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Abstract

Automatic segmentation of spinal nerve bundles originating within the dural sac and

exiting the spinal canal is important for diagnosis and surgical planning. The variability

in intensity, contrast, shape and direction of nerves seen in high resolution myelographic

MR images makes segmentation a challenging task. In this thesis, we present an auto-

matic tracking method for segmentation of nerve bundles based on particle filters.

We develop a novel approach to flexible particle representation of tubular structures

based on Bézier splines. We construct an appropriate dynamics to reflect the continuity

and smoothness properties of real nerve bundles. Moreover, we introduce a robust

image likelihood model that enables delineation of nerve bundles and ganglia from the

surrounding anatomical structures. We evaluate the results by comparing them to

expert manual segmentation, and we demonstrate accurate and fast nerve tracking.

Thesis Supervisor: Polina Golland

Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

MAPPING of nerve bundles is essential for diagnosis and treatment planning of

spinal pathologies, and offers substantial benefits for image-guided interventions.

Recent developments in high-resolution MRI enable visualization of nerve bundles from

within the dura, as they pass through the foramen and exit the vertebral canal [24]. The

bundles are characterized by dark gray intensities, which offer good contrast with white

fluids and black bone, but are often of similar intensity to that of marrow and muscle.

Manual segmentation of nerves and ganglia in these 3D volumes is quite challenging and

time-consuming. In this thesis, we propose and demonstrate a method for automatic

segmentation of nerve bundles and ganglia in high-resolution MRI that requires minimal

input from an expert.

� 1.1 Background

Spinal nerves are cable-like structures of axons that carry autonomic signals between the

brain and the rest of the body. All spinal nerves eventually emerge from the vertebral

canal through an opening, or foramen. The nerve ganglia, which contain the nerve cell

bodies, are formed during the passage (Figure 1.1). The degeneration and herniation

of spinal disks leads to pressure or pinching of the surrounding regions, including spinal

nerves and nerve ganglia, causing pain in the neck, back or extremities. In extreme

cases this can lead to more damaging changes, such as paralysis.

An understanding of where and how nerves are affected is crucial for diagnosis and

treatment planning. Minimally invasive surgery is often the preferred treatment, how-

ever, the required small incisions highly limit the visual field of the surgeon. Nerve

segmentation, along with derived measures or properties, can help to visualize the

pathologies and thus lead to improved diagnosis. It can also benefit surgery and mini-

mally invasive interventions by reducing procedure duration and complications and by

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1. Nerve bundles (yellow) group inside the vertebral canal, and form ganglia while exiting
through the foramen (spacing between the vertebra). Visualization done with Zygote Body software [6]

improving outcomes of treatment of several degenerative conditions and spinal trauma.

Manual tracing of the nerves is extremely challenging due to the complex contrast pro-

files with surrounding anatomy and the 3D nature of the MR volume, where nerves

move in and out of slices. The amount of time and effort currently required for manual

tracing precludes practical construction of nerve maps. Automated nerve segmentation

with minimal user input therefore promises to significantly improve image-based diag-

nosis, therapy and surgery by providing fast tracing and measurements of the nerve

bundles.

Nerve bundles and ganglia can be observed in high-resolution MRI [24], as illus-

trated in Figure 1.2. The voxels are approximately 0.3-0.6 mm in-plane and 0.9-1 mm

thickness. Bundles can be easily seen inside the spinal canal, where they appear as dark

gray. The intensity contrast changes along the nerve with neighboring tissues including

cerebral spinal fluid, bone, muscle and other nerves, which presents significant chal-

lenges for segmentation. The bundles can be thought of as approximately cylindrical

structures, but may change shape in the presence of pathologies such as disk herniation

(Figure 1.2). As the bundles turn and exit the vertebral canal through the foramen and

form nerve ganglia, they grow thicker and less regular in shape. The intensity contrast

between the nerve tissue and the surrounding anatomy is further reduced.
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Figure 1.2. Different slices from an example MRI of a patient with a herniated disk. The nerve
bundles appear dark gray inside the spinal canal, with one bundle highlighted via a blue overlay in
the top left. All arrows point to the same nerve bundle. Blue arrows show examples of poor contrast
between the nerve and surrounding tissue; orange arrows indicate the thickening of the nerve into a
ganglion. The purple circle shows an area of pathology, where the (dark) disk is protruding into the
spinal canal and putting pressure on the nerve bundle.
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� 1.2 Contributions

