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ABSTRACT

Motivation: High-throughput sequencing (HTS) technologies are
transforming the study of genomic variation. The various HTS
technologies have different sequencing biases and error rates,
and while most HTS technologies sequence the residues of the
genome directly, generating base calls for each position, the Applied
Biosystem’s SOLiD platform generates dibase-coded (color space)
sequences. While combining data from the various platforms should
increase the accuracy of variation detection, to date there are only a
few tools that can identify variants from color space data, and none
that can analyze color space and regular (letter space) data together.
Results: We present VARiD—a probabilistic method for variation
detection from both letter- and color-space reads simultaneously.
VARiD is based on a hidden Markov model and uses the
forward-backward algorithm to accurately identify heterozygous,
homozygous and tri-allelic SNPs, as well as micro-indels. Our
analysis shows that VARiD performs better than the AB SOLiD toolset
at detecting variants from color-space data alone, and improves the
calls dramatically when letter- and color-space reads are combined.
Availability: The toolset is freely available at
http://compbio.cs.utoronto.ca/varid
Contact: varid@cs.toronto.edu

1 INTRODUCTION
High-throughput sequencing (HTS) technologies are revolutionizing
the way biologists acquire and analyze genomic data. HTS machines,
such as 454/Roche, Illumina/Solexa and AB SOLiD are able to
sequence up to a full human genome per week, at a cost hundreds
fold less than previous methods. The resulting data consists of reads
ranging in length between 35 and 400 nt, from unknown locations
in the genome. Analysis of these datasets poses an unprecedented
informatics challenge due to the sheer number of reads that a single
run of an HTS machine can produce, the shortness of the reads,
and the various technologies’ different sequencing biases and error
rates. The two basic steps in the discovery of variants in the human
population from reads coming from any of these technologies are:
first, the mapping of reads to a finished (reference) genome, and
second the identification of variation by analysis of these mappings.

In the last few years, there have been many approaches proposed
for mapping reads from HTS technologies (Campagna et al., 2009;
Langmead et al., 2009; Li and Durbin, 2009; Li et al., 2008a, b, 2009;
Lin et al., 2008; Rumble et al., 2009 among many others; see

∗To whom correspondence should be addressed.

Fig. 1. Color-space description: Parts (a) and (b) show the correspondence
between di-nucleotides and their color space representation with a translation
matrix and the corresponding Finite State Automaton. In part (c), we show
the effect of SNPs on the color-space representation of the read, as well as
effect of sequencing errors on the trivial translation of the read from color
to letter space. The first letter shown in the reads is actually the last letter of
the linker, which helps us ‘lock-in’ on one of the four possible translations
of a color-space read.

Dalca and Brudno, 2010; Flicek and Birney, 2009 for reviews) that
utilize a wide variety of approaches. Compared to this multitude of
mapping tools, there have only been a handful of toolsets for single
nucleotide polymorphism (SNP) and small (1–5 bp) indel discovery.
The main challenge in detecting these variants is using the error rates
of the sequencing platform, the potentially incorrect mappings, and
the varying coverage to determine the likelihood that a position
represents a heterozygous or homozygous variant with respect to
some reference genome. We use the term heterozygous to refer to
the case when a single donor allele differs from the reference, and
homozygous to refer to the case when both donor alleles differ from
the reference, and are the same as each other. Tri-allelic SNPs, when
the two donor alleles differ from each other and from the reference,
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are rare. This variation detection task is further complicated by the
different types of errors and data representation methods used by
various technologies. For example, while the predominant error
type in Illumina sequencing is the misreading of a base pair, in
454/Roche the most common mistake is insertion/deletion errors
in a homopolymer (same base repeating multiple times). The AB
SOLiD system introduced a dibase sequencing technique, where
two nucleotides are read at every step of the sequencing process
together as one color. Only four dyes are used for the 16 possible
dibases (Fig. 1a), and the predominant error is the miscall of a color
(colors are usually written as numbers 0–3). Most tools for variation
detection (Li et al., 2008a, 2009; Marth et al., 1999) combine
a detailed data preparation step, in which the reads are filtered,
realigned and often rescored, with a nucleotide or heterozygosity
calling step, typically done using a Bayesian framework. The typical
parameters considered are the sequencing error rate, the SNP rate
in the population (the prior) and the likelihood of misalignment
(mapping quality). Most of the tools for SNP calling analyze one
base of the reference genome at a time and do not use adjacent
locations to help call SNPs (positions are considered independent).

