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Initialization  

These steps form samples from the desired distribution: 

• New high-res MRI - visualization of nerve bundles from inside to outside of vertebral canal 

• Segmentation of bundles useful for spinal pathologies - diagnosis, treatment planning and 

image-guided interventions 

• Manual segmentation is time-consuming & challenging - impractical to construct nerve maps 

Related Work 

Motivation 

Most relevant work is vessel segmentation. Assumptions and requirements differ from nerve data 

• Region-growing approaches (problems: leakage, sensitive to contrast) 

• Active contour methods (problems: good initialization, sensitive to leakage) 

• Centerline extraction (problems: interactive re-seed, endpoints, sensitive to tissues) 
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Results 
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• Ten nerve bundles from five subjects 

• Strong core and path estimation 

• Under-segmentation in thick ganglia. Expert segmentation 

surfaces have irregularities and pinching in thick areas 
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Observation 𝒛𝑡 at step 𝑡 (in 3D) 

𝒉 = (𝒑0, 𝒑1, 𝒑2, 𝒑3, 𝑟0, 𝑟1, 𝑟2, 𝜇) 

Nerve Segments - Particles 

Observation 𝒛𝑡 

Two manual clicks – generate a set of weighed particles approximating 𝑝 𝒉1 𝒛1  

For each successive step 𝑡: 
Goal: obtain a particle set given observations 𝒛1:𝑡 -- approximating posterior 𝑝 𝒉𝑡 𝒛1:𝑡  

Sample particles from 𝑝(𝒉𝑡−1|𝒛𝑡−1) 

Propagate particles via dynamics model 𝑝(𝒉𝑡|𝒉𝑡−1) 

• Require continuity and smoothness of centerline and radius 

• Encourage consistent nerve direction, thickness and intensity 

Weigh particles based on observation via 𝑝(𝒛𝑡|𝒉𝑡) 
• 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑝 𝒛𝑡 𝒉𝑡  ∝  exp {− 𝑑𝛻

2 + 𝜆𝑑𝜇
2 }.     (scale to sum to 1) 

𝒉𝑡~𝑝 𝒉𝑡 𝒛1:𝑡 ∝ 𝑝 𝒛𝑡 𝒉𝑡  𝑝 𝒉𝑡 𝒉𝑡−1 𝑝(𝒉𝑡−1|𝒛1:𝑡−1)

𝒉𝑡−1

 

• Tracks that were not re-sampled until the end are eliminated 

• Entire tracks are re-weighed with the scoring function (3) 

• Top tracks are selected as final output 
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Conclusions 
• Introduced particle filter based tracking method for nerve bundles in high-resolution spine MRI; minimal user input 

• Defined a particle representation for nerve segments & appropriate dynamics model 

• Described a likelihood measure based on gradient fields and nerve intensities 

• Demonstrated successful tracking on spinal MRI dataset 

• Further work: precise estimation of thickness and segmentation of peripheral nerves 

GOAL: Provide an automatic segmentation method 

for nerve bundles and ganglia in spinal MRI. 
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intensity distance over volume of particle 𝑉 

Our Approach 
• Tracking approach based on particle filters with minimal input requirement 

Volume: 512x512x100 voxels 

Voxel:    0.5x0.5x1.0mm 

Particle: 15-30 voxels long x 2-15 voxels wide 

Observation: particle length, 2x particle width 

expected observed 
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