In this thesis, we present the first method for automatic segmentation of nerves and

nerve ganglia in spinal MRI. Specifically, we formulate nerve segmentation as tracking

based on particle filtering, also referred to as sequential Monte-Carlo tracking. The

particle filter is an ideal approach for our task, as it enables rich hypotheses, flexible

dynamics and diverse likelihood models. To address the specific challenges of nerve

tracking, we define a flexible particle representation that captures the behaviour of

the nerve bundles under both normal conditions and pathologies. We use a Bézier

spline [27] centerline with a quadratic radius function to characterize a nerve bundle. We

devise a dynamics model for particle updates that enforces continuity and smoothness,

and further respects common properties of the nerves. Furthermore, we define an

image likelihood measure that compares gradient fields and intensities of predicted

patches with image observations to evaluate the posterior distribution of the particles’

importance. Once tracking is complete, we remove spurious segmentations by measuring

the quality of the entire tract. One additional user click is sometimes required to specify

the desired nerve tract among several proposed solutions.

We illustrate our algorithm on various types of synthetic data as well as patient

scans. We demonstrate successful segmentations of nerves bundles and ganglia, obtain-

ing accurate estimates of nerve path and thickness. We report example results, and

quantitatively compare the surfaces of automatic and desired segmentations, finding

strong agreement between the two with a median surface distance of just one voxel.

� 1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 reviews related work. Chapter 3 intro-

duces the theory behind the particle filter. Chapter 4 presents our methodology for

nerve tracking in detail. The choices of parameters and implementation details are

discussed in Chapter 5. Chapter 6 presents the experimental design, and segmentation

results on synthetic and patient data. Chapter 7 offers a discussion of the results and

summarizes the strengths and shortcomings of the algorithm. Finally, we conclude with

Chapter 8. An initial version of the algorithm [10] was presented at the International

Conference on Medical Image Computing and Computer Assisted Intervention.



Chapter 2

Prior Work

TO the best of our knowledge, the method we present in this thesis is the first

for automatic nerve segmentation. However, closely related prior work has been

demonstrated for segmentation of other tubular structures, such as blood vessels. In

this chapter, we review the methods used in vessel segmentation and other related fields,

and discuss their connection with our nerve segmentation task.

� 2.1 Vessel Segmentation

Region-growing approaches have been used successfully for vessel segmentation. Clas-

sical region growing [7], competitive region growing [29] and wave propagation [8, 9]

grow an initial point or region to incrementally segment an object based on inclusion

criteria for neighboring voxels. The success of these greedy methods depends on good

contrast in the vessel images. Unfortunately, the strong contrast required is unavailable

for the nerve bundles in the spinal MRI volumes, where nerves may be in contact with

many tissues of varying intensities, including other nerve bundles. In these images, re-

gion growing methods suffer from severe errors, where segmentation “leaks” into nearby

structures in areas that lack contrast [17].

Active contour methods evolve an initial boundary to segment the tubular tar-

gets and offer a model-based approach [20, 21]. For example, variational and level-

set formulations of these methods have been successfully used for vascular segmen-

tation [11, 20, 22]. However, these methods require time-consuming initialization and

suffer from many local minima [17]. Moreover, false positive rate and leakage is certain

to limit the usefulness of such methods in our application.

Another approach is to first extract the vessel centerline, and to fill out the segmenta-

tion as a subsequent step. The target is modeled as a tubular structure – most often via

circular cross-sections of inscribed cylinders or spheres [2, 13]. In practice, these meth-

17
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ods require a fair amount of user interaction to often re-seed tubes or branches [17].

Correction and re-centering during centerline propagation are affected substantially by

neighboring tissues of similar intensities. Some methods require two end-points and em-

ploy variants of minimal path extraction [14], with improvements such as anisotropic

fast matching or anisotropic flow [5, 19], which often suffer from shortcut paths [18].

The high degree of user interactions required and the high false-positive rate in low

contrast structures make these approaches inappropriate for our specific task.

Tracking has been used previously in segmentation of vessel structures [12, 17, 23].

Many vessel tracking methods model the state as a cross-sectional ellipse, or a similar

shape [4, 12]. However, such a naive representation is inappropriate in our application

where the rich background would cause severe leakage of cross-sectional states. In track-

ing nerve bundles, the regions of low contrast require the state to capture substantially

longer segments of the track than what is represented by a cross-section. Other vessel

tracking methods use cylindroid [28] states. However, nerves tend to change direction,

often sharply, which necessitates a use of more complex descriptors than cylinders. In

this work, we introduce a rich state representation that can handle complex tubular

structures and variable contrast.