AB SOLiD’s dibase sequencing presents several unique
challenges for SNP and indel identification. While typical, letter-
space reads represent the DNA sequences directly as a string of
A’s, C’s, G’s and T’s, one can think of dibase encoding as the
output of a Finite State Automaton: consider each color as the
shift from one letter to the next, so even though only four colors
are generated, we can derive each subsequent letter if we know
the previous one (Fig. 1b). Sequencing starts at the last letter
of the molecule that connects to the DNA (the linker), which
is known, thus enabling the translation of the whole read from
color space into letter space. It is important to note, however,
that if one of the colors in a read is misidentified (e.g. due to
a sequencing error), this will change all of the subsequent letters
in the translation (Fig. 1c). For this reason, simply translating the
reads to letter-space would be impractical. While this error profile
may at first seem detrimental, it can actually be advantageous when
we need to decide if a particular difference between a read and
the reference genome is due to an underlying change in DNA
or a sequencing error: all SNPs will change two adjacent colors,
while the probability that two adjacent colors are both misread is
small, as error probabilities at adjacent positions are independent.
Simultaneously, non-SNP genomic variants (e.g. polymorphisms
at adjacent residues and micro-indels) have more complicated
color-space signatures, complicating variation discovery.

Some tools for color-space SNP calling first map the reads in
color space by translating the reference, but then translate the
multiple alignment back to nucleotide space in order to call SNPs
(Li and Durbin, 2009; Li et al., 2008a). McKernan et al., 2009
describe Corona Lite, a consensus technique where each valid pair
of read colors votes for an overall base call. Currently, there are no
methods that can simultaneously take full advantage of both color-
and letter-space data to call variants—an important, consideration
since the advantages and disadvantages of the various platforms are
quite disparate. By combining these data sources, it is possible to
exploit the strengths of multiple HTS technologies to improve on
the accuracy of current SNP callers. Here, we present VARiD—
a probabilistic approach for variant identification from either or
both letter- and color-space data simultaneously. We represent both
types of data as emissions from a hidden Markov model (HMM),

while the underlying genotypes of the sequenced genome are the
hidden states. By applying the forward–backward algorithm on the
HMM we generate, for every base of the genome, a probability
distribution over the possible bases. In our testing, VARiD performs
more accurately than AB’s Corona Lite pipeline for just color-space
data, while its ability to incorporate letter-space data allows for
more accurate determination of genomic variants using multiple read
types, simultaneously.

2 ALGORITHMS
In this section, we introduce our application of a HMM to the process
of detecting variation from mapped reads. We begin by describing
a simplified version of the model, and then describe the details of
the full model and pipeline.

2.1 A hidden Markov model for variation detection
An HMM is a statistical model where the states of the system are
hidden—that is, not observable directly—and respect a Markov
progression. The observables are emissions from the hidden states.
For a detailed introduction to HMMs, we refer the reader to Chapter
3 of Durbin et al. (1999). The structure of an HMM is defined in
terms of the possible hidden states and the permitted transitions and
hidden states and the permitted transitions between these. The model
is parameterized by the emissions and transition probabilities. In the
context of variation detection, we define the following HMM model
(illustrated in Fig. 2):

• States: the unknown states in the HMM indicate the possible
donor genotypes at each position in the genome. As we will
model color-space, as well as letter-space data, and color-
space sequencing corresponds to the change between adjacent
nucleotides, the HMM will have states that correspond to pairs
of consecutive positions. Overall, there are 16 possible states:
{AA, AC, AG, AT, CA, …, TG, TT}, illustrated in green in
Figure 2a.

• Transitions: as each state corresponds to a pair of nucleotides,
two adjacent states will overlap by one nucleotide: for example,
the state at positions (5, 6) will be followed by the state
at positions (6, 7), thus sharing the nucleotide at position 6.

