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S U M M A R Y
We derive a generalized theory for gravitationally self-consistent, static sea level variations on
earth models of arbitrary complexity that takes into account the redistribution of sediments.
The theory is an extension of previous work that incorporated, into the governing equations,
shoreline migration due to local sea level variations and changes in the geometry of grounded,
marine-based ice. In addition, we use viscoelastic Love number theory to present a version of
the new theory valid for spherically symmetric earth models. The Love number theory accounts
for the gravitational, deformational and rotational effects of the sediment redistribution. As a
first, illustrative application of the new theory, we compute the perturbation in sea level driven
by an idealized pulse of sediment transport into the Gulf of Mexico. We demonstrate that
incorporating a gravitationally self-consistent water load in this case significantly improves
the accuracy of sea level predictions relative to previous simplified treatments of the sediment
redistribution.

Key words: Sea level change; Geomorphology; Sedimentary basin processes; Tectonics and
landscape evolution.

1 I N T RO D U C T I O N

Numerical predictions of postglacial sea level change have been
instrumental in advancing our understanding of Earth’s internal
structure, ice age and modern climate, Quaternary geomorphology
and human migration. All modern predictions of sea level changes
in response to the melting of Late Pleistocene ice complexes may
be traced to the seminal work of Farrell & Clark (1976, henceforth
FC76). FC76 derived a so-called ‘sea level equation’ which gov-
erned the gravitationally self-consistent redistribution of meltwater
on a viscoelastic, non-rotating earth model in the case where shore-
lines remained fixed to their present-day location. In practical terms,
this treatment of shorelines is equivalent to assuming that shorelines
are characterized by steep vertical cliffs, so that local changes in sea
level do not produce transgressions or regressions, and that there is
no change in the geometry of grounded marine-based ice.

The FC76 derivations are based on an equilibrium (i.e. static) sea
level theory in which the distribution of meltwater at any time is
determined by the contemporaneous gravitational and solid Earth
deformational fields. (This is distinct from non-equilibrium sea level
theories applied to, for instance, short-period tides, in which one
cannot neglect inertia in the oceans and forces such as bottom
friction.) However, even with this assumption, which is accurate on
glacial isostatic adjustment (GIA) timescales, the physics governing

sea level change remains complex. In particular, the redistribution
of meltwater perturbs the gravitational field, both through its direct
attraction and via solid Earth deformation, and this redistribution is,
in turn, governed by these perturbations. This circularity is reflected
in the non-linear, integral nature of the sea level equation derived
by FC76.

It is useful to consider the FC76 theory as comprising two in-
dependent parts. The first involves a mapping between sea level
changes, which are defined globally, and ocean load changes, which
are limited to the geometry of the ocean basins. Under the assump-
tion of fixed shorelines, this projection is trivial; one simply mul-
tiplies the sea level change by the so-called ocean function, which
is defined to be unity over the oceans and zero elsewhere. The
second part of the theory describes a methodology for computing
perturbations in both the gravitational field of the planet and vertical
deformations of the solid surface driven by an arbitrary surface mass
load history. For this purpose, FC76 assume a spherically symmet-
ric, self-gravitating, non-rotating, Maxwell viscoelastic earth model
and they derive Green’s functions using viscoelastic Love number
theory (Peltier 1974).

The initial implementation of the FC76 theory (e.g. Peltier &
Andrews 1976; Clark et al. 1978; Peltier et al. 1978; Wu & Peltier
1983; Tushingham & Peltier 1991) was based on a computation of
the Green’s functions in the space domain using a circular disk load
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discretization of the Earth’s surface . Fully spectral and pseudospec-
tral solutions of the sea level equation (Mitrovica & Peltier 1991)
have since become the standard approach in the GIA community.
In these solutions, all calculations are performed in the spectral
domain with the exception of the projection of sea level onto the
ocean function.

Since the early 1990s, there have been advancements in both
aspects of the FC76 sea level theory. First, a number of studies
have extended the surface mass loading theory to include rotational
effects (e.g. Milne & Mitrovica 1996, 1998) and to consider the
response of earth models with 3-D variations in viscoelastic struc-
ture (e.g. Martinec 2000; Wu & van der Wal 2003; Zhong et al.
2003; Latychev et al. 2005). These extensions have been applied
in several studies of postglacial sea level changes (Wu & van der
Wal 2003; Paulson et al. 2005; Kendall et al. 2006; Davis et al.
2008) . Secondly, a series of independent efforts have treated the
case of shoreline migration due to local changes in sea level (John-
ston 1993; Peltier 1994; Milne 1998; Milne et al. 1999) and/or the
growth and ablation of grounded, marine-based ice (Milne 1998;
Peltier 1998; Milne et al. 1999; see also Lambeck et al. 2003).
The distinct treatment of shoreline migration among these studies
was the source of a debate within the GIA literature that is now
resolved (see Mitrovica 2003 for a detailed review). In particular,
Mitrovica & Milne (2003) and Kendall et al. (2005) developed a
generalized, exact treatment of time-dependent shorelines in a re-
vised sea level equation, and they used schematic illustrations and
quantitative predictions to assess the relative accuracy of previous
formulations.

In this study, our goal is to extend the global sea level theory
derived by Mitrovica & Milne (2003) and Kendall et al. (2005) to
incorporate, in a gravitationally self-consistent fashion, the impact
of sediment redistribution into the existing treatment of ice and
ocean water redistribution. The effects of a sediment load differ
from those of an ice load. In particular, grounded marine-based ice
within oceanic regions will displace all of the local ocean (i.e. water
and grounded marine ice cannot coexist at a specific location), and
thus the existence of such ice acts to redefine the shoreline and
ocean geometry. In contrast, sediment packages pushed offshore,
for example, are not necessarily thick enough to displace the entire
column of ocean water. That is, sediments can coexist with ocean
water, and thus sediment redistribution will not necessarily lead to
a change in the bounding shoreline geometry.

Our theory will assume that the large-scale redistribution of sed-
iment is known a priori, or that it can be parametrized in terms of
the space–time geometry of the Late Pleistocene ice history. That
is, we treat the transfer of sediment as a known input. We note that
there has been an attempt to incorporate such transport into post-
glacial sea level predictions, at least on a regional scale (Simms
et al. 2007). However, the study neglected the loading effect of
sediment-displaced water. The theory described below is global
and it incorporates gravitationally self-consistent ocean loading.

We begin with a derivation of the extended sea level theory. To
avoid confusion, we adopt the notation used by Mitrovica & Milne
(2003) and Kendall et al. (2005). The development begins with a
generalized case valid for earth models of arbitrary complexity, and
then proceeds to the special case of spherically symmetric mod-
els. In each case, we provide details of the associated numerical
algorithm, with the spherically symmetric case being based on the
same pseudospectral methodology used in previous studies (Mitro-
vica & Peltier 1991). We then illustrate the new sea level equation
with a series of schematic diagrams. We end the paper with a case
study that applies the spherically symmetric version of the new the-

ory to consider the time-dependent impact on postglacial sea level
histories of a simple pulse of sediment transport into the Gulf of
Mexico. We show that significant errors may be introduced in sea
level calculations when the effects of sediment redistribution are
computed using approximate theories that are not gravitationally
self-consistent.