� 2.2 Other Related Work

A recent study has demonstrated the feasability of using diffusion tensor imaging (DTI)

and fiber tracking of lumbar nerves [3] to estimate differences of diffusion parameters

between healthy and herniated disks. This work indicates the potential for DTI im-

ages to aid in the current segmentation task. Should good quality DTI images become

available, our method can be readily extended to include diffusion information by in-

corporating directional information in the likelihood function.

Recently, the field of connectomics has led to the segmentation of elongated struc-

tures in the brain, such as neurites [16, 25]. The general approach is to construct voxel

affinity graphs, which are then used to segment structures in the brain volume. How-

ever, the task is significantly different than the one addressed in this paper, as even

elongated structures are large enough and clearly delineated in the microscopy images

used for connectomics, and partial volume plays no significant role.



Chapter 3

Particle Filter

WE formulate automatic segmentation of nerves as a tracking problem, where we

iteratively track segments, or particles, of tubular bundles using the particle

filter. The particles, weighed based on how well they describe the corresponding MRI

patch, form a set of point probability masses and represent the likelihood of a nerve

at a specific location in the image. For the next iteration, new particles are sampled

from this likelihood, propagated onto the next patch, and re-weighed. In this chapter,

we review the intuition and mathematical framework of particle filters [1, 15, 26]. In

the next chapter, we describe in detail how the various elements of this framework are

applied to the task of nerve segmentation.

� 3.1 The Particle Filter

We let ht be a state representation at step t of the tracking algorithm. The specific

details of this representation ht for nerve bundles are provided in the next chapter. We

assume that states respect a first order Markov chain, i.e.,

p(ht|h1:t−1) = p(ht|ht−1), (3.1)

where h1:t−1 denotes the state history prior to step t. We let zt be the image-based

observation at step t, which can be interpreted as being generated from state ht via a

noisy generative function: zt = f(ht). An example observation zt is illustrated in the

next chapter. We assume that given the state, the observations at different time points

are independent and depend only on the corresponding state value:

p(z1:t|h1:t) = p(zt|ht) · p(z1:t−1|h1:t−1). (3.2)

At each step t, the tracking algorithm estimates the posterior distribution p(ht|z1:t)

19
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of each state ht given all observations z1:t. Starting with Bayes’ Rule, and using as-

sumptions (3.1) and (3.2), we find that

p(h1:t|z1:t) ∝ p(z1:t|h1:t)p(h1:t)

= p(zt|ht)p(z1:t−1|h1:t−1)p(ht|ht−1)p(h1:t−1)

= p(zt|ht)p(ht|ht−1)p(z1:t−1,h1:t−1)

= p(zt|ht)p(ht|ht−1)p(h1:t−1|z1:t−1)p(z1:t−1)

∝ p(zt|ht)p(ht|ht−1)p(h1:t−1|z1:t−1)

The desired posterior distribution can then be expressed as follows:

p(ht|z1:t) =
∑

h1:t−1

p(h1:t|z1:t)

∝ p(zt|ht)
∑

h1:t−1

p(ht|ht−1)p(h1:t−1|z1:t−1)

= p(zt|ht) · p(ht|z1:t−1). (3.3)

Therefore, the particle distribution p(ht|z1:t) can be written as a product of a like-

lihood function p(zt|ht) and a prior term p(ht|z1:t−1) [1, 15, 26].

� 3.2 Algorithms

A particle filter maintains the posterior distribution p(ht|z1:t) nonparametrically via a

set of samples {h(k)
t , w

(k)
t }Kk=1 at step t, which is generated from the set {h(k)

t−1, w
(k)
t−1}Kk=1

at step t − 1. Specifically, a sample 〈ĥt−1, ŵt−1〉 is drawn from the set {h(k)
t−1, w

(k)
t−1}

– which approximates p(ht−1|z1:t−1) – according to the weights {w(k)
t−1}. A state vec-

tor h
(k)
t is propagated from ĥt−1 via the dynamics p(ht|ht−1). This process constructs

a sample from a prior distribution

p(ht|z1:t−1) =
∑
ht−1

p(ht|ht−1)p(ht−1|z1:t−1). (3.4)

The sample’s weight w
(k)
t is set to the likelihood p(zt|h(k)

t ), yielding the final sam-

ple 〈h(k)
t , w

(k)
t 〉. The particle weights are normalized at each step to sum to 1. The re-

sulting sample set {h(k)
t , w

(k)
t }Kk=1 is a representation of the state distribution p(ht|z1:t),

as implied by (3.3).
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In the next chapter, we define our particle model ht for the nerve bundle, our

dynamics model p(ht|ht−1), and our likelihood measure p(zt|ht). Together with the

observations zt, these elements fully define the tracking algorithm.
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Chapter 4

Nerve Segmentation

THE appearance of nerve tracts in MR images is highly variable, with occasional

strong intensity and shape changes due to imaging artefacts, vicinity of other

anatomical structures, and nerve damage. This high variability in nerve appearance

motivates a statistical representation of the tubular structure. To facilitate such rep-

resentation, the particle filtering framework considers several hypotheses, or particles,

at each tracking iteration, as discussed in the previous chapter. In this chapter, we

describe a particle model to characterize the nerve bundles, followed by a dynamics

model for the propagation of the particles, and finally the features used in the posterior

computation. The framework is summarized in Figure 4.1.

