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Abstract. We present an interactive algorithm to segment the heart
chambers and epicardial surfaces, including the great vessel walls, in pe-
diatric cardiac MRI of congenital heart disease. Accurate whole-heart
segmentation is necessary to create patient-specific 3D heart models for
surgical planning in the presence of complex heart defects. Anatomical
variability due to congenital defects precludes fully automatic atlas-based
segmentation. Our interactive segmentation method exploits expert seg-
mentations of a small set of short-axis slice regions to automatically de-
lineate the remaining volume using patch-based segmentation. We also
investigate the potential of active learning to automatically solicit user
input in areas where segmentation error is likely to be high. Validation
is performed on four subjects with double outlet right ventricle, a se-
vere congenital heart defect. We show that strategies asking the user to
manually segment regions of interest within short-axis slices yield higher
accuracy with less user input than those querying entire short-axis slices.

1 Introduction

Whole-heart segmentation in pediatric cardiac MRI has great potential to im-
prove surgical planning in children with congenital heart defects by enabling cre-
ation of patient-specific 3D heart models. In particular, 3D-printed heart models
promise to provide surgeons with an anatomically faithful, tactile experience [7].
Building such models requires delineating all of the cardiac structures in a pa-
tient’s MRI, including the entire blood pool, epicardial surface and the great
vessels. Clinically available tools often require 4-8 hours of user interaction to
manually segment 100-200 slices covering the entire heart and the great vessels
[4, 11], which precludes routine clinical use of 3D heart models.

Whole-heart segmentation is challenging even in normal subjects. Previ-
ously demonstrated methods typically employ atlas-based segmentation or fit
deformable models to the image to be segmented [15]. The substantial changes
in heart topology and high anatomical variability in congenital heart disease
(CHD) render such model-based methods infeasible without an extremely large
database of previously annotated scans. For example, in a subclass of CHD called
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double outlet right ventricle (DORV), the aorta arises from the right ventricle
(instead of the left) and a ventricular septal defect forms a hole in the sep-
tum between the two ventricles. Specialized segmentation algorithms have been
developed for hearts with infarcts, left ventricular hypertropy, or pulmonary hy-
pertension [1, 9]. These methods use probabilistic atlases or point distribution
models built for normal subjects by finding some transformation between the
abnormal heart and the normal model. These algorithms were designed for seg-
menting the ventricles, and it is unlikely that such methods will perform well for
whole-heart segmentation in CHD. Automatic segmentation in cardiac MRI is
also complicated by intensity inhomogeneities, low contrast, and thin heart walls
near the atria, valves and great vessels which are barely visible. At the same time,
high accuracy is required for creating useful heart models for surgical planning.

We therefore focus on developing efficient interactive segmentation methods.
Interactive segmentation fits well into clinical workflows since physicians must
validate any segmentation used for decision making and correct the errors that
are inevitable in automatic segmentation. We present a patch-based [3, 6] inter-
active segmentation method that provides accurate whole-heart segmentation in
CHD. The method uses a small set of manually labeled slices to segment the
remaining volume, thus circumventing the challenges of anatomical variability.

Moreover, we examine active learning methods [8] to further reduce the num-
ber of interactions. At each step of an active learning session, the algorithm
directs the user to manually label part of the data deemed most informative.
These methods promise better accuracy with fewer user interactions compared
to systems in which the user decides where to provide input. Most active learning
methods for interactive medical image segmentation rely on uncertainty sampling
with a batch selection query strategy [2, 5, 10, 12–14]. In uncertainty sampling,
the active learner selects the voxels in which it is least confident. Confidence can
be measured using image-based metrics [10, 14] or label probabilities [5, 13]. En-
semble methods assess the disagreement among votes [2], while SVM classifiers
choose data based on distance to the margin [12]. Batch queries ask the user to
label multiple voxels in each interaction step. A query can involve annotating
sets of the most informative voxels [2, 5, 12], segmenting entire slice planes [10, 14]
or deciding whether or not to include an entire hypothesized object [13].