2 A G E N E R A L I Z E D S E A L E V E L
E Q UAT I O N

2.1 Derivation of a generalized sea level equation

We begin by defining the height of the solid Earth (i.e. the crustal
surface not including sediment and ice cover), the height of the sea-
surface equipotential (i.e. absolute sea level) and the thicknesses
of sediment and ice. From these fields, we construct an expression
for sea level and ocean load changes. Each of the fields has a
dependence on space (via colatitude θ and east longitude ψ) and
time t. In this section, we adopt a notation that suppresses these
explicit dependencies for the sake of simplicity. That is, we write
a generic function χ (θ , ψ , tj) more compactly as χ , or χ j when
it is necessary to make the time dependence explicit. Under this
notation, let

R ≡ The height of the Earth’s bedrock surface;

G ≡ The height of the equipotential that defines the sea surface;

H ≡ Sediment thickness;

I ≡ Thickness of land-based and grounded marine-based ice. (1)

The fields R, H, I and G are shown schematically in Figs 1(b)
and (c) for a general configuration of ice, water, sediment and solid
Earth given in Fig. 1(a). The height of the solid surface of the planet
is given by R + H + I, and sea level is defined as the height of the
sea-surface equipotential relative to this solid surface datum:

SL = G − (R + H + I ). (2)

Using this definition of sea level, the topography is then simply
given by

T = (R + H + I ) − G

= −SL . (3)

This expression for topography is in accord with the usual field
quantity, as specified in data sets such as ETOPO2 (US Dept of
Commerce 2001). Fig. 1(d) provides a schematic illustration of sea
level, SL, and topography, T, in the case of the scenario shown in
Fig. 1(a).

While sea level is defined globally, the ocean thickness is clearly
non-zero only over oceanic regions. Mathematically, this thickness
is given by a projection of the sea level onto the oceans

S = SL · C, (4)

where C is the ocean function (Munk & Macdonald 1960)

C =
{

1 if SL > 0

0 if SL ≤ 0.
(5)

Both the ocean thickness S and the ocean function C depend on
the sea level SL. The relation between SL, C and S is illustrated in
Fig. 1(e).
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(a)

Figure 1. Schematic illustration of the fields adopted within the sea level theory of the text. Panel (a) shows a general configuration of ocean, sediment, ice
and the underlying solid crust. Panel (b) shows the same configuration as that in (a), and highlights the heights of the sea-surface equipotential G and Earth’s
crust R (i.e. solid surface minus sediment and ice). Panel (c) highlights the thicknesses of ice I and sediment H; panel (d) identifies the sea level and topography
fields SL and T defined by eqs (2) and (3), respectively; and panel (e) shows the same sea level field SL, which is defined everywhere, and the ocean thickness
field S, which is non-zero only where there is sea water (i.e. where SL > 0; eqs 4 and 5).

Next, we define the surface mass load, which is comprised of the
oceans, ice and sediments

L = ρW S + ρI I + ρH H, (6)

where ρW, ρI and ρH are the densities of water, ice and sediment,
respectively.

We are concerned with predicted perturbations in the quantities
SL, T, S, G and R associated with isostatic adjustments driven by
surface mass (ice, water and sediment) loading. Henceforth, we
retain the usual term ‘glacial isostatic adjustment’ for this more
general scenario. In this regard, we distinguish between variations
from the onset of loading and between two successive time steps in
the numerical evolution of the system. Let us consider some general
time-dependent field χ j. A perturbation in this field from the onset
of loading, at time t0, is given by

�χ j = χ j − χ0

⇒ χ j = χ0 + �χ j . (7)

If, instead, we consider a variation over successive time steps, we
write

δχ j = χ j − χ j−1

= (χ j − χ0) − (χ j−1 − χ0)

= �χ j − �χ j−1. (8)

From eqs (7) and (8), it is apparent that the total variation since the
onset of loading can be written in terms of the variations between
successive time steps.

�χ j =
j∑

n=1

δχn . (9)

The expressions (7) and (8) may be applied to any of the fields R,
H, I, G, SL, T, S and L. For example, from (2), (7) and (8), we have

�SL j = SL j − SL0 = �G j − (�R j + �Hj + �I j ) (10)
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and

δSL j = SL j − SL j−1 = δG j − (δR j + δHj + δ I j ). (11)

Since the ocean thickness involves the projection of sea level onto
the ocean function, a variation in this thickness cannot be written
as a simple combination of the variation in the fields G, R, I, etc.
Instead, we begin by writing

�Sj = Sj − S0

= SL j C j − SL0C0. (12)

Then, applying the general eq. (7) to the sea level change (i.e. setting
χ = SL in this equation) and using this in eq. (12) yields

�Sj = �SL j C j + SL0[C j − C0], (13)

�Sj = �SL j C j − T0[C j − C0]. (14)

Similarly, from eq. (8)

δSj = �Sj − �Sj−1

= SL j C j − SL j−1C j−1. (15)

Using the expression for �Sj in eq. (15) gives

δSj = −�Sj−1 + �SL j C j − T0[C j − C0]. (16)

In eqs (14) and (16), we have used the simple relationship between
sea level and topography in eq. (3).

Eqs (14) or (16), combined with eqs (3), (5) and (10), represent
the generalized form of the sea level equation valid for a scenario
that includes redistribution of ice, meltwater and sediments. In the
context of the discussion in the Introduction, these equations provide
an exact mapping between global postglacial sea level variations,
�SL, and the variation in the ocean thickness. They thus represent an
extension to the classic, fixed-shoreline treatment of FC76, as well
as the time evolving shoreline theory (in the absence of sediment
redistribution) of Mitrovica & Milne (2003) and Kendall et al.
(2005), that is rooted in the definition of SL given by eq. (2).

Eq. (14) has a clear physical interpretation. The first term on the
right-hand side represents a projection of the total sea level variation
at time tj onto the ocean function at this same time. Thus, the total
variation in the ocean thickness at tj, �Sj, is equal to a combination
of this term, which is the only term appearing in the fixed-shoreline
FC76 theory, and a correction term that accounts for any shoreline
evolution. The latter term is a projection of the original sea level
field, SL0 (or T0), onto a function which is only non-zero within the
zone of shoreline migration from time t0 to tj (i.e. Cj − C0).

It will be instructive to highlight the physical meaning of eq. (15)
using a simple set of schematics. To begin, Fig. 2 shows a redis-
tribution of sediment, ice and water and a deformation of the solid
Earth from the state shown in Fig. 1(a) (which we associate with
t = tj−1) to a new state at t = tj (Fig. 2b). Below each frame we
specify the value of the ocean function (zero or one) and the ocean
thickness (zero or sea level SL) in each region of the schematic. The
last line below the figure lists δSj, the difference in ocean thickness
between time steps tj and tj−1. These values of δSj highlight the
interplay between sediment and ice redistribution and the change in
the ocean thickness, which represents the change in the ocean load.

In Fig. 3, we confirm the validity of the generalized sea-level
eq. (14) using a simple redistribution of sediment and water. The
top frame shows the initial condition (i.e. t = t0). Fig. 3(b) shows a
snapshot at some time later, t = tj, at which point the sediment on

land in Fig. 3(a) has entered the ocean, forming an island, while the
sediment within the ocean in Fig. 3(a) has slumped to fall below
the local sea surface. These changes alter the ocean function, as
indicated by the summary values for C and S below each frame. In
Fig. 3(c), we use the geometries in the first two frames to directly
compute the change in the ocean thickness (load), and the results
are shown both as a schematic and in a list of values below this
schematic. Finally, we provide a table which uses the expressions in
the first two frames to implement the generalized sea level eq. (14)
governing the ocean thickness change since the onset of the loading
(i.e. since t = t0). The equivalence between these expressions and
the values generated by direct inspection of Figs 3(a) and (b) (see
bottom of Fig. 3b) confirms the accuracy of the sea level eq. (14).