� 4.1 Particle Representation for Nerve Tracks

In our formulation, a particle represents a segment of a nerve bundle. We model each

particle ht as a tubular structure around a centerline in 3D, and design the centerline

as a Bézier curve [27]. We model the varying thickness of the segment with a quadratic

radius function, as illustrated in Figure 4.2. We also maintain the average intensity of

the nerve.

A nth degree Bézier curve [27] is defined by n + 1 control points. The first and

last control points define the end-points of the curve. The interior control points can

be thought of as “pulling” the curve towards them. We choose to work with a cubic

representation of the segment centerline:

c(τ) = (1− τ)3p0 + 3(1− τ)2τp1 + 3(1− τ)τ2p2 + τ3p3, (4.1)

where τ ∈ [0, 1] is the parameterization variable.

We allow the radius function r(·) to vary quadratically along the segment, and also

23
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w = 0.20
w = 0.55

w = 0.25

2. Propagate via p(ht|ht−1)
to obtain ሺࢎ௧|ࢠଵ:௧ିଵሻ.

w = 0.05 w = 0.4 w = 0.4 w = 0.15

1. Generate new samples 
(indicated by     )
from ሺࢎ௧ିଵ|ࢠଵ:௧ିଵሻ.

3. Weigh new particles
using observations ࢠ௧
to obtain a new particle    
set ݄௧

, ௧ݓ
 and ሺࢎ௧|ࢠଵ:௧ሻ.

Nerve Segmentation Algorithm

• Clean up and re-score tracks 
Potentially discard tracks if user offers extra click.

• For successive steps 2: ܶ, until the 
end of MRI volume: 

w = 0.05
w = 0.05
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• Initialize ࢎ with two clicks, and 
generate first particles ሼࢎଵ

,࢝ଵ
ሽ
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ଵ:௧ିଵሻࢠ|௧ିଵࢎሺ

ଵ:௧ିଵሻࢠ|௧ࢎሺ

Figure 4.1. An overview of the Particle Filter algorithm as applied to nerve segmentation. To best
illustrate the concepts, we use very few particles in our illustrations, unlike the actual implementation
where several thousand particles are used at each step. Following the initialization, we perform the
illustrated procedure iteratively. The previous posterior distribution p(ht−1|zt−1) is approximated by
weighed particles (nerve segments). In the first step of an iteration, we obtain samples (orange dots)
based on this posterior. In the second step, we propagate these samples, i.e., continue the previous
nerve segments, via the dynamics model. Finally, the new particles are weighed based on the current
observation with the likelihood model.



Sec. 4.2. Dynamics model 25

3D cubic Bezier  
curve centerline 

Quadratic radius  
function 𝑟(𝜏) 

  

intensity 

𝒉 = (𝒑0,𝒑1,𝒑2,𝒑3, 𝑟0, 𝑟1, 𝑟2, 𝜇) 

𝒑1 
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𝒑2 

𝒑3 

Entire volume 

Observation 𝒛𝑡 

Figure 4.2. Left: Nerve segment (particle) is defined as a Bézier curve centerline with four control
points, a quadratic radius function r(·), and the average intensity. Right: An observation is a sub-
volume of the entire MRI volume, surrounding a particle hypothesis.

define it via a Bézier curve:

r(τ) = (1− τ)2r0 + 2(1− τ)τr1 + τ2r2, (4.2)

using control points r0, r1, and r2. In addition, we maintain the mean image intensity µ

inside the segment. The state vector

h = (p0,p1,p2,p3, r0, r1, r2, µ) (4.3)

fully describes the corresponding segment, as illustrated in Figure 4.2. This construction

can handle tubular structures with variable directionality, thickness and intensity, such

as nerve bundles and ganglia.