(a) (b)

Fig. 2. Illustration of the simplified VARiD HMM. In (a) emissions, states
and transitions are illustrated, and in (b) we illustrated in detail how one can
transition from one state to the next. Note that Y is shared in the illustration
(b), and hence we can only transition from a state ending in, say, letter A to
a state starting with A.
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Fig. 3. This figure illustrates the concept of emissions in our problem: at the
top, we have two adjacent positions in the unknown genome. We also have
six aligned reads—three color-space, three letter-space. The exact aligned
colors to this pair, and the exact aligned letters to the second letter in this
pair represent the six emissions observed for this state. We can proceed to
compute the probability that these emissions came from a state AA, AC, ….
We show such a computation for the state CC. This example is also described
in the text, see Equation (5).

Consequently the transitions are constrained so that states that
end with some nucleotide Y can only transition to states that
start with the same nucleotide Y, thus forcing transitions that
obey the overlap between adjacent states (Fig. 2b). Using this
constraint and the frequency of each nucleotide, we define our
transition probabilities:

P(transition SZ→XY)= (1)

p(XY |SZ)=
{

frequency(Y ) if X = Z
0 otherwise

For example, the state (TA) will have probability of 0 to
transition in any state not starting with A due to our constraint,
and the probability of transition to state (AY), where Y is one
of {A, C, G, T}, is equal to nucleotide Y’s frequency.

• Emissions: given that the states of the model correspond to
the donor genotypes, the emissions are the donor reads at
these loci, generated by either letter- or color-space sequencing
technologies (Fig. 3). The genotype state at some position
(ρ,ρ+1) can emit one color and one letter (we arbitrarily
choose the second, ρ+1 letter as the emission). As the states
overlap, the first nucleotide is emitted by the previous state.
Since the emissions are (mapped) reads, and since platforms
and mappers are prone to error, a state corresponding to the
di-nucleotide CA will emit color 1 with high probability,
although it may emit other colors with some error probability
ε. Similarly, CA will emit the letter A with high probability,
but may emit other letters with some error ξ. We define the
probability of emitting one particular color c or letter � from
the state CA as (Fig. 4):

P(emission=c|state = CA)= (2)

q(c|CA)=
{

1−3ε if c is 1
ε if c is 0, 2 or 3

Fig. 4. Possible emissions of the states AA and TT, with the respective
probabilities. Here, ε and ξ are the error probabilities in color space and
letter space. In the complete VARiD model, these errors will vary with their
position in a read.

and

P(emission=�|state = CA)= (3)

q(�|CA)=
{

1−3ξ if � is A
ξ if � is C, G or T

Similar emission probabilities follow for all states. Since in
general more than one read will cover a position, and we may
have reads from different technologies, we combine the above
definitions to get the emission probabilities for our HMM:

P(emissions=E|state=s)=

q(E|s)=
( ∏

colors c∈E

q(c|s)

)( ∏
letters �∈E

q(�|s)

)
(4)

where E is a set of letter and color emissions at that position.
For the example illustrated in Figure 3,

P(emissions = {0,0,1,A,A,C}|state = CC)=(
(1−3ε)2ε1

)(
(1−3ξ)1ξ2

)
(5)

• Genotyping: we formulate the problem of variation detection
from letter- and color-space sequencing as the problem of
finding the maximum likelihood state for each genotype’s
position, given the emissions generated by the HMM. To obtain
the most likely state at each position we use the forward–
backward algorithm. This algorithm first computes, for each
state, the probability of being in this state having observed all
of the emissions prior to this position (forward probability),
and the probability of starting in this state if we are to observe
all the remaining emissions (backward probability). Combining
the forward and backward probabilities for a specific location,
one gets the overall likelihood of each state at that location
given all the observed emissions (Fig. 5). We detect variants
by comparing the most likely state with the reference nucleotide
at this position.

2.2 VARiD: algorithm for variation identification
In the previous subsection, we described a simplified HMM for
variation detection that can use both color- and letter-space data. This
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simple HMM, however, calls only a single nucleotide per position,
and cannot detect events such as micro-indels or heterozygous SNPs.
In this section, we describe the full VARiD variation identification
algorithm, including the expanded HMM utilized to address the
above shortcomings, and the use of base and mapping quality values
to parameterize the emission probabilities. We also describe the
post-processing methods utilized in VARiD to filter some types of
spurious calls. A summary of the VARiD pipeline and model is given
in Figure 6.