Within our patch-based interactive segmentation framework for high-quality
segmentation in CHD, we explore the potential benefits of active learning with
batch queries based on uncertainty sampling. We show that methods that select
entire slices for manual delineation fail to perform significantly better than a
simple strategy based on a uniform distribution of the input slices. In contrast,
active learning queries that asks the user to segment regions of interest (ROIs)
within short-axis planes are more accurate with less user interaction.

2 Patch-based interactive segmentation

In this section we describe our interactive patch-based segmentation algorithm
that incorporates user annotations. The method also provides a baseline for our
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study of active learning strategies for cardiac MRI segmentation.
Given input image I : ΩI ∈ R3 → R, we seek a label map L : ΩI → {lb, lm, lk}

that parcellates image I into blood pool, myocardium and background. For the
purpose of creating 3D heart models, the myocardium class includes the papil-
lary muscles and the great vessel walls. We let RI = {ri : Ωi ∈ R2 → {lb, lm, lk}}
be a set of manually labeled reference regions, where each subdomain Ωi ∈ ΩI
is defined on a short-axis plane. We focus on short-axis slices because clinicians
are already accustomed to segmenting short-axis views for making cardiac func-
tion measurements such as ejection fraction. In the simplest case, a reference
domain Ωi is an entire short-axis slice plane, but it may represent a region of
interest within a slice. In our baseline algorithm, the expert segments entire
short-axis slices that are uniformly distributed in the MRI volume.

At each step of the interactive segmentation procedure, the user manually
segments a provided short-axis region and a patch-based method is used to
update the segmentation volume [3, 6]. The manually segmented regions provide
patient-specific information on the heart’s shape and the local appearance of
the blood pool, myocardium and surrounding organs, which is exploited by the
algorithm to infer labels in the remaining image.

For every target slice t to be segmented, a library of intensity patches with
corresponding labels is constructed using the target’s set of relevant reference
regions Rt ∈ RI . If every reference domain Ωi is an entire short-axis slice, each
remaining target slice in the volume is segmented using the closest reference slice
above and below. If {Ωi} contains smaller ROIs, each target slice is segmented
using patches from the two closest entire reference slices plus all of the ROIs
between them. An ROI segmentation “shadows” the region behind it so that
only the physically closest information is used for each voxel in the target slice.

To segment patch pt(x
i) centered at voxel position xi in target slice t, we

find the k most similar patches in Rt. We use x = [x1, x2, x3] to denote the three
coordinates of position x, where x1 and x2 are in-plane (short-axis) coordinates
and x3 is the out-of-plane coordinate. Given a patch pr(x

j) centered at voxel
position xj in a reference r ∈ Rt with domain Ωr, the distance between patch
pt(x

i) and patch pr(x
j) depends on the patch intensities, gradients and positions:

d(pt(x
i), pr(x

j)) = α‖pt(xi)− pr(xj)‖2 + β‖∇pt(xi)−∇pr(xj)‖2

+ δ‖(x
i, Ωr)

[
(xi1 − x

j
1)2 + (xi2 − x

j
2)2

]
+ δ⊥(xi,Rt)(xi3 − x

j
3)2.

(1)

Here, α and β are weights on the relative importance of the intensity and gradient
terms, respectively, and δ‖(x

i, Ωr) and δ⊥(xi,Rt) are spatially-varying weights
on the in-plane and out-of-plane components of the positions, respectively.

The position weighting is higher when a target patch is close to one of its
references, to encourage matching to the close reference since it likely contains
the same structures. To this end, the out-of-plane position weight δ⊥(xi,Rt) is
defined as the distance from xi to the closest point within any of its references:

δ⊥(xi,Rt) = γ1 exp−γ2·D⊥(xi,Rt) + γ3,

D⊥(xi,Rt) = min
r∈Rt

min
xj∈Ωr

‖xi − xj‖. (2)
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Second, we allow a larger effective search area within distant reference slices,
which enables matching of structures that might change shape substantially
across neighboring slices. In contrast, if the reference slice is very close then
the matching structure is probably at a similar position. The in-plane position
weight δ‖(x

i, Ωr) is therefore different for each reference r, and is defined as the
distance from xi to the closest point in the reference domain Ωr:

