then, at time t + 1, each agent i will (independently)
declare an opinion ψi,t+1 where ψi,t+1 = 1 with probability
pi(t) = f(µi(t), γi) (and ψi,t+1 = 0 otherwise) where

f(µi(t), γi)
△
=

γiµi(t)

γiµi(t) + (1− µi(t))
. (6)

The values of βi(t + 1) and µi(t + 1) for all i are updated
according to the declared opinions at time t and the values of
βi(t) and µi(t). Since µi(t) = µ1

i (t) and 1− µi(t) = µ0
i (t),

this corresponds to weighting each observation of opinion
‘1’ as γi times an equivalent observation of opinion ‘0’.

Finally, we denote the history of the network up to time
t (which denotes all declared opinions, including initializa-
tions, and therefore can be used to compute all βi(τ), µi(τ)
for τ ≤ t) as Ht. We also denote the vectors of βi(t), µi(t)
over agents i as β(t),µ(t).

In [4], it was shown that these dynamics on undirected
graphs must approach some equilibrium point satisfying

βi = f(µi, γi) for all i (7)

as t→ ∞ (with probability 1). In this work, we consider the
following estimation problem (which was considered in [1]
for a more restricted model on complete graphs): given the
history Ht up to time t, can we estimate γi, ϕi for all agents
i in the limit as t→ ∞?2

C. Consensus

An important term for this work is consensus, which needs
to be defined appropriately for our stochastic system. This
notion was defined and studied in [4].

Definition 1. Consensus is approached if

β(t) → 1 or β(t) → 0 as t→ ∞ . (8)

Since βi(t) represents the fraction of agent i’s declared
opinions which are 1, consensus is approached when this
ratio goes to 0 or 1. Let J1 = Γ−1W and J0 = ΓW , and
let λmax(·) denote maximum eigenvalue; in [4] it was shown
that consensus β(t) → 1 occurs when λmax(J1) ≤ 1 and
β(t) → 0 occurs when λmax(J0) ≤ 1.

2While we assume for simplicity that b0i , b
1
i are known to the estimator,

this is not necessary as these terms become negligible in the limit as t → ∞.

Consensus is important for the parameter estimation prob-
lem we consider in this work because it represents a major
obstacle to solving the estimation problem, as it is an
uninformative equilibrium (at consensus, each agent repeats
the same opinion regardless of their internal parameters).

III. ESTIMATORS FOR INFERRING INHERENT BELIEFS
AND BIAS PARAMETERS

One of the key questions in [1] is whether it is possible
to infer the inherent beliefs of agents from the history of
declared opinions. The authors of [1] studied the interacting
Pólya urn model on the complete graph using an aggregate
estimator which keeps track of the fraction of declared
opinions of all agents throughout time, and showed that this
estimator may not converge to the inherent belief of all agents
if they approach consensus. Consensus presents difficulties
for estimators since asymptotically all agents approach the
same behavior regardless of their inherent beliefs.

However, we show that estimators based on maximum
likelihood estimation (MLE) almost surely infer the inherent
belief of any agent i in the limit, even when consensus
is approached. This fact is connected to [4, Lemma 2] –
each agent declares both opinions infinitely often, yielding
sufficient information to determine inherent beliefs over time.

Additionally, unlike [1], our formulation also allows agents
to have different bias parameters. Thus, it is natural to ask
how to estimate the bias parameter of any agent. Intuitively,
after enough time has passed, the values of µi(t) and βi(t)
will converge to values close to the equilibrium point. In
such a case, we can use (7) to estimate the bias parameter
γi and inherent belief ϕi with

γ̂eqi (t) =
βi(t)

1− βi(t)

1− µi(t)

µi(t)
(9)

ϕ̂eqi (t) = I{βi(t) < µi(t)} (10)

These estimators are asymptotically consistent, i.e.

lim
t→∞

γ̂eqi (t) = γi and lim
t→∞

ϕ̂eqi (t) = ϕi (11)

when the dynamics converge to an interior equilibrium point.
However, plugging the equilibrium values into (9) is not
well-defined if βi(t) and µi(t) both converge to either 0 or 1
for all i, i.e. when consensus is approached. This shows that
more careful analysis needs to be done in order to estimate
the bias parameters and inherent beliefs in all circumstances.