2.2 Some practical considerations

The generalized sea level eqs (14) or (16) involve the expression
(10) for the total variation in sea level. Within this latter expression,
�I and �H are a priori inputs (i.e. a priori models of the ice history
and sediment redistribution), whereas the total postglacial variation
in the Earth’s sea surface and solid surface height, �G and �R,
respectively, must be computed from some independent calculation
that accounts for the full time history of surface mass (ice plus sed-
iment plus ocean) loading. In practical applications of the model,
conservation of sediment mass provides an additional constraint
on the inputs for �H and δH: the integrated mass of eroded sed-
iment over the basin of interest should match the integrated mass
of deposited sediment over the deposition area. Using eqs (6) and
(7), the time history of the net mass loading may be written as the
combination

�L j = ρW�Sj + ρI�I j + ρH�Hj . (17)

The method of computing �SL from the history of loading given
by eq. (17) will depend on the complexity of the viscoelastic earth
model. For spherically symmetric earth models, this second element
of any postglacial sea level theory (see Introduction) may be per-
formed using viscoelastic Love number theory (Peltier 1974), as in
FC76. For earth models that incorporate 3-D variations in structure,
the calculation of �SL can make use of any one of a suite of recently
developed spectral finite element and finite volume treatments of
the surface loading problem (see Introduction for a list of such stud-
ies). Note that in either case, the computation of �SL accounts for
the gravitational, deformational and rotational perturbations driven
by the total surface mass load, including the sediment load history,
�H.

The suite of expressions (5), (10), (14) and (17) illustrates the
integral nature of the sea level equation. Specifically, the calculation
of the total ocean thickness change, via eq. (14) requires a determi-
nation of both the total variation in sea level and the ocean function,
with the latter dependent on the total sea level from eq. (5). How-
ever, from eqs (10) and (17), the variation in sea level is clearly a
function of the surface mass load and, in particular, the ocean thick-
ness. Physically, the change in ocean thickness is governed (via eqs
5, 10 and 14) by perturbations in the gravitational field, solid surface
and ocean function, but these perturbations are, in turn, influenced
by ocean loading (i.e. �S appears in eq. 17). In practice, this cir-
cularity is addressed numerically using an iterative scheme applied
at each time step in the sea level solution, in which a first guess
to the change in the ocean load from the last time step (i.e. δSj) is
successively improved (see Section 2.4, Mitrovica & Peltier 1991;
Mitrovica & Milne 2003; Kendall et al. 2005). At each time step,
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Sedimentary effects on sea level 5

Figure 2. Schematic depicting a redistribution of ice, water and sediment, and deformation of the solid Earth from the situation in Fig. 1(a) (repeated here in
the top frame), to a new configuration shown in the bottom frame. The frames represent the system at two successive time steps in the evolution, tj − 1 and tj,
respectively. We list, beneath each frame, the associated value of the ocean function C and the ocean thickness S (the thickness is expressed as being equal to
zero or equal to the sea level, where the lateral variation in the latter is suppressed). The final line below the bottom frame provides, following eq. (15), an
expression for the change in the water thickness (or load) between the successive time steps (i.e. δSj = SLjCj − SLj − 1Cj − 1).

we take the first guess in the iterative scheme to be the eustatic sea
level change.

In most practical applications, the appearance of the initial to-
pography in the sea level eqs (14) and (16) introduces a second
iteration in the postglacial sea level theory since this topography
cannot be known at the outset of Late Pleistocene loading (Peltier
1994; Mitrovica & Milne 2003; Kendall et al. 2005). Since eqs (7)
and (8) hold for the topography, T, then

Tj = T0 + �Tj (18)

and, for the present time tj = tp,

T0 = Tp − �Tp

= Tp + �SLp. (19)

Eq. (19) suggests an algorithm for iteratively improving a first guess
to the initial topography. Specifically, the present-day topography,
Tp, is known, and a first guess to the initial topography, T0, is used
within the sea level eq. (14) to compute a time history of the total

sea level variation, �SL. The present-day value of the latter can then
be used in eq. (19) to generate an improved, second iterate value of
the initial topography, T0. This iteration can be repeated until the
estimate for T0 converges within some specified tolerance.

As a final point in this section, we comment on an important
check on the ice height, I. The ice height field to be used in eq. (17)
refers only to variations in land-based and grounded, marine-based
ice. From eq. (2), land-based ice may be defined as being any ice
located where SL + I is negative, that is, anywhere in which the
topography, when the height of ice is removed, is positive. In the
case where the topography after any ice height correction is negative,
that is, SL + I > 0, ice can only be grounded if its height satisfies
the following:

I j > (SL j + I j )
ρW

ρI

(20)

otherwise the ice will be floating. Thus, at any stage of the numerical
sea level solution (see below), the a priori Late Pleistocene ice
history adopted for the calculation will be modified in the following
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6 A. V. Dalca et al.

Figure 3. Schematic demonstrating the validity of the generalized sea level eq. (14) for the simple case of a redistribution of sediment and water from an initial
state (t0; frame a) to a final state (tj; frame b). Below each frame are listed expressions for the ocean function C and the ocean thickness S in each region. Below
frame (a) are also expressions for the initial topography T0. The change in the ocean thickness �Sj is computed directly from these two frames, and the result
is shown in frame (c), in which shaded areas represent changes in S between t0 and tj. Below frame (c) are quantitative expressions required to calculate the
change in water load �Sj with the generalized sea level equation �Sj = �SLjCj − T0(Cj − C0) (eq. 14).
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Sedimentary effects on sea level 7

fashion:

I j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ice Height SL j +Ice Height< 0

Ice Height SL j +Ice Height> 0

and Ice Height> SL j
ρW

ρI−ρW

0 elsewhere.

(21)

2.3 Decomposing �SL into spatially variable and spatially
uniform terms

With no loss of generality, it will be instructive to split the pertur-
bation in the height of the sea-surface equipotential into spatially
varying and spatially uniform components.

�G j = �G j + �� j

g
. (22)

Here, the first term on the right-hand side of the equation is the
spatially varying component. The second term on the right-hand
side is the spatially uniform shift in the height of the sea-surface
equipotential, and g is the surface gravitational acceleration. In this
case, the total variation in sea level from the onset of loading may
be written as

�SL j = �SL j + �� j

g
, (23)

where from eq. (10),

�SL j = �G j − (�R j + �Hj + �I j ). (24)

Using this expression, the generalized sea level eqs (14) and (16)
may be rewritten as

�Sj = �SL j C j + �� j

g
C j − T0[C j − C0] (25)

and

δSj = −�Sj−1 + �SL j C j + �� j

g
C j − T0[C j − C0]. (26)

An expression for the spatially uniform term ��j/g may be
derived by invoking conservation of mass for the total surface mass
load. The change in the ocean height integrated over the surface of
the Earth—that is, the change in the volume of the ocean—must be
connected to changes in the ice volume by∫∫

	

�I j d	 = −ρW

ρI

∫∫
	

�Sj d	. (27)

Integrating (25) over the surface of the Earth, and using eq. (27),
yields

�� j

g
= − 1

A j

ρI

ρW

∫∫
	

�I j d	 − 1

A j

∫∫
	

�SL j C j d	

+ 1

A j

∫∫
	

T0[C j − C0]d	, (28)

where

A j ≡
∫∫

	

C j d	. (29)

Eqs (3), (5), (24)–(26), (28) and (29) represent the complete system
of equations that define the generalized sea level theory.