δ‖(x
i, Ωr) = λ1 exp−λ2·D‖(x

i,Ωr) + λ3,

D‖(x
i, Ωr) = min

xj∈Ωr

‖xi − xj‖. (3)

Given the k most similar reference patches, the labeling for the target patch
is determined through majority voting. The reference patch segmentations con-
tribute overlapping votes (i.e., they vote for all voxels in a patch), which smooths
the segmentation. This variant removes the need for additional smoothness con-
straints that could potentially eliminate small walls in the heart and great vessels.

3 Empirical study: active learning for reference selection

Here we investigate batch query strategies for automatically choosing the sub-
domains {Ωi} to be segmented by the expert. First, we compare interactive
workflows that select entire short-axis slices versus those selecting smaller ROIs
of a fixed size. To decouple the effect of the reference domain size from that of a
specific uncertainty sampling method, we use a gold-standard manual segmen-
tation to identify the next region to be segmented. At each step, the region with
the highest segmentation error over its domain spanning ±h slices is selected
for manual segmentation. We refer to this iterative setup as oracle uncertainty
estimation. We emphasize that our goal is to investigate the effect of the inter-
action strategy, as this approach is clearly infeasible for segmentation of novel
images. In practice, uncertainty can be measured using metrics that locally esti-
mate segmentation accuracy through the entropy of the patch vote distributions,
alignment of label boundaries with image gradients, and intensity homogeneity
within small regions with the same label [10, 14].

We compare the two active learning methods (entire slices vs. smaller ROIs)
with several baseline approaches in which the user segments entire slices. First,
we test against our baseline algorithm using uniform slice distribution. We
also compare against random slice selection, a common baseline in active learn-
ing [10, 14]. These two slice selection schemes are not iterative. Finally, we imple-
mented a strategy that exhaustively tries all possible new reference slices at each
step and uses the gold-standard segmentation to add the slice that maximally
reduces the segmentation error. This represents an iterative optimal greedy
error reduction strategy with respect to maximizing improvement at each step.

4 Results

Data: Validation was performed using four pediatric cardiac MRI images from
patients with DORV. A high resolution isotropic whole-heart image was acquired



Interactive Whole-Heart Segmentation in Congenital Heart Disease 5

for each patient as part of surgical planning. The scans were performed with-
out contrast agents on a clinical 1.5T scanner (Philips Achieva), using a free-
breathing steady-state free precession (SSFP) pulse sequence with ECG and
respiratory nagivator gating (TR = 3.4ms/TE =1.7ms/α = 60◦). All images
were cropped to a tight region around the heart, rotated into a short-axis ori-
entation and smoothed slightly using anisotropic diffusion. The final image size
was around 120 × 150 × 200 and varied across patients. Voxel size was around
0.9mm3 and also varied slightly across subjects. A gold-standard manual seg-
mentation of the entire image volume was created in approximately eight hours
per scan, and is used to simulate user input in interactive segmentation.

Parameter selection: For interactive patch-based segmentation, we use
5×5 patches and retrieve k = 10 nearest neighbor patches for each target patch.
The nearest neighbor search was limited to a 101× 101 in-plane bounding box.
The weights governing the relative influence of the terms used to calculate patch
similarity in Eqs. (1)-(3) were determined empirically using the four datasets: for
all patients, α = 1, β = 1, γ = [8.49, 0.02, 0.0375] and λ = [1.62, 0.2, 1.25].
In both oracle strategies, we evaluate errors on regions spanning ±h = 2 slices.
In the oracle ROI strategy, we use ROIs of size 39× 39. Finally, the oracle and
optimal greedy strategies are initialized using three uniformly distributed slices.