IV. DEFINITION OF ESTIMATORS

We assume at time t the estimator has at its disposal the
history of agent i and agent i’s neighbors’ declarations up to
and including time t (which we denote as Ht). Given Ht−1,
we can compute exactly the value of

pi(t) = P [ψi,t = 1|Ht−1] = f(µi(t− 1), γi) . (12)

Note that in general P [ψi,t = 1] is a random variable
dependent on Ht−1, while P [ψi,t = 1|Ht−1] is constant. The
sequence H0 ⊆ H1 ⊆ . . . is also a filtration on which we
can base stochastic processes.



Our estimator to predict γi is based on the maximum log-
likelihood estimator:

Definition 2. The single-step negative log-likelihood for a
given agent i at time t > 1 and parameter γ is

ℓi(γ, t)
△
= −

(
I{ψi,t = 1} log(f(µi(t− 1), γ))

+ I{ψi,t = 0} log(1− f(µi(t− 1), γ))

)
(13)

The negative log-likelihood for a given agent i at time t and
parameter γ ∈ (0,∞) is

Li(γ, t)
△
=

t∑
τ=2

ℓi(γ, τ) . (14)

Note that γi is the actual bias parameter of agent i,
whereas γ represents a proposed value whose loss we are
measuring. The MLE for bias parameter γi gives the value
of γ that maximizes the likelihood of agent i’s declarations,
which also minimizes the negative log-likelihood.

Definition 3 (Estimator for Bias Parameter). The maximum
likelihood estimator (MLE) for the bias parameter γ at time
t is given by

γ̂i(t)
△
= argmin

γ
Li(γ, t) (15)

Since the inherent belief of an agent is defined as whether
the bias parameter is greater than or less than 1, given the
MLE estimator, we can always predict the inherent belief of
agent i by taking sign(log(γ̂i(t))).

However, if we assume that γi ̸= 1, and are only interested
estimating the inherent beliefs, this reduces to a simpler form.
Let β̄i(t) = 1

t−1

∑t
τ=2 I[ψi,τ = 1], which a similar quantity

to βi(t) except that the arbitrary initial conditions are not
included. (If t is large, then the difference between βi(t)
and β̄i(t) is negligible.)

Definition 4 (Inherent Belief Estimator). Let

ϕ̂i(t) =
1

2
sign

(
(t− 1)β̄i(t)−

(
t−1∑
τ=1

µi(τ)

))
+

1

2
. (16)

Multiplying by 1/2 and adding 1/2 maps the output of
sign(·) to 0 and 1. Fundamentally, this estimator requires
only comparing

β̄i(t) >
1

t− 1

t−1∑
τ=1

µi(τ) . (17)

Note that ϕ̂i(t) does not depend on knowing the bias
parameter, as it only assumes that γ ̸= 1, and the estimator is
simple to compute as it only requires the aggregate count of
an agent’s declarations and her neighborhood’s declarations.

Intuitively, this compares agent i’s actual declarations
against its expected declarations if γi = 1 (i.e. if the agent
were unbiased); however, the consistency of this estimator is
derived from that of the MLE for the bias parameter given
in Definition 3. We show this derivation in Section VI.

Lastly, note that while both the estimator in Definition 4
and the estimator in (10) have the same asymptotic values
when the network does not approach consensus, only the
estimator in Definition 4 is guaranteed to work when the
network approaches consensus.

A. Preliminaries: Bounds on µi(t)

Lemma 1. Letting κ
△
= mini(min(b0i , b

1
i )) > 0, for any

agent i and time t,

µi(t) ∈
[κ
t
, 1− κ

t

]
. (18)

Proof. This follows since by definition b0i , b
1
i ≥ κ for any i;

thus by equations (2), (3) we know that β0
i (t), β

1
i (t) ≥ κ/t

so βi(t) = β1
i (t) = 1 − β0

i (t) satisfies βi(t) ∈ [κt , 1 − κ
t ].

But each µi(t) is a weighted average of βj(t), and hence
µi(t) ∈ [κt , 1−

κ
t ] for all i, t.