2.4 Numerical implementation

Following Kendall et al. (2005), we briefly review an efficient itera-
tive algorithm for solving the new generalized sea level eq. (25). As
described earlier, this algorithm is defined by two nested iterations.
The inner iteration, denoted here by the counter i, is applied at each
time step in the numerical solution to successively refine an initial
guess to the ocean height change, δSi=1

j , for the time step from tj − 1

to tj, until convergence (denoted by δSi=∞
j ) is obtained. The outer

iteration, denoted here by counter k, loops over the full set of glacial
cycles to improve a first guess for the initial topography field, T k=1

0

until convergence (denoted by T k=∞
0 ).

Using this scheme, we can rewrite the sea level equation in algo-
rithmic form for each iteration (i, k).

δSi,k
j = −�Si=∞,k

j−1 + �SLi−1,k
j Ck−1

j + ��(t j )i−1,k

g
Ck−1

j

− T k−1
0

[
Ck−1

j − Ck−1
0

]
. (30)

The numerical scheme proceeds as follows. Let us assume that the
k − 1 pass through the full loading history has been completed. Us-
ing the suite of sea level solutions computed for this outer iteration,
we can update the time-dependent topography. From eqs (18) and
(19), we have

T k−1
j = Tp + �SLi=∞,k−1

p − �SLi=∞,k−1
j , (31)

and, from eq. (5), we can update the time-varying ocean function
using

Ck−1
j =

{
1 if T k−1

j < 0,

0 if T k−1
j ≥ 0.

(32)

Finally, we also use the updated topography to apply the check for
grounded ice and refine the input ice load if necessary.

With the topography and ocean function estimates, we proceed
onto a calculation of sea level change for the kth iteration. This
calculation is based on eq. (24).

�SLi−1,k
j = �Gi−1,k

j − (
�Ri−1,k

j + �Hj + �I k−1
j

)
. (33)

The inner iteration begins with a guess to the ocean thickness change
δSi−1, k for i = 1. Since the sea-surface equipotential and solid
surface displacement increments in eq. (33) depend on the surface
mass load, including the ocean thickness components (eq. 17), they
are also superscripted with the iteration indices. To complete the
terms for the right-hand side of eq. (30), we require an expression for
the spatially invariant component of the sea-surface equipotential
change. From eq. (28), we obtain

��
i−1,k
j

g
=

−1

Ak−1
j

ρI

ρW

∫∫
	

�I k−1
j d	 − 1

Ak−1
j

∫∫
	

�SLi−1,k
j Ck−1

j d	

+ 1

Ak−1
j

∫∫
	

T k−1
0

[
Ck−1

j − Ck−1
0

]
d	, (34)

where

Ak−1
j =

∫∫
	

Ck−1
j d	. (35)
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8 A. V. Dalca et al.

With this set of equations we can successively refine the ocean
thickness and sea level change via eq. (30) until convergence, and
then move to the next time step until we make one more pass through
the complete loading history. The entire process is repeated until
the outer k iteration converges and a final set of topography and
ocean function fields are computed. A detailed discussion of the
appropriate first guess within each of the inner and outer iteration
schemes is described in Kendall et al. (2005).

2.5 A comparison with Mitrovica & Milne (2003)

In addition to the inclusion of sediment redistribution, the general-
ized sea level theory we have outlined here differs from the approach
derived by Mitrovica & Milne (2003) and Kendall et al. (2005) in
one important regard. In particular, in Mitrovica & Milne (2003)
and Kendall et al. (2005), the expression for sea level did not in-
clude the ice height. To illustrate this difference, let us consider a
version of our new theory in which sediments play no role. In this
case, we can rewrite eqs (2), (4) and (5) as

SLN = G − (R + I ), (36)

SN = SLN · CN (37)

and

CN =
{

1 if SLN > 0

0 if SLN ≤ 0,
(38)

where the superscript ‘N’ denotes this special no sediment case of
our new sea level formalism.

In contrast, in Mitrovica & Milne (2003) and Kendall et al. (2005)
the expression for sea level was based on variations from the fol-
lowing form:

SLO = G − R, (39)

where the superscript ‘O’ denotes the older theory. In consequence
of this definition, the projection of sea level onto the ocean geometry
required a modification from the simple form in eq. (4) or (37) to
take into account the existence of marine-based ice. Specifically,
the projection was written as

SO = SLO · CO · β, (40)

where

CO =
{

1 if SLO > 0

0 if SLO ≤ 0,
(41)

and

β =
{

1 where there is no grounded ice

0 elsewhere.
(42)

That is, in the old theory, the definition of sea level (39) required a
second projection to account for the impact on the ocean geometry
of grounded, marine-based ice.

The new theory has two advantages over the old. First, by defining
sea level as in eq. (36) or (2), the topography is simply the negative
of sea level, as in eq. (3). In contrast, the definition of sea level in
eq. (39) is not the negative of topography, at least as defined by data
sets such as ETOPO2. Accordingly, in the Mitrovica & Milne (2003)
theory, the topography was redefined as ice-corrected topography
because sea level and ice-corrected topography would then differ

by sign only. A second advantage of the new theory is that the ex-
pression for sea level in eq. (36), since it includes ice height, allows
a simpler and more general check for ocean geometry; namely, the
ocean height is non-zero anywhere that sea level is positive. This
expression is easily generalized when sediments are included as
in eqs (2), (4) and (5). In particular, the generalization allows us
to avoid a further projection operator that would be zero wherever
sediment is thick enough to reach above the ocean surface. Such
a projection would be complicated to apply since, as we discussed
in the Introduction, sediments, in contrast to the ice load, can be
overlain by ocean water.

Thus far, we have focused on the different definitions of sea level
adopted in the present formalism relative to the study of Mitrovica
& Milne (2003). We end this section by demonstrating that, in
the case of no sediment redistribution, the two approaches yield
identical results for the change in the ocean thickness.

Using the superscript ‘N’ for a special scenario with no sediment
redistribution, eq. (14) may be written as

�Sj = �SLN
j CN

j − T N
0

[
CN

j − CN
0

]
. (43)

As discussed earlier, the following relations hold between the new
and old formalisms: �SLN

j = �SLO
j − �I j and T N

0 = T O
0 + I0.

Using these relations in eq. (43), together with the fact that CN =
CO · β, yields

�Sj = �SLO
j CO

j β j − T O
0

[
CO

j β j − CO
0 β0

]
− �I j C

O
j β j − I0CO

j β j + I0CO
0 β0. (44)

From eq. (7), the third and fourth terms on the right-hand-side of
this expression combine so that

�Sj = �SLO
j CO

j β j − T O
0

[
CO

j β j − CO
0 β0

] − I j C
O
j β j + I0CO

0 β0.

(45)

From the definition of β in eq. (42), β i = 0 wherever Ii is not zero,
and thus the third and fourth terms on the right-hand side of eq. (45)
vanish. Therefore,

�Sj = �SLO
j CO

j β j − T O
0

[
CO

j β j − CO
0 β0

]
, (46)

which is the sea level equation appearing in Mitrovica & Milne
(2003). Thus, when no sediment redistribution is considered, the
sea level eq. (14) is formally identical to the expression derived by
Mitrovica & Milne (2003).