� 4.2 Dynamics model

In this section, we describe the dynamics model, which specifies the construction of the

current state vector ht given the state vector ht−1 generated in a previous step of the

algorithm. This construction extends the hypothesized nerve ending with ht−1 with a
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new segment ht. As we detail below, we enforce continuity and smoothness between

the segments and encourage consistent direction, radius and intensity as the nerve

progresses. This procedure represents sampling the probability distribution p(ht|ht−1).
To ensure continuity of the track, we set the first centerline control point of ht to the

last control point of ht−1: p0,t = p3,t−1. To maintain smoothness during the transition

from the previous to the current particle, we place p1,t along the line (p2,t−1p3,t−1). For

Bézier curves, the tangent of a curve at an endpoint p0 is along the vector (p0,p1), and

similarly the tangent at point p3 is along the vector (p2,p3). Our construction therefore

aligns the tangent vectors of consecutive particles. The distance ` between p0,t and p1,t

is drawn uniformly from (0, L] where L is a parameter of the algorithm. Formally,

p1,t = p0,t + `n̂,

where n̂ is the unit vector in the direction of (p2,t−1,p3,t−1).

We draw the direction of (p1,t,p2,t) from a von Mises-Fisher distribution on the unit

sphere, centered on the direction of the initial tangent n̂01 = (p0,t,p1,t) with concen-

tration 1/σ2α and call this new direction n̂01 + ∆n̂12. We then sample the distance `2

of p2,t from p1,t uniformly from (0, L]. Formally,

p2,t = p1,t + `2(n̂01 + ∆n̂12).

Using the same procedure, we generate p3,t based on p2,t and vector n̂12 = (p1,t,p2,t),

and `3 ∈ [0, L]:

p3,t = p2,t + `3(n̂12 + ∆n̂23).

Similar continuity and smoothness is enforced on the radius function r(·). We

set r0,t = r2,t−1 to maintain continuity of the radius function. We sample a distance

d ∈ (0, 1), and set r1,t to the y-coordinate of a control point distance d away from

r0,t along the line (r1,t−1, r2,t−1) . We choose r2,t from a Gaussian distribution with

mean r1,t and variance σ2r .

The intensity parameter µt is propagated via a Gaussian distribution with vari-

ance σ2µ.

This construction depends on four parameters: L controls the length of the par-

ticle, σ2α determines the variation in the particle curvature, σ2r describes the range of

the radius, and σ2µ captures the variation in intensity. We describe the values for these
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expected observed 
bad match 

observed 
good match 

Figure 4.3. Illustration of likelihood computation and the partial volume effect. Left: hypothesized
particle implies gradient directions (blue arrows) in the image. Next to it are two examples of possible
observations around this hypothesis. In the first example observation, the proposed intensity is very
different from the average intensity over the particle volume, giving rise to high intensity distance d2µ.
The gradient directions at each pixel are also very different from the expected directions (at the same
voxel), yielding a high gradient distance d2∇ for the first example observation. For the second observed
image, both the average intensity over the particle volume and the gradient directions match the
expected particle significantly better. Overall, the particle weight will be low given the first observation,
but high given the second observation. Right: a thin particle, or nerve segment, is shown where the blue
grid defines voxels. Only the shaded voxels are almost entirely in the nerve, the rest are a combination of
nerve and background intensities, illustrating the severity of the partial volume effect in our application.

parameters in the next chapter.

� 4.3 Likelihood Measure

Here we focus on the likelihood p(zt|ht) of the image patch zt given a particle ht. The

contrast between the nerve bundle and surrounding tissue may change along the track,

rendering ribbon measures [12, 23], which are often used for this type of task in vessel

work, inappropriate. However, image gradient is still typically normal to the centerline

in a small neighbourhood around the bundle. Therefore, to measure alignment of an

observed image patch I with a hypothesis ht, we simulate an image patch with a

black nerve segment described by the particle ht on a white background as shown in

Figure 4.3. We compare the directions of its gradients gh with those of the observed

patch gI (blue arrows in Figure 4.3). We avoid using the gradient magnitude, since

false hypotheses with partial but very strong contrasts are abundant. We express the
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distance d2∇ between the normalized particle gradient ĝh and the normalized observed

gradient ĝI via the sigmoid function:

d2∇(ht, I) =
1

|V (ht)|
∑

v∈V (ht)

1

1 + exp{− θ(ĝhv ,ĝ
I
v)−c

w }
, (4.4)

where V (ht) is the set of voxels in the simulated patch that belong to the predicted nerve

segment, v is an image voxel, θ(ĝhv , ĝ
I
v) = π

2 − |
π
2 − ∠(ĝhv , ĝ

I
v)| is the angle between the

two gradients mirrored around π/2, and c, w are parameters that control the sigmoid

shape. A high gradient distance d2∇ implies disagreement between the expected and

observed gradient fields.