Findings: Fig. 1 shows example heart models and segmentations created

Fig. 1: Example 3D heart models (cut in half to visualize the interior) and seg-
mentation results for a subject with DORV, from patch-based interactive seg-
mentation instantiated with 3, 8 and 14 uniformly distributed reference slices,
respectively. Interactive segmentation (yellow) and gold-standard segmentation
(red) are shown. LV/RV/LA/RA = left/right ventricle/atrium; VSD = ven-
tricular septal defect; AO = aorta; PA = pulmonary artery. Arrows indicate
segmentation errors that are corrected by including more reference slices.
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Fig. 2: Accuracy of patch-based in-
teractive segmentation as a func-
tion of the number of uniformly dis-
tributed reference slices. Thin lines
represent each subject and the thick
line corresponds to the mean.

using interactive patch-based segmenta-
tion instantiated with 3, 8 and 14 uni-
formly distributed reference slices, respec-
tively. The accuracy improvement when
more input is provided is clear. A high
quality model can be created using only 14
reference short-axis segmentations (out of
∼200 slices). Even the model instantiated
with 3 reference slices shows roughly cor-
rect global structure. Fig. 2 shows segmen-
tation accuracy for uniform slice selection
measured as Dice volume overlap for the
blood pool and myocardium. The patch-
based segmentation method achieves good
accuracy using relatively few segmented
slices, especially considering the difficulty
of whole-heart segmentation in CHD.

Experimental results for active learning are reported in Fig. 3. We observed
that the slices selected by active learning are sampled more densely near the base
of the heart and less so near the apex, which correlates with the relative difficulty
of segmenting these areas. The active learning strategy that selects entire short-
axis slices does not achieve a meaningful improvement compared to uniform slice
selection. Even the optimal greedy strategy only shows a modest improvement
compared to uniform distribution, indicating that there is not much scope for
improvement for active learning methods that iteratively choose entire short-
axis slices. All methods substantially outperform random slice selection. This
suggests that random selection is not necessarily the most appropriate baseline
when evaluating new active learning methods, although it is widely used.

Oracle ROI active learning shows substantial improvement (∼5 Dice points
for the myocardium) using less user input. Having the user label ROIs targets
areas of concentrated errors, leading to more efficient interactive segmentation.

Manual delineation of 15 short-axis slices requires less than one hour of an
expert’s time, vs 4-8 hours for the entire volume. The runtime of our current im-
plementation of patch-based segmentation takes roughly one hour per scan. The
computation time associated with adding a new reference region is proportional
to the number of affected target slices. Future work will focus on improving the
algorithm runtime, e.g., through the use of approximate nearest neighbors.

Our experiments raised an interesting question of what should be used as a
surrogate measure for the amount of user interaction. The results reported in Fig.
3 employ the ROI area as such a measure. However, several alternative metrics
are plausible, depending on whether the user paints the labels or draws curves
outlining the different tissue types. We also examined accuracy as a function
of the number of edge pixels in the reference label maps. When evaluated this
way, the differences between slice and ROI active learning disappear, and simply
uniformly distributing the reference slices may be the best choice. In this case,
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Fig. 3: Segmentation accuracy of alternative reference selection methods, re-
ported as the improvement over uniform slice selection. Negative values indicate
that uniform slice selection outperforms the method. For oracle ROI active learn-
ing, results are reported as a function of the cumulative area segmented by the
user. Random slice selection scores are averages over five trials per subject.

even the optimal greedy strategy, which does not normalize by the effort required
to segment each slice, can be worse than uniform slice selection. A user study
evaluating the time required to manually segment slices versus ROIs is the best
way to determine the most appropriate proxy for interaction time.

5 Conclusions

We presented an accurate interactive method for whole-heart segmentation in
congenital heart disease. To the best of our knowledge, this is one of the first
demonstrations towards clinically practical image segmentation to enable rou-
tine use of 3D heart models for surgical planning in CHD. We also show that
active learning approaches in which the user annotates uncertain ROIs have po-
tential to further reduce segmentation time. Future work includes active learning
for arbitrarily oriented slices or ROIs. More sophisticated active learning meth-
ods that probabilistically model the expected error reduction given a candidate
ROI could also yield improved segmentation results with minimal user effort.
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