2.6 Special case of spherically symmetric earth models

The vast majority of studies of postglacial sea level change have
adopted spherically symmetric, self-gravitating, Maxwell viscoelas-
tic earth models. In this case, the computation of the total sea level
variation, �SL [eq. 10, or the two components in the decomposition
(23)], may be performed using viscoelastic Love number theory
(Peltier 1974). In the Appendix, we briefly outline the theory ap-
propriate to this case, with the inclusion of sediment terms. We
consider cases associated with both non-rotating and rotating earth
models. In the latter case, sea level is perturbed by the load-induced
reorientation of the Earth’s rotation vector (e.g. Milne & Mitrovica
1996, 1998). In the former case, this feedback is absent.

All the calculations described in the next section will be based
on this special, spherically symmetric theory of sea level change on
a rotating Earth. The relevant eqs (see Appendix) are solved up to
spherical harmonic degree and order 256. The elastic structure of
the earth model is taken from the seismic model PREM (Dziewonski
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Sedimentary effects on sea level 9

Figure 4. Instantaneous sediment redistribution �H adopted in the simplified sediment loading history described in the main text. Erosion over the Mississippi
River catchment is assumed to be uniform with thickness equal to 35.9 m, while the axisymmetric deposition at the location of the modern Mississippi fan is
circular in horizontal cross-section and parabolic in vertical cross-section. The basal radius of the deposit is 3◦ and the maximum thickness is 500 m.

& Anderson 1981). Moreover, the radial viscosity profile is the so-
called VM2 profile (Peltier 2004). The latter is adopted simply as
an illustrative example—none of the conclusions listed below are
sensitive to this choice.

3 C A S E S T U DY: A P U L S E
O F S E D I M E N TAT I O N I N T O
T H E G U L F O F M E X I C O

As a first case study, we present model results from an idealized
scenario in which a large volume of sediment is instantaneously
eroded from the Mississippi River catchment and deposited on the
Mississippi fan in the Gulf of Mexico (Fig. 4). Our intention here
is not to simulate the response of sea level to the full history of
sedimentary processes in the Mississippi River system, as this would
require estimates of net erosion rates and sediment deposition rates
throughout the Mississippi Basin, fan, alluvial plain and delta over
the past tens of thousands to hundreds of thousands of years. Instead,
our goals are to highlight the physics governing sea level changes
associated with sediment redistribution, to isolate the contribution to
these changes from perturbations to the height of the sea surface and
solid surface, and to assess the accuracy of previous approximations
of the gravitationally self-consistent treatment described earlier.

In our idealized scenario for sediment redistribution, the instan-
taneous erosion of mass from the Mississippi River catchment is
assumed to be geographically uniform. The simultaneous deposi-
tion of an equal mass of sediment is modelled following Simms
et al. (2007), with deposition centred at the site of the modern
Mississippi fan, in a deposit with a circular basal geometry and an
axisymmetric, parabolic vertical cross-section (Fig. 4). That is, the
thickness of the sediment deposit, h, as a function of the angular
distance from the centre of the deposit, r, is given by

h(r ) = A

[
1 − r 2

r0
2

]
(47)

for r ≤ r0, where r0 is the basal radius of the sediment load and
A is its maximum thickness. The load is zero for r > r0. In our
modelling, we adopted r0 = 3◦ and A = 500 m, and we centred the
deposit at 26◦N, 87.5◦W. The density of the eroded and deposited
sediment was taken to be 2.3 g cm−3. These values for the geom-
etry, location and density of the modelled sedimentary fan were
chosen because they are broadly similar to the characteristics of the
modern Mississippi fan (Stelting et al. 1986; Simms et al. 2007).
The total mass involved in the redistribution represents roughly half
the sediment that was deposited on the Mississippi fan over the last
ice age cycle from ∼122 ka to the present (Stelting et al. 1986).
The resulting gravitationally self-consistent sea level response was
tracked for a period of 100 kyr following the loading.

It will be instructive, in the discussion below, to compare our
predictions of sea level changes in response to the simple scenario
of sediment redistribution to the changes predicted for a standard
ice age calculation with no sediment redistribution. As an exam-
ple of the latter, we adopt the gravitationally self-consistent theory
described above, with �H set to zero. Our calculations adopt the
ICE-5G model for the ice history during the last glacial cycle and
the VM2 viscosity model (Peltier 2004). In Fig. 5(a), we show pre-
dictions of relative sea level (RSL) variations over the last glacial
cycle for three sites in and around the Gulf of Mexico (see Fig. 6 for
locations). These sites are: (1) the centre of the model sediment de-
posit; (2) a coastal location in the north (Mobile Bay, Alabama) and
(3) a coastal location in the south (San Felipe, Yucatan Peninsula,
Mexico). The lower frame of the figure shows the same predictions
with the eustatic (i.e. globally uniform) sea level trend associated
with the ICE-5G ice history removed.

The RSL trend in the Gulf of Mexico across the last glacial cycle
is dominated by the eustatic signal (Fig. 5a), with a general drop
in sea level during the glaciation phase, and a more rapid rise in
sea level during the deglaciation. However, the gravitational, defor-
mational and rotational signals associated with the ice-ocean mass
transfer introduce a site-specific perturbation to this eustatic signal
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10 A. V. Dalca et al.

Figure 5. (a) Predictions of relative sea level (RSL) change across the last glacial cycle at the three sites shown in Fig. 6. The predictions are based on the
gravitationally self-consistent sea level theory described in the text, with no sediment redistribution applied. The calculations adopt the ICE-5G ice history and
the VM2 mantle viscosity model (Peltier 2004) and they are performed using a pseudospectral sea level solver with truncation at spherical harmonic degree
and order 256 (Kendall et al. 2005). (b) Predictions of RSL at the same three sites considered in frame (a), with the eustatic (i.e. globally uniform component)
of the sea level history removed.

which is of order 10–30 m (Fig. 5b). This GIA signal is, given the lo-
cation of the Gulf of Mexico, a complex superposition of a variety of
physical processes associated with ice age sea level changes. These
include self-gravitation in the ice-ocean surface mass redistribu-
tion, peripheral bulge dynamics, ocean loading effects, continental
levering, ocean syphoning and rotational feedback (see Milne &
Mitrovica 2008 for a recent review of these processes). It will be
useful to compare the amplitude of the sea level signals in Fig. 5(b)
with computed perturbations in sea level associated with sediment
redistribution.

Fig. 6 shows plots of sea level change after correction for sedi-
ment height changes (i.e. �SL − �H in eq. 10) at two times, the
instant after the redistribution of the sediments and 100 kyr later.
The former, which represents a purely elastic response, has a peak
amplitude of ∼20 m, whereas the latter, which reflects the response
close to isostatic equilibrium, has a peak amplitude of ∼200 m.

The instantaneous perturbation in sea level due to sediment load-
ing is characterized by a broader zone of sea level rise (and crustal
subsidence) than the long-time response of the earth model. This
matches the expected behaviour, given that elastic earth models are
more efficient than viscous models in filtering out short-wavelength
adjustments. In the northwest section of Fig. 6(a), the zone of sea
level fall is largely due to crustal uplift associated with the unload-
ing of sediments from the continent. In contrast, the ring of sea level
fall encircling the sediment deposit in Fig. 6(b) is due to uplift at

the periphery of the sediment-induced zone of subsidence. That is,
the ring reflects the peripheral bulge of the deposit.