2.2.1 Extensions to the HMM

• Insertions and Deletions: in order to detect micro-indels, the
model must include gaps in the state definitions. Due to the
nature of color-space sequencing, the expanded model needs
to maintain the last letter before the current gap was started. For
example, the A--G subsequence, represented by the states {(A
–), (– –), (– G)}, should emit the color 2 of AG on the last state,
which is accomplished by maintaining four gap types, gapA,
gapC, gapG and gapT, with the rule that a gapX state can only
follow the letter X or another gapX state. Thus, in addition
to the 16 basic states there are also 24 gap states: 4 states (X,
gapX), 4 states (gapX, gapX), and 16 states (gapX, Y), where X
and Y are nucleotides {A, C, G or T}, giving a total of 40 states.

Fig. 5. An example of the resulting probabilities given by the forward–
backward algorithm: in this case, the state AT will be most likely and the
nucleotide T will therefore be proposed.

These states allow for deletions with respect to the reference.
The model requires no changes for insertions with respect to
the reference (i.e. gaps in the reference), as the state sequence
only describes the donor.

• Heterozygous SNPs: to allow for heterozygous variant
detection, we build an expanded set of states by taking the
cross-product of the state space with itself. Each state represents
both alleles at a position and thus corresponds to a pair of
dibases, e.g. (AC/AG) or (A-/TG). After expanding the states
for indels and diploid states, there are a total of 402 =1600
states in the HMM. Similar to the transition probabilities above,
only a small fraction of the possible transitions are allowed:
states where the second nucleotides in the two alleles are A
and G, for example, can only transition to states where the
first nucleotides are A and G, and the transition probabilities in
such cases are based on nucleotide frequencies. An example of
resulting states and transitions is shown in Figure 7a.

• Emission probabilities: While the simple model described
above used constant errors ε and ξ to parameterize color- and
letter-space emissions, respectively, in practice the error rates
vary with the position in the read, and most platforms also
generate a quality score for each position in the read to indicate
the likelihood of error. VARiD can use both of these sources
of information, either converting a quality value into an error
likelihood (assuming it is on the standard Phred scale) or using
pre-specified error likelihoods for every position in a read. In
the results presented below we use the second approach, as
in our experience with the AB SOLiD data the quality values
proved less informative than the read position. The per-position
error frequencies are maximum likelihood estimates obtained
from the alignments of the color-space reads. For the 454 data,
we use a fixed error probability of 0.5%, also inferred from the
mappings.

• First color: the first color in a color-space read is encoded
relative to the last letter of the linker that connects the DNA
to the slide. This will cause the first color in a read to be
different from the corresponding color in other reads, which are
encoded relative to the previous DNA letter. To address this, we
‘translate through’ the first color of the read, thus obtaining the
first-sequenced DNA letter, and use this letter as an emission.
For example, if a read began ‘T2312…’, it will be converted to

Fig. 6. A summary of the steps involved in the described pipeline. The purple sections are inputs, outputs or steps performed with previous software. The blue
parts illustrate steps described in this manuscript.
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Fig. 7. Diagram showing the expansions of the model. (a) we show examples of the expanded states that allow for gaps and heterozygous calls, as well as
examples of allowed and not allowed transitions. (b) we note that adding a cleaning post-processing step is needed because of situations such as these: here
we have six reads at two adjacent positions; when the colors of these reads are added up, it seems like we could call a heterozygous SNP represented by the
allele combination such as red–yellow, blue–green, although the blue–green combination is actually not present in any read. Instead of incorporating a higher
order model which would incur complexity costs, we simply check the (generally few) proposed SNPs and disregard cases such as these.

‘C312…’. The ‘C’ character becomes the corresponding letter-
space emission, while the remaining colors are unaffected. This
modification allows VARiD to be used with color-space data
only, by providing some letter-space emissions, as well as with
letter- and color-space reads together.