To encourage consisent nerve intensity, a second term measures the distance between

the mean intensities in the observation and the particle intensity prediction:

d2µ(ht, I) =

µt − 1

|V (ht)|
∑

v∈V (ht)

Iv

2

. (4.5)

We form the likelihood model by combining equations (4.4) and (4.5):

p(zt|ht) =
1

Z
(1− d2∇) exp{−λd2µ}, (4.6)

where λ penalizes the intensity distance and Z is the partition function. In practice, Z

does not need to be explicitly computed as the weights of all samples are normalized

at the end of each iteration. In the sigmoid formula (4.4) we use the exponential

to transform the gradient angle distance θ(ĝhv , ĝ
I
v) to the similarity measure 1 − d2∇,

controlled by c and w. In (4.6), we similarly use the exponential to obtain a similarity,

where the driving parameter is λ.

Partial volume effects play a significant role in this computation. In particular,

because nerve bundles are generally thin, most nerve bundle voxels also contain volume

from surrounding anatomy (Figure 4.3). This creates a large gradient field as non-

negligible gradients appear at most nerve voxels, and very few voxels can be used for

mean intensity estimation. Modeling large segments of the nerve tracts, as opposed

to cross-sections, improves the robustness of the method by increasing the number of

voxels that contribute to the distance computations in (4.4) and (4.5).



Chapter 5

Implementation Details and

Parameter Choices

WE initialize each nerve bundle with two nearby clicks that specify p2,0 and p3,0

for a set of particles of equal weights and varied radii parameter r2 at time t = 0.

This information fully allows us to start the algorithm loop with t = 1. We run the

particle filter until all bundles reach a pre-determined section of the volume, outside of

the spine (such as the end of the volume). In each iteration, we sample many particles

but keep only the ten top-weighed particles to form the sample set {h(k)
t , w

(k)
t }10k=1.

To identify the most appropriate of the resulting tracts, we construct each tract V (h1:t)

in the volume, and compute the likelihood (4.6) for the entire tract. At this point, the

required nerve is fully segmented, however spurious tracts may also be present in some

cases. This might happen if other nerves are in contact with the nerve of interest at

some point during tracking, or if structures that seem tubular are near the nerve. A

user can provide a single mouse click, such as a point around the ganglia or nerve ends,

which eliminates any incorrect tracks.

The parameters described in Section 4.2 are properties of the nerves in our MR im-

ages. We found that estimating these parameters from one nerve in one patient provides

a good set of parameters for all other images with the same contrast and resolution.

We set parameters as follows: length L = 15, curvature σα = 0.2, radius σr = 0.1,

intensity σµ = 0.05, where the units are all in millimetres.

Parameters c, w and λ control the shape of the likelihood measure. For the gradient

distance measure, we seek to strongly encourage gradients that are close to the predicted

ones, and discourage any that are perpendicular to the prediction. Similarly, we strongly

discourage any segments whose predicted intensity does not match the observed patch.

This selection criteria leads to a choice of c = π/4, w = 0.05, and λ = 50.

We typically use 100, 000 particles, which leads to runtimes of 5 to 30 CPU-minutes
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per nerve in our MATLAB implementation. The particle search is parallelized within

each iteration, giving us faster runtimes when utilizing multiple cores. Note that due to

the multi-hypothesis nature of particle filters, branching nerves are naturally tracked.



Chapter 6

Results

WE evaluate our algorithm on synthetic and patient data. We show that it can

fully segment the nerves from the initial input point up to the end of the ganglia,

and provide accurate estimates of the nerve thickness. To quantify the accuracy of our

method, we measure the distances between the desired and automatic nerve surfaces.

� 6.1 Synthetic Data

First, we generate synthetic nerve tracks via our particle model. We vary the dynamics

parameters, such as the radius and control points, beyond ranges that are observed in

real images, to allow for tracks with more irregular behavior. The image intensity is

then formed by adding white noise to the predicted nerve image:

In(v) ∼ N (0.5n(v), σ2n), (6.1)

where n(v) ∈ [0, 1] is the amount of nerve present at voxel v, N (µ, σ2) is a Gaussian

distribution with mean µ and variance σ2, and σn = 0.05 is estimated from real MRI

scans with manually segmented nerves.