The geometry of the response in Fig. 6(b) is such that the pre-
dicted sea level rise along the northern coast of the Gulf of Mexico,
from ∼84◦–92◦W, as well as at the northern tip of the Yucatan
Peninsula, is ∼20 m. This is comparable to the glacio-isostatic per-
turbation to sea level (Fig. 5b). The results in Fig. 6 indicate that
the magnitude of the sea level signal associated with sediment re-
distribution from the continent into the Gulf of Mexico, in relation
to the ice age signal, depends on the location of the site under
consideration and the timescale of the redistribution.

To explore this issue further, we show in Fig. 7 the time history of
sea level change due to sediment redistribution at the centre of the
sediment redistribution (top row), Mobile Bay, Alabama (middle
row) and San Felipe, Mexico (bottom row). The left-side column
shows predictions extending over the first 100 kyr, and these results
show that isostatic equilibrium has been achieved ∼20 kyr after the
pulse of sediment redistribution. The right-side column zooms in
on the first 4 kyr of the adjustment. As in Fig. 6, the sea level time-
series are corrected for the change in sediment height (i.e. �SL −
�H in eq. 10), although this correction is only non-zero within the
zones of deposition and erosion. Note that all three sites show a
monotonic rise in sea level with time.

The solid red lines and dashed green lines in Fig. 7 are the contri-
butions to the sea level change associated with perturbations in the
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Sedimentary effects on sea level 11

Figure 6. Maps of the total sea level change, not including the change in the height of sediments (i.e. �SL from eq. 10 minus �H), at two times: (a) the instant
after the sediment redistribution is applied; and (b) 100 kyr after the sediment redistribution. The locations of three sites discussed in the text (MB, Mobile
Bay; DC, centre of sediment deposit; SF, San Felipe, Mexico) are shown as white squares on the figure.

height of the sea surface �G and crust �R, respectively. Following
eq. (10), �G minus �R gives the solid blue line in Fig. 7, provided
that the height of the sediment �H is neglected. At all three sites, the
magnitude of the sea-surface equipotential perturbation (red line) is
at a maximum just after loading because the redistribution of mass
increases the gravitational attraction towards the sediment deposit,
and this leads to an instantaneous increase in the sea-surface equipo-
tential within about 2000 km from this location. This is analogous
to the so-called ‘fingerprint’ of sea-surface equipotential change as-
sociated with rapid changes in ice mass (e.g. Tamisiea et al. 2001).
At a given location, the size of the instantaneous perturbation in
sea-surface equipotential is a function of position relative to the
sediment load. At Mobile Bay, the signals associated with the un-
loading to the north and loading to the south partially cancel, and
the net effect is a relatively small perturbation. In contrast, at San

Felipe, the fingerprint of sediment deposition dominates and the
perturbation in sea-surface equipotential is larger. At all locations,
the perturbation to sea-surface equipotential diminishes with time
as isostatic adjustments act to compensate the direct gravitational
effect induced by the sediment redistribution. The signal does not
converge to zero because the presence of the elastic lithosphere
prevents the system from achieving perfect hydrostatic equilibrium.
Finally, within the first few centuries after the sediment redistribu-
tion, the radial displacement of the crust dominates the sea level
change (i.e. the amplitude of the green dotted line is much larger
than the amplitude of the red line in Fig. 7).

The blue lines in Fig. 7 were computed using the same gravita-
tionally self-consistent theory described above for the special case
of a spherically symmetric earth model, just as the red and green
lines were. We can use these predictions to assess the accuracy of
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12 A. V. Dalca et al.

Figure 7. (a) The solid blue line is the predicted sea level change at the centre of the sediment deposit (site ‘DC’ in Fig. 6), not including the change in the
sediment thickness (i.e. �SL from eq. 10 with the term �H removed), as well as the contributions to this predicted sea level change associated with the change
in the height of the sea-surface equipotential �G (red line) and the height of the crust �R (dashed green line, eq. 10). (b) As in (a) except the plot is limited
to the first 4 kyr of the simulation. In both frames, t = 0 refers to the time of the model sediment redistribution. The second and third rows are analogous
to the first, except they are calculations for the Mobile Bay and Yucatan Peninsula sites (see Fig. 6), respectively. The blue dotted line on all frames is an
approximation to the sea level change computed by considering only the radial displacement driven by the sediment load and, in this case, reducing the density
of sediments within the Gulf of Mexico to 1.3 g cm−3 (see text for a detailed discussion of this approximation).

approximations of the sea level signal associated with sediment re-
distribution. For example, we can approximate the sea level change
�SLj in eq. (10), after correction for sediment height �Hj, and in
the absence of ice loads, �Ij, as

�SL j − �Hj ∼ �G†
j − �R†

j , (48)

where �G†
j and �R†

j are the change in the heights of the sea-surface
equipotential and the crust, respectively, driven by the sediment
load only, where sediments within the ocean are ascribed a density
of ρH − 1. The latter correction is applied to take into account
the reduced (negative) buoyancy of submarine sediments. Since
gravitationally self-consistent ocean loading terms are absent on
the right-hand side of eq. (48), it is straightforward to solve. If sea-
surface equipotential changes are also neglected, then the governing
equation becomes

�SL j − �Hj ∼ −�R†
j . (49)

The blue dotted lines in each frame of Fig. 7 show results based
on the approximation in eq. (49) for the case of our simple pulse of
sediment redistribution. In the first ∼1 kyr after the redistribution,
the error in the prediction for the site at the centre of the deposition

and at San Felipe is approximately equal to the sea-surface equipo-
tential variation neglected in that calculation. The relative error in
the approximation (49) at the instant after the sediment redistribu-
tion is ∼30 and ∼45 per cent at these two sites, respectively.

The absolute error progressively increases with time, reaching
values of 53.1, 6.7 and 8.3 m (or relative errors of 25, 40 and
45 per cent) after ∼20 kyr for the site at the centre of the deposit,
Mobile Bay and San Felipe, respectively. This error is almost en-
tirely associated with an underestimation of the crustal displace-
ment, since, by 20 kyr after the deposition, the perturbation to the
sea-surface equipotential is very small. The reason for this under-
estimation is that the approximation (49) (or the approximation
48) neglects the increase in the water load as the crust subsides in
response to the sediment load. As an example, at the centre of the de-
posit, the gravitationally self-consistent calculation yields a crustal
subsidence of ∼200 m. Thus, by neglecting the additional ∼200
m water load associated with subsidence, one would underestimate
crustal subsidence by ∼50 m. We note that the error in the ap-
proximation (49) at sites along the coastline of the Gulf of Mexico
(order ∼10 m) is non-negligible relative to the signal in sea level at
such sites from GIA (Fig. 5b).
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Sedimentary effects on sea level 13

We have computed the sea level change in response to an in-
stantaneous sediment redistribution, and in this case the adjustment
timescale for the predictions in Fig. 7 reflects the characteristic vis-
cous adjustment time of the earth model. In the case of the viscosity
model we have adopted (VM2), this timescale is of order 10 kyr
(Fig. 7). If we had not adopted an instantaneous redistribution of
sediment, but nevertheless had considered sediment redistribution
that proceeded on a timescale that was rapid relative to the viscous
adjustment time, then the predicted sea level response would be
comparable to the curves in Fig. 7. If, in contrast, the sediment re-
distribution was much slower than the viscous adjustment timescale,
then the predicted sea level change would mirror the timescale of
the forcing. Of course, the sea level response to a sediment re-
distribution of intermediate timescale would be governed by an
interplay between the loading and adjustment timescales. The sea
level theory described in this paper accommodates this spectrum of
behaviours.

