Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors

Adrian V. Dalca¹, Ramesh Sridharan¹, Lisa Cloonan², Kaitlin M. Fitzpatrick², Allison Kanakis², Karen L. Furie³, Jonathan Rosand², Ona Wu², Mert Sabuncu⁴, Natalia S. Rost², and Polina Golland¹

Motivation

Cerebrovascular Pathologies

- Small vessel disease predictor of stroke outcome
- Pathologies have similar intensities in T2-FLAIR
- Stroke has no consistent shape or location pattern
- Clinicians use spatial patterns in small vessel disease to differentiate from stroke lesions

Current Methods

- Segment hyperintensities via intensity thresholds
- Shape models used for other segmentation tasks

Our Method

- Model combines intensity and spatial patterns
- Inference to segment and differentiate pathologies

Spatial Model - Small Vessel Disease

Common Space

- Register training subjects
- Maps of small vessel disease overlap (obtained manually)

Spatial Model M

- PCA on maps of small vessel disease
- Components M_k capture co-variation e.g. bilateral periventricular symmetry
- Properties match those used by clinicians
- Can project estimated small vessel disease onto model

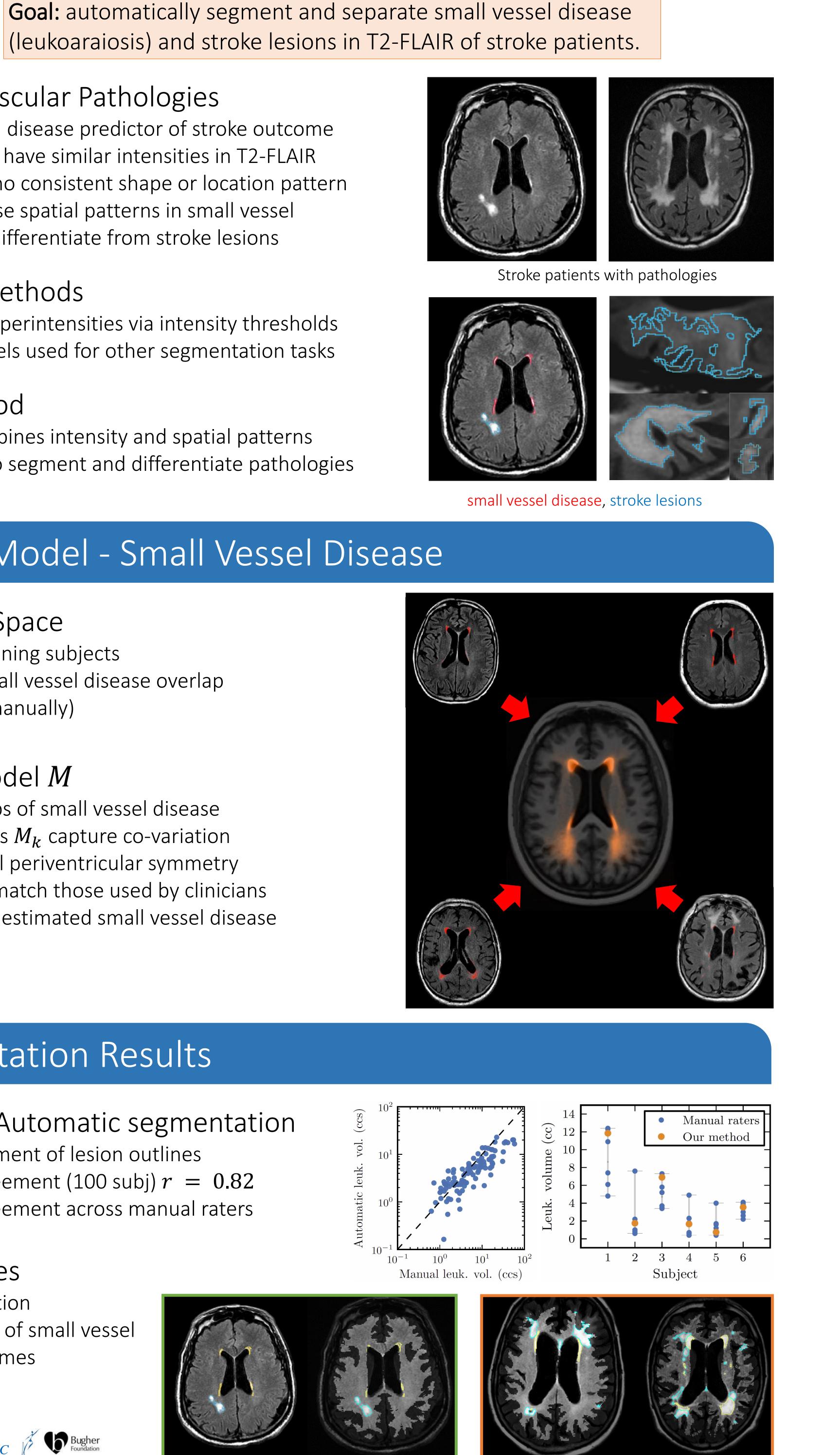