We superimpose the nerve tracks on backgrounds with no noise (blank), Gaus-

sian noise, Perlin noise, and random sections of MRI volumes, which present varying

degrees of segmentation difficulty. Backgrounds with Gaussian noise are generated

via Ib(v) = N (0.5, σ2b ), where σb = 0.23 is estimated from image regions surrounding

nerves in patient data. We simulate Perlin noise by first combining layers of smaller

dimensions with the same Gaussian noise. Each layer is then up-scaled via interpolation

to match the size of the original image, and then added together. Our synthetic images

are then defined by:

I(v) = n(v) · In(v) + (1− n(v)) · Ib(v), (6.2)
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Figure 6.1. Synthetic nerves generated from our model with added white noise embedded in different
backgrounds: blank, white noise, Perlin noise and anatomical patch, respectively. The yellow outlines
show the automatic segmentation results. Slight under-segmentations can be seen around the edges,
and occasionally at the ends of the nerve section, where the segmentation has moved into the adjoining
slices one voxel too early.

Figure 6.2. Real nerve delineation with added white noise and embedded in different backgrounds:
blank, white noise, Perlin noise and anatomical patch, respectively. The yellow outlines show automatic
segmentations. The segmentations tend to avoid irregularities in the nerves, and will usually under-
segment. For such real nerves, note that the segmentations are initialized at the top of the nerves in
the shown slice, which leads to under-segmentations in the region due to the initializations.
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Figure 6.3. Summary of synthetic results for the eight types of synthetic nerves and backgrounds. The
red bars indicate the average of the median distance between the automatic and the manual outline. The
blue bars indicate the 90th percentile. For each category, Model indicates that we generated the nerve
via our particle model, and Expert indicates nerves generated from the smoothed expert segmentation
of real nerves.

where In(v) is generated via our particle model, and Ib(v) is one of the four background

models. We evaluate the algorithm on 20 images with each background. Example syn-

thetic images and results are shown in Figure 6.1. Typical diameters measure between

four and ten voxels, yielding many partial volume voxels between nerve and background.

We also construct and test a second synthetic dataset of the same size, where the

initial nerve intensity In(v) is generated from smoothed binary map n(v) of expert nerve

segmentation in patient data. The nerve and background noise models are applied in

the same manner as in the first synthetic set. The nerves range from four to 25 voxels

in diameter, and present with far more irregular shape, illustrated in Figure 6.2.

As illustrated in Figure 6.3, the median distance between the automatically ex-

tracted and true nerve surfaces for each nerve generated from our particle model is

0.8± 0.4 voxels, with a 90th percentile of 2.1± 0.7 voxels. Most of the algorithm errors
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Figure 6.4. Patient data results. Left: Rendered segmentation results – a herniated disk (manually
segmented, yellow) is impinging on the nerve tracts (segmented with our algorithm with minimal user
input, green). Right: Slice that includes a section of a nerve and a ganglion. The yellow outline
indicates the automatic delineation of the nerve. The algorithm tends to slightly under-segment the
nerve, as we see the margins of the nerve underneath the segmentation.

are in the edge, partial-volume voxels. For nerves generated from expert segmentations,

the shape irregularity results in an increased median distance between the automati-

cally extracted and true nerve surfaces of 1.3 ± 0.3 voxels, with the 90th percentile of

4.1± 0.4 voxels.

� 6.2 Patient Data

We further demonstrate our method on MRI spine scans of 12 nerve bundle segmen-

tations from six subjects. The scans were acquired 3D Wide-band Steady State Free

Precession sequence [24] (in-plane resolution 0.44-0.60mm, slice thickness 1.2-1.8mm,

TR=6.4-6.9ms, TE=2.1-2.4ms, Θ=25, ±32KHz bandwidth, and FOV=14cm). These

include four nerves in two pathologies where the nerves have been displaced by disk

herniations. We obtain both expert and automatic segmentations of nerve bundles in-

side the spine and ganglia that were deemed traceable, and evaluate tracing accuracy

for all bundles. Figure 6.4 illustrates an example automatic segmentation.

Quantitative results are summarized in Figure 6.5. The nerve diameters range from

three to six voxels inside the spine and up to about 25 voxels in the ganglia. We find

that the median distance between the automatically extracted and the expert surface

is 1.0 voxel for most nerves, and the 90th percentile is 2.9± 0.6 voxels.
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Chapter 7

Discussion

MAPS showing the general nerve tracks and shapes can be helpful in planning

interventions and treatment. Accurate thickness estimation is important as it

provides critical diagnostic information, such as the degree of damage due to a herniated

disk. Furthermore, quantitative measures of nerve properties enable studies of clinical

effects of an injured nerve treatment. The surface distance computed in the previous

section is therefore particularly suitable for our application in understanding the quality

of thickness estimation.