4 F I NA L R E M A R K S

Mitrovica & Milne (2003) extended the sea level equation derived
in the classic study of Farrell & Clark (1976) to incorporate shore-
line migration due to both local sea level changes and variations in
the extent of grounded, marine-based ice. In this study, we further
extended the gravitationally self-consistent sea level theory to in-
corporate the redistribution of sediments. The theory described in
the main text provides an exact relationship between changes in the
ocean load and changes in global sea level (eq. 14), where the latter
includes arbitrary changes in sea surface and crustal heights, as well
as ice and sediment geometries (eq. 10). The extension is, as dis-
cussed earlier, complicated by the fact that sediments, in contrast to
grounded ice, can coexist with water in a given vertical column, and
this complexity has required a revision in the treatment of several
fields discussed in our previous analyses (Mitrovica & Milne 2003;
see Section 2.5). Following earlier work (Kendall et al. 2005), we
augment the generalized sea level theory with an efficient numerical
algorithm that is applicable to earth models of arbitrary complexity
(Section 2.4). Moreover, we present special cases of this algorithm,
based on viscoelastic Love number theory (Peltier 1974), valid for
spherically symmetric (rotating or non-rotating) earth models (Ap-
pendix). While we have introduced the new theory in the context of
ice age treatments of sea level change, we emphasize that the theory
is equally valid for sediment redistribution during non-glacial pe-
riods. Because this theory is able to accommodate sediment loads
of arbitrary spatial scale and geometry, it is able to quantify the sea
level response to small sediment loads as well as to large loads. An
application of the formulation to a specific geographic region will
provide an assessment of whether the sea level response to a specific
sediment loading history is significant relative to other forcings, and
thus determine whether sediment loading may be neglected at that
site. Because application of the formulation to a given catchment
in nature requires estimates of the erosion rate and deposition rate
histories across the catchment, uncertainties in the modelled sea
level responses will be influenced by the uncertainties in the input
erosion rate and deposition rate histories.

As an illustrative case study, we used the spherically symmet-
ric earth model theory described here to compute the sea level
perturbation driven by a pulse of sediment redistribution from the
North American continent into the Gulf of Mexico. In this regard,
we adopted a highly simplified load history that approximates both
the spatial scale and amplitude of the sediment deposition. These

calculations suggest that the sea level signal due to the sediment re-
distribution can be equal in magnitude to non-eustatic effects driven
by ice age loading at sites along the Gulf Coast, and that both de-
pend on the location of the site and the timescale of the loading.
Results from the case study also demonstrate that the relative error
incurred by approximating the gravitationally self-consistent sea
level change by ignoring the time-varying water load associated
with the sediment-induced deformation can reach ∼40 per cent. In
a companion paper, we will present predictions of sea level changes
based on more realistic space–time models of continental erosion
and sediment deposition in the Gulf of Mexico.
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A P P E N D I X A : E X P R E S S I O N S F O R �SL
I N T H E C A S E O F S P H E R I C A L LY
S Y M M E T R I C E A RT H M O D E L S

In this appendix, we derive expressions for the change in sea level,
�SL, for the case of spherically symmetric (i.e. depth-varying)
Maxwell viscoelastic earth models by making use of viscoelastic
Love number theory (Peltier 1974). This section and the next extend
the treatment described in Kendall et al. (2005) to include terms
associated with sediment redistribution. We begin with the case of
non-rotating earth models.

A1 Non-rotating earth models

For spherically symmetric earth models, any scalar geophysical sig-
nal of interest may be written as a convolution of the appropriate
Green’s function with the surface mass load. If we denote a gener-
alized scalar quantity as �χ , we may write

�χ =
∫ t

−∞

∫∫
	

�L(θ ′, ψ ′, t ′) · G F(γ, t − t ′) d	′ dt ′, (A1)

where GF denotes the Green’s function, and θ and ψ represent the
colatitude and east longitude, respectively. The parameter γ is the
angle between the observation point, (θ , ψ), and the load point, (θ ′,
ψ ′), and it is given by

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos (ψ − ψ ′). (A2)

A computation of the spatially varying component of the sea level
change, �SL (eq. 24), requires expressions for �G and �R. Using
the form (A1), we may write

�G =
∫ t

−∞

∫∫
	

�L(θ ′, ψ ′, t ′)
φ(γ, t − t ′)

g
d	′ dt ′, (A3)

�R =
∫ t

−∞

∫∫
	

�L(θ ′, ψ ′, t ′)
(γ, t − t ′) d	′ dt ′, (A4)

where φ(γ , t) and 
(γ , t) are Green’s functions for the gravitational
potential perturbation and radial displacement of the solid surface,
respectively. Combining eqs (24), (A3) and (A4) gives

�SL j =
∫ t j

−∞

∫∫
	

�L(θ ′, ψ ′, t ′)

×
[

φ(γ, t j − t ′)
g

− 
(γ, t j − t ′)
]

d	′ dt ′ − �Hj − �I j .

(A5)

In the time-domain, the viscoelastic k and h Love numbers at
spherical harmonic degree � may be written in the normal mode
form (Peltier 1974; Tromp & Mitrovica 1999)

k�(t) = k E
� δ(t) +

K∑
k=1

r ′�
k e−s�

k t , (A6)

h�(t) = hE
� δ(t) +

K∑
k=1

r �
k e−s�

k t , (A7)

where each equation is comprised of an instantaneous elastic re-
sponse (which includes a Dirac-delta function time dependence)
and a non-elastic response represented as a sum of K modes of pure
exponential decay. The viscoelastic structure of the earth model is
embedded within these Love numbers and the parameters defining
them may be combined to construct the Green’s functions required
in eq. (A5) (Mitrovica & Peltier 1989):

φ(γ, t)= ag

Me

∞∑
�=0

[
δ(t)+k E

� δ(t) +
K∑

k=1

r ′�
k e−s�

k t

]
P�(cos γ ), (A8)


(γ, t) = a

Me

∞∑
�=0

[
hE

� δ(t) +
K∑

k=1

r �
k e−s�

k t

]
P�(cos γ ), (A9)

where a and Me are the radius and mass of the Earth and P� is the
Legendre polynomial at degree �.
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Sedimentary effects on sea level 15

If we model the total surface mass load variation �L (eq. 17) at
time t as a series of Heaviside step increments

�L =
N∑

n=0

[ρWδSn + ρIδ In + ρHδHn]H(t − tn), (A10)

where

H(t − tn) =
{

0 if t < tn

1 if t ≥ tn,
(A11)

then the time convolutions in eq. (A5) can be performed analytically
to yield

�SL j = a

Me

∞∑
�=0

E�

∫∫
	

[
ρW�Sj (θ

′, ψ ′) + ρI�I j (θ
′, ψ ′)

+ρH�Hj (θ
′, ψ ′)

]
P�(cos γ ) d	′

+ a

Me

∞∑
�=0

N∑
n=0

H(t j − tn)β(�, tn, t j )

×
∫∫

	

[
ρWδSn(θ ′, ψ ′) + ρIδ In(θ ′, ψ ′)

+ρHδHn(θ ′, ψ ′)
]
P�(cos γ ) d	′ − �Hj − �I j , (A12)

where

E� = 1 + k E
� − hE

� (A13)

and

β(�, tn, t j ) =
K∑

k=1

r ′�
k − r �

k

s�
k

[
1 − e−s�

k (t j −tn )
]
. (A14)

To complete the derivation we seek an analytic approach to the
2-D spatial convolutions in eq. (A12). To this end, let us introduce
a general spherical harmonic decomposition of a scalar field χ .