2.2.2 Post-processing The HMM that VARiD utilizes is
memoryless: the information about the specific reads that generated
certain letters and colors is not maintained. This leads to the
possibility that a valid path through the state space is not supported
by any reads. Figure 7b depicts an example that may result in a
heterozygous SNP prediction: four counts of red and two counts
of blue for the first position, and four yellow, and two green
for the second. Red:yellow and blue:green are considered ‘valid’
adjacent color changes that typically support a SNP. In this case,
however, there are no individual reads that support the blue:green
combination, indicating that this combination is actually unlikely
to appear in the genome and hence is unlikely to be a heterozygous
variant. While the proper approach to fixing this problem would be to
use a higher order HMM, this would be computationally inefficient.
We instead supplement the current probabilistic model with a post-
processing step, where we verify that a statistically likely fraction of
the reads directly support each heterozygous SNP call. This approach
is fast, as putative SNPs are rare.

2.2.3 Running time The running time of the typical forward–
backward algorithm is O(nt), where n is the length of the sequence
and t is the number of permitted transitions. While t <k2, where
k is the number of states, in the VARiD HMM k =1600 and
it is necessary to utilize sparse matrix operations to efficiently
implement the forward–backward algorithm. Overall, the running
time of VARiD is linear in the length of the genome. Furthermore, it
is possible to parallelize VARiD over larger intervals by splitting the
reference into smaller segments or windows, with the requirement
that they be slightly overlapping. The overlapping regions can then
be easily reconciled. VARiD required ∼4 min on a single Intel P4
Xeon 3.2GHz machine to predict variants in the 80 kb of the human
genome that we analyze in the next section.

3 RESULTS
To test VARiD, we utilized the dataset of Harismendy et al. (2009),
who sequenced several regions of the human genome, spanning
a total of 260 kb, from four individuals (NA17156, NA17275,
NA17460 and NA17773), both with the AB SOLiD platform and the
454/Roche Pyrosequencer. To validate the SNP calls, the authors also
resequenced 80 kb from the same regions with Sanger sequencing.
From the original high-coverage datasets, we generated reduced
coverage, randomly selected subsets from the individuals with
different degrees of coverage. To analyze the AB SOLiD data we
ran the SOLiD System Analysis Pipeline Tool (Corona Lite 4.2.2
with the 35_3 schema) on the color-space data, as well as VARiD
with both the AB Pipeline mappings as well as SHRiMP (Rumble
et al., 2009) mappings, for all of the read subsets. For the 454 data,
we ran VARiD and gigaBayes (Marth et al., 1999) on the letter-
space reads (using Mosaik and SHRiMP as the mapping tools).
Finally, we tested our prediction pipeline on various color- and letter-
space subsets combined. We compared the variants called by each
method with the Sanger validation set to compute the following
statistics:

• Number of true positive (TP): SNPs that the predictor detects
that are also in the validation set;

• Number of false positive (FP): SNPs the predictor calls variant
that are not in the validation set;

• Precision: the number of true positives as a fraction of all
predictions, 100∗TP/(TP+FP);

• Recall: the fraction of true positives as a fraction of the
validated SNPs, 100∗TP/(TP+FN);

• F-measure: the harmonic mean of precision (P) and recall (R):
2∗P∗R/(P+R).

The results of our analysis are illustrated in Figures 8–10, where
we present results of color space only, results of letter space only
and results for combinations of the two sequence types, respectively.

In Figure 8, we present results from variation identification with
VARiD and the Corona Lite SNP caller
(http://www.solidsoftwaretools.com/gf/project/mapreads) using the
color-space data. We ran VARiD both with the alignments produced
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Fig. 8. Results illustrating performance of VARiD and Corona Lite on various coverage rates of color-space AB SOLiD reads. In the first of the three sections,
we ran VARiD on various datasets aligned with the SHRiMP tool, in the second we ran it with AB mapper output and finally in the third we ran the Corona
Lite pipeline on the AB mappings. In general, the results show that variation detection is difficult even with high coverage of color space, and the results are
dependent on the coverage and the mapping package used—for example, VARiD with SHRiMP mappings tends to have slightly lower precision, but higher
recall, leading to higher F-measure scores, especially at lower coverages, while VARiD with AB mappings has higher precision, but also lower recall.