Note that this means that any agent i will (almost surely)
declare both ‘0’ and ‘1’ infinitely many times, even if the
network approaches consensus, because either opinion has
probability ≥ Θ(1/t) at step t (and

∑
t 1/t = ∞).

B. Negative Log-Likelihood Properties

We analyze in depth the MLE which is key to our analysis.
We start by introducing an alternative representation for
ℓi(γ, t). Let ψ̃i,t = 2ψi,t − 1, which takes values −1 and
+1, instead of 0 and 1, which gives a more symmetric
representation of the process.

Since f(µi(t), γ) is still the probability of ψ̃i,t = 1,

ℓi(γ, t) = − log

(
1

1 + e
−ψ̃i,t log

(
γ

µi(t−1)

1−µi(t−1)

)
)

(19)

= log

(
1 + e

−ψ̃i,t log
(
γ

µi(t−1)

1−µi(t−1)

))
. (20)

We reparameterize γ and µi(t) as follows:

χ
△
= log γ and νi(t)

△
= log

µi(t)

1− µi(t)
. (21)

Using χ symmetrizes the bias parameter across R (so χ =
0 represents an unbiased agent).

We thus define some quantities which take χ = log γ as
the argument instead of γ and use them where convenient:

ℓ̃i(χ, t)
△
= ℓi(γ, t) and L̃i(χ, t)

△
= Li(γ, t) . (22)

For this section to Section V we will fix an agent i and
then use γ1 and γ2 to represent any two possible choices
for γi. We then show that if we know that one of these
is the true value of γi, in the limit it is almost surely
possible to determine which one (Theorem 1); this result
will then be used to show that limt→∞ γ̂i = γi almost surely
(Theorem 2). Define

Z(t) = Z(γ1, γ2, t)
△
= Li(γ

2, t)− Li(γ
1, t) . (23)



If Z(t) is positive, intuitively, γ1 fits the observed behavior
better than γ2, so we expect γ1 to be the true parameter.
Indeed, if γ1 is the true parameter, then

E[Z(t)|Ht−1] =

t∑
τ=2

E
[
I{ψi,τ = 1} log f(µi(τ − 1), γ1)

f(µi(τ − 1), γ2)

+ I{ψi,τ = 0} log 1− f(µi(τ − 1), γ1)

1− f(µi(τ − 1), γ2)

∣∣∣Hτ−1

]
(24)

=

t∑
τ=2

DKL(f(µi(τ − 1), γ1)∥f(µi(τ − 1), γ2)) (25)

which is always a nonnegative quantity.

Proposition 1. Li(γ, t) is a stochastic process which satisfies
the following properties:
(a) For fixed γ, Li(γ, t) (and L̃i(χ, t)) is an increasing

function in t
(b) For fixed t, L̃i(χ, t) is a strictly convex function in χ
(c) ℓi(γ, t) ∈ [0,∞), and for a fixed t,

• If ψ̃i,t = −1, then ℓi(γ, t) is a decreasing function
in γ (and ℓ̃i(χ, t) is decreasing in χ)

• If ψ̃i,t = 1, then ℓi(γ, t) is an increasing function in
γ (and ℓ̃i(χ, t) is increasing in χ)

(d) If there exists t1, t2 ≤ t where ψ̃i,t1 = 1 and ψ̃i,t2 = −1,
then L̃i(χ, t) has unique finite minimum as a function in
χ. Also Li(γ, t) has the same minimum at γ = eχ.

(e) For any γ ̸= γi,

E[ℓi(γ, t)|Ht−1] > E[ℓi(γi, t)|Ht−1] (26)

We show the proof of property (b) below; proofs of the
other properties are omitted.