χ (θ, ψ) =
∞∑

�=0

�∑
m=−�

χ�mY�m(θ, ψ), (A15)

and the Y�m are associated spherical harmonics normalized such
that∫∫

sphere
Y�′m′ (θ, ψ)Y ∗

�m(θ, ψ) sin θ dθ dψ = 4πδ�′�δm′m, (A16)

where the asterisk denotes the complex conjugate, and δ is the
Dirac-delta function. In this case, one can show that (Mitrovica &
Peltier 1991)

∫∫
	

χ (θ ′, ψ ′)P�(cos γ ) d	′ = 4πa2

2� + 1

�∑
m=−�

χ�mY�m(θ, ψ). (A17)

Applying (A15) and (A17) to (A12) yields the expression

�SL j

=
∑
�,m

T� E�

[
ρI�I�m, j +ρW�S�m, j +ρH�H�m, j

]
Y�m(θ, ψ)

+
∑
�,m

T�

j−1∑
n=0

β(�, tn, t j )
[
ρWδS�m,n+ρIδ I�m,n+ρHδH�m,n

]
Y�m(θ, ψ)

−
∑
�,m

�H�m, j Y�m(θ, ψ) −
∑
�,m

�I�m, j Y�m(θ, ψ), (A18)

where

T� = 4πa3

(2� + 1)Me
(A19)

and we have used the short form

∑
�m

≡
∞∑

�=0

�∑
m=−�

. (A20)

We have also introduced subscripts of the form χ�m, j and χ�m, n to
indicate spherical harmonic coefficients χ�m at time steps tj and tn,
respectively.

Using eq. (A18) in the conservation formula (28) yields an ex-
pression for the spatially invariant term in the total sea level variation
��j.

�� j

g
= 1

C00, j

(
− ρI

ρW

�I00, j − RO00, j + T O00,0

)
, (A21)

where we have used the projections

RO j = �SL j C j

=
∑
�,m

RO�m, j Y�m(θ, ψ) (A22)

and

T O j = T0

[
C j − C0

]
=

∑
�,m

T O�m, j Y�m(θ, ψ). (A23)

Finally, we rewrite (A18) and (A21) to include algorithm counters
i and k, as in the main text. First, the spectral components of �SL
in eq. (A18) are

[�SL�m, j ]
i−1,k = T� E�

(
ρI

[
�I�m, j

]k−1 + ρW

[
�S�m, j−1

]i=∞,k

+ρW

[
δS�m, j

]i−1,k + ρH�H�m, j

)

+T�

j−1∑
n=0

β(�, tn, t j )
(
ρW

[
δS�m,n

]i=∞,k

+ρI

[
δ I�m,n

]k−1 + ρHδH�m,n

) − �H�m,n

− [
�I�m,n

]k−1
, (A24)

and similarly, eq. (A21) becomes[
�� j

g

]i−1,k

= 1[
C00, j

]k−1

{
− ρI

ρW

[
�I00, j

]k−1

− [
RO00, j

]i−1,k + [
T O00, j

]k−1
}

, (A25)

where

ROi−1,k
j = �SLi−1,k

j Ck−1
j

=
∑
�,m

[
RO�m, j

]i−1,k
Y�m(θ, ψ) (A26)

and

T Ok−1
j (θ, ψ) = T k−1

0

[
Ck−1

j − Ck−1
0

]
=

∑
�,m

[
T O�m, j

]k−1
Y�m(θ, ψ). (A27)

These equations are used in (30), where all other operations are
performed in the spatial domain.
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A2 Rotating earth models

Next, we extend the expressions derived above to include the im-
pact on sea level of perturbations in the Earth’s rotation vector. An
accurate normal mode treatment of ice age Earth rotation has been
derived by Mitrovica et al. (2005), following earlier work by Wu
& Peltier (1984). Their theory yields, for an arbitrary surface mass
load (in our case, a superposition of ice, water and sediment re-
distributions), a time-varying rotation vector. This time-series can
be converted to an evolving centrifugal potential, which we will
denote by �(θ , ψ , t). If we decompose the centrifugal potential into
its value prior to the onset of loading and a perturbation from this
value, then, following the notation in eq. (7) we can write

�(θ, ψ, t) = �(θ, ψ, t0) + ��(θ, ψ, t). (A28)

The second term on the right-hand side of this equation is the so-
called ‘rotational driving potential’. The driving potential is non-
zero only at degree zero and two, and thus the spherical harmonic
decomposition of this term is

��(θ, ψ, t j )=��00, j Y00(θ, ψ)+
2∑

m=−2

��2m, j Y2m(θ, ψ). (A29)

Analytic expressions relating these harmonic components to the
perturbation in the rotation vector are given in Milne & Mitrovica
(1998).

The Earth’s response to the driving potential is governed by the
so-called viscoelastic tidal (or tidal-effective) Love numbers which,
in analogy with eqs (A6) and (A7), have the form (Peltier 1974):

kT
� (t) = kT,E

� δ(t) +
K∑

k=1

r ′�,T
k e−s�

k t , (A30)

hT
� (t) = hT,E

� δ(t) +
K∑

k=1

r �,T
k e−s�

k t . (A31)

Note that the tidal Love numbers have the same inverse decay times
as the load Love numbers, but they have distinct modal amplitudes.

Using eqs (A28)–(A31), one can extend eq. (A18) to include the
sea level response to the rotational driving potential (Kendall et al.
2005). Specifically

�SL j

=
∑
�,m

T� E�

[
ρI�I�m, j + ρW�S�m, j + ρH�H�m, j

]
Y�m(θ, ψ)

+
∑
�,m

T�

j−1∑
n=0

β(�, tn, t j )
[
ρWδS�m,n+ρIδ I�m,n+ρHδH�m,n

]
Y�m(θ, ψ)

+ 1

g

∑
�,m

E T
� ���m, j + 1

g

∑
�,m

j−1∑
n=0

βT (�, tn, t j )δ��m,n

−
∑
�,m

�H�m, j Y�m(θ, ψ)

−
∑
�,m

�I�m, j Y�m(θ, ψ), (A32)

where

E T
� = 1 + kT,E

� − hT,E
� (A33)

and

βT (�, tn, t j ) =
K∑

k=1

r ′�,T
k − r �,T

k

s�
k

[
1 − e−s�

k (t j −tn )
]
. (A34)

In a calculation of the total perturbation in global sea level, eq. (A32)
is augmented by the expression for the globally uniform shift given
by eq. (28).

Using eq. (A32), the algorithm defined by eq. (A24) can be
extended to include rotational effects

[�SL�m, j ]
i−1,k = T� E�

(
ρI

[
�I�m, j

]k−1 + ρW

[
�S�m, j−1

]i=∞,k

+ρW

[
δS�m, j

]i−1,k + ρH�H�m, j

)

+T�

j−1∑
n=0

β(�, tn, t j )
(
ρW

[
δS�m,n

]i=∞,k

+ρI

[
δ I�m,n

]k−1 + ρHδH�m,n

)
+ 1

g
E T

�

([
���m, j−1

]i=∞,k + [
δ��m, j

]i−1,k
)

+ 1

g

j−1∑
n=0

βT (�, tn, t j )
[
δ��m,n

]i=∞,k

−�H�m,n − [
�I�m,n

]k−1
. (A35)

In this case, the spatially invariant contribution to the total global
sea level perturbation is given by eq. (A25).
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