Fig. 9. Results of running VARiD (SHRiMP alignments), VARiD (Mosaik alignments) and gigaBayes (Mosaik alignments) on all individuals of our datasets,
using the 454/Roche data at various coverages. VARiD with SHRiMP mappings and gigaBayes have similar precision and recall at lower (10×) coverage,
while VARiD with Mosaik alignments performs slightly worse. However, at high coverage (20×), VARiD with SHRiMP mappings has 70% precision to
gigaBayes’ 56%, and has 83% recall to gigaBayes’ 64%, thus showing overall improvement.

Fig. 10. These numbers show the improvements we can obtain when combining reads from various platforms. Comparing at cost, for example, we can look
at combining 50× of AB SOLiD color-space data with 5× of 454/Roche data. Comparing to the equivalent cost of 454/Roche (10×) we achieve 7% more
precision and 9% higher recall in the combined run. Similarly, comparing to the equivalent cost of AB SOLiD color-space data (100×), we obtain 6% better
precision and 3% better recall. Another example can be found by looking at the CS-100× and LS-10× combination, and comparing with 200× of CS or 20×
of LS in Figures 8 and 9.

by the AB pipeline for the Corona caller and with alignments
generated by SHRiMP. While the results as a whole demonstrate
the difficulty of calling variants from color-space data, even at high
coverages, a direct comparison of the two SNP calling pipelines
shows that at low-coverage (10×) VARiD outperforms the Corona
pipeline when using the same set of mappings generated by AB’s
own mapping tool, while at higher coverage VARiD has better
precision and worse recall (and a lower F-measure). The VARiD
+ SHRiMP pipeline has slightly lower precision than Corona and
VARiD + AB mapper, but a significantly better recall, leading to a
higher F-measure score.

In Figure 9, we compare results of running the VARiD framework
on the 454/Roche letter-space data using the Mosaik alignments
as well as using the SHRiMP alignments, compared to gigaBayes
using Mosaik alignments. At low coverage (1–5×), the gigaBayes

SNP caller produces the best results, having higher precision with
similar recall. At higher coverages (10–20×), VARiD outperforms
gigaBayes with higher recall and higher precision, regardless of the
mapper used to generate the alignments.

Figure 10 shows the main advantage of the VARiD pipeline: its
ability to combine color- and letter-space reads. In determining
useful combinations of the SOLiD and 454/Roche subsets for
running on the VARiD framework together, we considered the cost
and accuracy of each platform. The 454/Roche contains a relatively
high indel count, but has much more accurate base calls. At the same
time, the 454 platform is ∼10 times more expensive. Therefore, we
considered combining read coverages with 10-fold more AB SOLiD
than 454 data. For example, we may combine 50× of color-space
reads with 5× letter-space, giving us the equivalent of 100× of AB
SOLiD or 10× of 454 in terms of cost. Of course, the best trade-off
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will vary depending on the costs of the platforms and their respective
accuracies.

In Figure 10, we consider the various possible coverage
combinations between the AB SOLiD data and the 454/Roche.
In general, the performance of VARiD on a certain coverage of
color-space data can be greatly improved with just a small number
of 454 reads. More concretely, comparing at cost we can look at
50× coverage of color space with 5× coverage of 454 data: when
combined, we find 84% precision and 77% recall. Looking at the
cost equivalent coverage of just 454 data—10×—gives 7–9% lower
precision and recall. Similarly, for the cost equivalent coverage of
AB SOLiD data—100×—will again perform worse. Combining the
data thus shows significant improvement over predicting variation
from letter or color space only.

4 DISCUSSION
The various HTS technologies that have emerged in the past few
years have different data representations, advantages, biases and
features. In this work, we introduced a novel probabilistic framework
for variation identification, which can use both letter- and color-
space data simultaneously. We have shown in our results that
when using only color-space data—a data type for which very few
genomic analysis tools exist—the model outperforms the AB SOLiD
toolkit Corona Lite, and performs on par with gigaBayes predictions
for letter-space data alone. More importantly, when the color- and
letter-space data are combined, the VARiD framework allows for
a significant performance increase, demonstrating that a method
that can take into consideration multiple technologies, combining
their different advantages and compensating for their different
weaknesses can achieve higher accuracy variant predictions than
are possible from any single data type.
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