Proof.

d2

dχ2
ℓ̃i(χ, t) =

d2

dχ2
log
(
1 + e−ψ̃i,t(χ+νi(t−1))

)
(27)

=
d

dχ

−ψ̃i,te−ψ̃i,t(χ+νi(t−1))

1 + e−ψ̃i,t(χ+νi(t−1))
(28)

= −ψ̃i,t
d

dχ

1

1 + eψ̃i,t(χ+νi(t−1))
(29)

= ψ̃2
i,t

eψ̃i,t(χ+νi(t−1))

(1 + eψ̃i,t(χ+νi(t−1)))2
(30)

=
eψ̃i,t(χ+νi(t−1))

(1 + eψ̃i,t(χ+νi(t−1)))2
(31)

> 0 . (32)

Thus ℓ̃i(χ, t) is convex for all t, and so L̃i(χ, t) =∑t
τ=2 ℓ̃i(χ, τ) is also convex.

V. LOG-LIKELIHOOD RATIOS AND MARTINGALES

To properly analyze the quantity (23), we need the fol-
lowing definitions. Unless otherwise stated, γ1 is the true
parameter from which the random data is generated. The
loss difference is

Z(t)
△
= Z(γ1, γ2, t) (33)

z(t)
△
= z(γ1, γ2, t)

△
= ℓi(γ

2, t)− ℓi(γ
1, t) . (34)

The predictable expected value is

X(t)
△
= X(γ1, γ2, t)

△
=

t∑
τ=2

E[z(τ)|Hτ−1] (35)

x(t)
△
= x(γ1, γ2, t)

△
= E[z(t)|Ht−1] . (36)

The loss martingale is

Y (t)
△
= Y (γ1, γ2, t)

△
= X(t)− Z(t) (37)

y(t)
△
= y(γ1, γ2, t)

△
= x(t)− z(t) . (38)

The predictable quadratic variation is

W (t)
△
=W (γ1, γ2, t)

△
=

t∑
τ=2

Var[z(τ)|Hτ−1] (39)

=

t∑
τ=2

Var[y(τ)|Hτ−1] (40)

w(t)
△
= w(γ1, γ2, t)

△
= Var[z(t)|Ht−1] (41)
= Var[y(t)|Ht−1] . (42)

We also let χ1 = log γ1 and χ2 = log γ2. We give some
preliminary results about these processes.

Proposition 2. We have the following properties:
(a) Z(t) is a submartingale and X(t) is strictly increasing
(b) Y (t) is a martingale
(c) W (t) is strictly increasing

Next we determine bounds on our quantities.

Lemma 2. If γ1 ̸= γ2, then there is some t0 = t0(γ
1, γ2)

and c0 = c0(γ
1, γ2) > 0 such for all t > t0

x(t) ≥ c0(κ/t) . (43)

Additionally, there are some constants k, t1 (which depend
on t0, γ1, γ2) such that for all t > t1,

X(t) > kc0κ log(t) . (44)

Similarly, there exists a constant c1 = c1(γ
1, γ2) > 0 and

t2 such that for all t > t2

w(t) ≤ c1x(t) . (45)

This also implies

W (t) ≤ c1X(t) . (46)

Combining Lemma 2 and (25) gives that for γ1 ̸= γ2,

lim
t→∞

E[Z(γ1, γ2, t)] = lim
t→∞

X(γ1, γ2, t) = ∞ . (47)

Remark 1. The fact that E[Z(t)] → ∞ relies on µi(t) ∈
[κ/t, 1− κ/t], as discussed in Section IV-A (Lemma 1).

If instead, µi(t) scales as 1/t2, then the limit of E[Z(t)]
would be finite. In such a scenario, randomness might make
Z(t) unreliable for distinguishing between γ1 and γ2.

Changes to the model which may cause the condition
µi(t) ∈ [κ/t, 1− κ/t] to fail include putting higher weight
on previously declared opinions or having the network add
more agents at each time step t.



We want to show that the test Z(t) > 0 works to
distinguish whether γ1 or γ2 is the true parameter. We do
this by showing that if γ1 is the true parameter, then almost
surely Z(t) ≤ 0 (i.e. the test fails) for only finitely many
t. We show this by applying Freedman’s inequality ([8] and
[9] (Thm 1.6)) and Lemma 2 (proof omitted):

Theorem 1. If γi ∈ {γ1, γ2}, then the likelihood ratio test
Z(t) = Li(γ

2, t)− Li(γ
1, t) is such that

Z(t)

{
> 0 if γi = γ1

< 0 if γi = γ2
(48)

for all but finitely many t.