� 7.1 Algorithm Behavior

In synthetic data without background noise, the algorithm successfully tracks the nerve

direction and thickness. The main errors are observed at the nerve edges, where partial

volume effects are strong. Gaussian noise background or anatomical data background

yield slightly increased surface distances. Perlin noise presents the strongest challenge,

as it creates background areas that yield more consistent gradient vectors. For such

areas in the vicinity of the nerve, the algorithm may slightly over or under estimate the

surface. While for the first three background types no post-processing was necessary,

Perlin data sometimes caused the algorithm to estimate spurious tracts in addition to

the true one.

In both synthetic and real data, the algorithm fully followed the nerve tracks and

provided an accurate estimate of the nerve thickness. Visually, there is only a slight ten-

dency to under-estimate the thickness of the nerve, which is caused by two effects. First,

the partial volume effect causes the nerves to have noisy margins. In both datasets,

the true segmentations (generated ground truth or manual expert segmentations) in-

clude these edge voxels, whereas the algorithm tends to omit them as they lower both

terms in the likelihood measure (4.6). Depending on the application, the method can
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be tuned to expand the segmentation to correct this bias. More importantly, in real

data, the nerves and ganglia present with various shapes and irregularities, especially

in the context of pathologies. Deformations and protrusions are picked up by expert

segmentations, but they do not fit the smooth particle model we impose, and are there-

fore omitted by the algorithm (Figure 6.4). Severe irregularities are generally more

prominent in the area leading up to and including the ganglia where the nerve thick-

ens and is more likely to be affected by neighboring anatomy. Our particle model is

therefore flexible enough to capture most of the nerve shape, but does not handle oc-

casionally arbitrary appearance of the nerve bundles. We conclude that the proposed

segmentation may slightly under-segment, but provides a solid estimation of the nerve

location and thickness. On average, nerves require less than three mouse clicks: two

initial, nearby clicks, and potentially one (or very rarely two) post-processing clicks to

eliminate spurious branches.

Note that the second synthetic dataset combines the irregularity of real nerves with

more complex backgrounds in the case of Perlin noise, which leads to errors from both

sources. Here, we observe under-segmentations due to irregular nerve shape and over

segmentation due to structure in the Perlin noise. The start of the nerve may also be

under-segmented as the initial clicks may not be central in the cross section.

� 7.2 Exceptions

In general, the algorithm cannot succeed on nerves which would otherwise not be seg-

mentable by the user, as not enough contrast is present to distinguish the nerve from

other anatomy and guide the likelihood. Finally, we also explored the algorithm on the

nerves following the ganglia in patient images, where they split up into several thinner

peripheral nerves. Here, the individual fibres lose contrast and often change intensity,

and the algorithm is usually only able to segment for no more than a few millimetres.

Segmentation of these fibres is left for future work.
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Conclusion

UNDERSTANDING the impact on spinal nerves is critical in evaluating spinal patholo-

gies. Creating segmentation maps of the implicated nerves in MR images is an

important step in diagnosis and treatment planning, and in aiding of surgical interven-

tions. However, manual segmentation is challenging due to the high variability of nerve

contrast and 3D nature of the volume.

� 8.1 Contributions

In this thesis, we proposed and demonstrated the first approach for the segmentation of

nerve bundles in high-resolution spine MRI. The method is based on particle filtering

and requires minimal input from the user. We model nerve segments via Bézier curves

and define a dynamics model for propagating the segments. A new distance measure

that utilises gradient fields and nerve intensities is used to score nerve segments and

whole bundles.

We evaluate the method’s capacity to handle nerves and ganglia in the presence of

both high and low contrast in a variety of synthetic and patient data. We demonstrate

the ability to fully track the nerve path and estimate the nerve thickness correctly, with

small errors in surface estimation. The 3D maps of nerve bundles generated by our

algorithm can aid substantially in diagnosis, treatment and intervention planning.

� 8.2 Future Work

The algorithm can be improved by further isolating and segmenting irregularities in

the nerve surface. Such a segmentation can be particularly useful in understanding

damaged nerve sections. For example, a post processing step can be added which does

a local search for irregular nerve shape, perhaps given user input to control leaking into

neighboring surfaces. Segmentation of the much thinner peripheral nerves, which also
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present with lower contrast, remains a challenging problem for future work.

The segmentation results presented in Chapter 6 facilitate important measures in un-

derstanding the effects of a pathology on nerve bundles. Sudden and significant changes

in radius or displacement of the nerve indicate likely damage, but subtle changes can

also be indicative of pathology. As a continuation of the project, we will be developing

a nerve score which describes the amount and type of damage done to a nerve bundle.

The score will be designed to be informative of symptom duration, treatment outcome,

and the need for future surgery. A proposed clinical trial will use this score to differen-

tiate between concordant and discordant pain, helping clinicians understand the source

of back and leg pain in complex spine pathologies.
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