Segmentation Results

Manual vs Automatic segmentation

- Good agreement of lesion outlines \bullet
- Volume agreement (100 subj) r = 0.82
- Volume agreement across manual raters

Failure Cases

- Bad registration \bullet
- Large extent of small vessel disease volumes

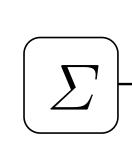


manual

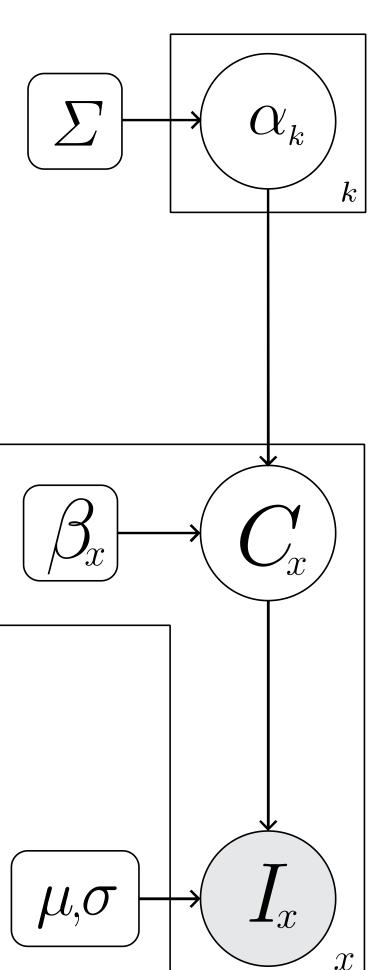
automatic

¹CSAIL, EECS, Massachusetts Institute of Technology ²Neurology, MGH, Harvard Medical School ³Neurology, RUH, Alpert Medical School. ⁴Martinos Center, Harvard Medical School

failure cases







- Initialize

Convergence leads to delineation of small vessel disease and stroke lesions simultaneously

Generative Model for T2-FLAIR

We model three tissue classes: small vessel disease, stroke, and healthy

Small Vessel Disease Spatial Prior *M*
• Generate parameters
$$\alpha_k$$

 $P(\alpha) = \mathcal{N}(\alpha; 0, \Sigma)$
 $M(\alpha) = \overline{M} + \sum \alpha_k M_k$

Tissue Priors for Class C_{γ}

- disease $M_{x}(\alpha)$ stroke $(1 - M_x(\alpha))\beta_x$ • $P(C_x|\alpha;\beta) = \langle$ healthy $\Big(1-M_x(\alpha)\Big)(1-\beta_x)$
- Add MRF for spatial contiguity