VI. CONSISTENCY OF ESTIMATORS

The above concentration results show that the MLE (15)
γ̂i(t) converges asymptotically to the true γi.

Theorem 2. For any agent i, almost surely,

lim
t→∞

γ̂i(t) = γi . (49)

Proof. We take advantage of the alternative parameterization
of χ = log γ. Let the MLE for χ be

χ̂i(t) = argmin
χ
L̃i(χ, t) . (50)

We will show that χ̂i(t) converges to the true parameter,
which we call χi, so γ̂i(t) converges to the true γi.

For any fixed ϵ > 0, let a = χi − ϵ and b = χi + ϵ. From
Theorem 1, there exists some time ta so that L̃i(a, t) >
L̃i(χi, t) for all t > ta, and there exists some time tb so that
L̃i(b, t) > L̃i(χi, t) for all t > tb.

At all times t > max{ta, tb}
△
= t(ϵ), the value of L̃i(χi, t)

is less than both L̃i(a, t) and L̃i(b, t). By Proposition 1(b),
the function L̃i(χ, t) is convex in χ, and thus the minimum
of L̃i(χ, t) at any t > t(ϵ) must be in [a, b] = [χi−ϵ, χi+ϵ].

Thus, for every ϵ > 0, we can always find a t(ϵ) where
for all t > t(ϵ) we have that χ̂i(t) is within ϵ of χi, and thus
limt→∞ χ̂i(t) = χi completing the proof.

This also shows that the inherent belief estimator from
Definition 4 almost surely converges to the correct result.

Theorem 3. Almost surely, if γi ̸= 1, then

lim
t→∞

ϕ̂i(t) = ϕi (51)

Proof. This is equivalent to

lim
t→∞

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t)

{
< 0 if ϕi = 1

> 0 if ϕi = 0
(52)

The result follows from three facts:
(i) letting χi = log(γi) and χ̂i(t) = argminχL̃i(χ, t) =

log(γ̂i(t)) be the maximum likelihood estimator of χi,
then limt→∞ χ̂i(t) = χi;

(ii) for any t, L̃i(χ, t) is strictly convex in χ;
(iii)

(∑t−1
τ=1 µi(τ)

)
− (t− 1)β̄i(t) =

∂
∂χ L̃i(χ, t)

∣∣∣
χ=0

.

Fact (i) follows directly from Theorem 2 and (ii) is Propo-
sition 1(b). Fact (ii) also shows that

χ̂i(t) > 0 ⇐⇒ ∂

∂χ
L̃i(χ, t)

∣∣∣
χ=0

< 0 ; (53)

and (assuming χi ̸= 0), ϕi = 1 ⇐⇒ χi > 0. Thus facts (i)
and (ii) show that (almost surely)

ϕi = 1 =⇒ χ̂i(t) > 0 for all sufficiently large t (54)

=⇒ ∂

∂χ
L̃i(χ, t)

∣∣∣
χ=0

< 0 for all sufficiently large t (55)

Thus, only fact (iii) remains to be shown.
Using L̃i(χ, t) =

∑
t ℓ̃i(χ, t) and

ℓ̃i(χ, t) = log
(
1 + e−ψ̃i,t(χ+νi(t−1))

)
(56)

at χ = 0, we get

∂

∂χ
ℓ̃i(χ, t)

∣∣∣∣
χ=0

=
−ψ̃i,t

eψ̃i,tνi(t−1) + 1
(57)

=


1

1−µi(t−1)

µi(t−1)
+1

if ψ̃i,t = −1

−1
µi(t−1)

1−µi(t−1)
+1

if ψ̃i,t = 1
(58)

=

{
µi(t− 1) if ψ̃i,t = −1

µi(t− 1)− 1 if ψ̃i,t = 1
(59)

= µi(t− 1)− I{ψi,t = 1} . (60)

And thus the derivative of the entire negative log-
likelihood evaluated at 0 is given by

∂

∂χ
L̃i(χ, t)

∣∣∣∣
χ=0

=

t∑
τ=2

µi(τ − 1)− I{ψi,t = 1} (61)

=

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t) . (62)

This shows (iii) and completes the proof.
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