Intensity Observations

• Generated independently from Gaussian

$$P(I_{x}|C_{x};\mu,\sigma) = \prod_{c} \mathcal{N}(I_{x};\mu_{c},\sigma_{c})^{C_{x}=c}$$

Joint Probability $P(C, I, \alpha; \mu, \sigma, \beta) = P(I|C; \mu, \sigma)P(C|\alpha; \beta)P(\alpha)$

Inference & Segmentation

Segmentation

MAP estimate via Variational EM inference $\hat{C} = \operatorname{argmax}_{C} P(C|I, \alpha; \mu, \sigma, \beta)$

• Hyperintense voxels: small vessel disease, stroke

E-Step Update

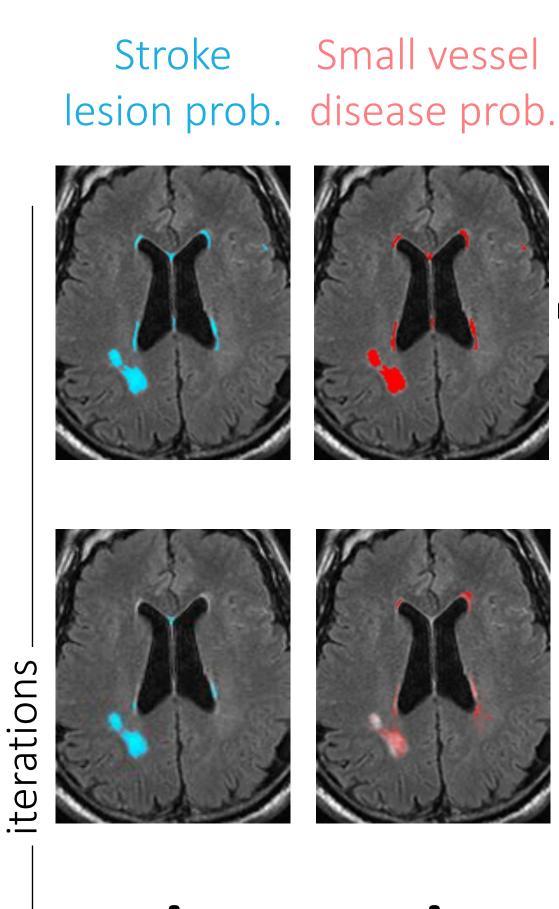
• Estimate small vessel disease spatial prior $M(\alpha)$ via regularized projection of small vessel disease

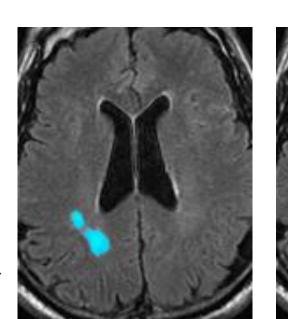
M-Step Updates

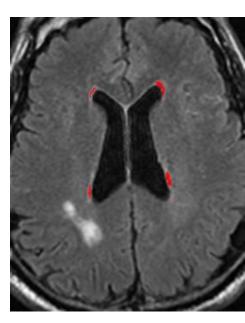
Small vessel disease and stroke probability maps • Estimate for class statistics μ_c, σ_c Include healthy tissue heterogeneity model

• Update tissue prior based on previous MAP estimates and $M(\alpha)$

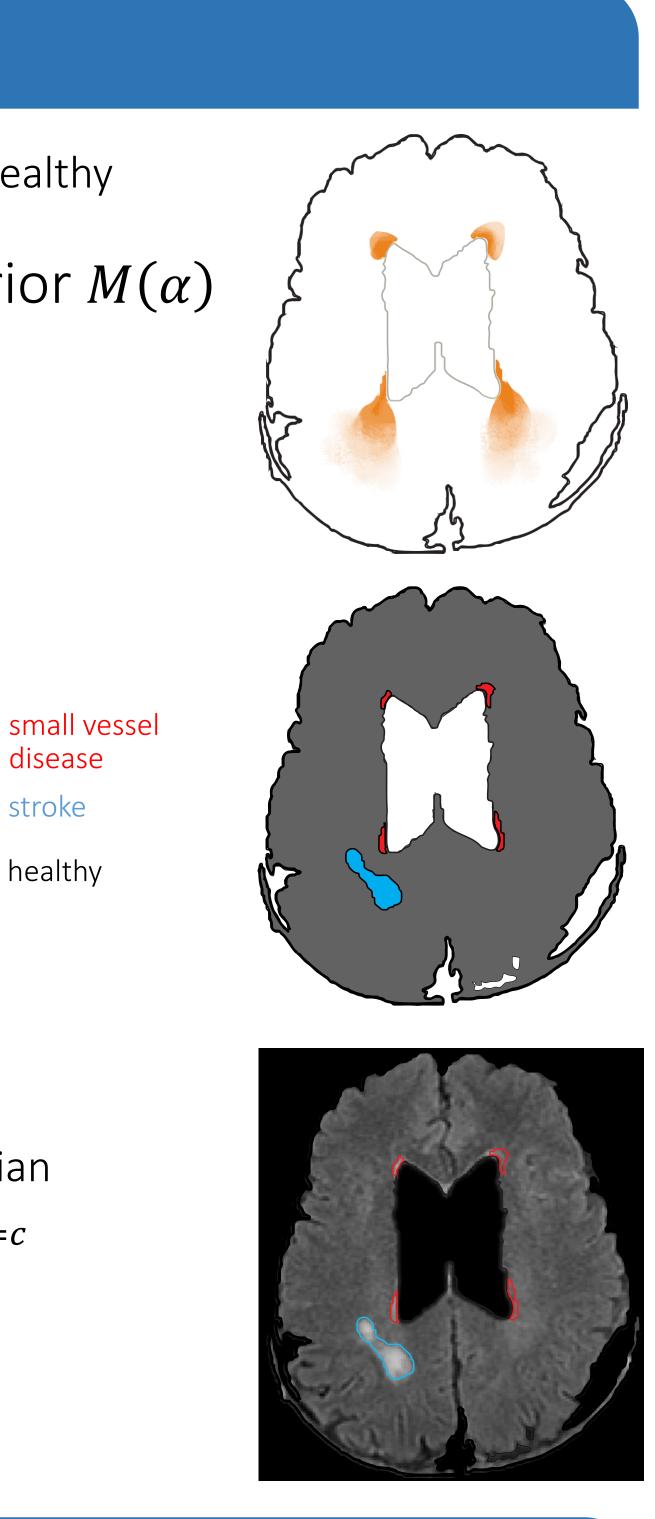
• Update posterior \hat{C}_{χ} using new class statistics, tissue prior, and neighbor agreement



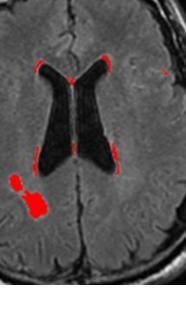


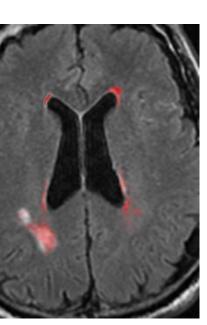


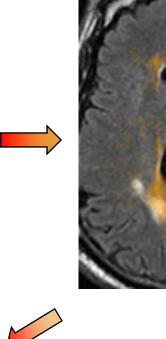
EF EF

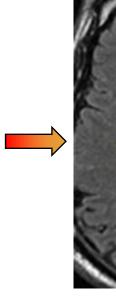


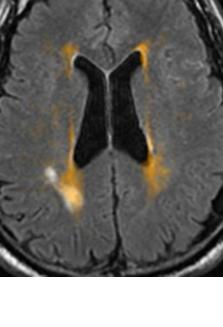
Small vessel











Spatial model

 $M(\alpha)$

