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Abstract

Classical image registration methods have seen significant technical development,
but often require significant runtime. In contrast, learning-based registration meth-
ods achieve impressive test accuracy and runtime, but often omit classical de-
velopment. In recent months, preliminary methods have joined these paradigms,
providing fast runtime while maintaining classical guarantees. In this work, we
extend these methods by improving theoretical approximations, introducing a bi-
directional loss to enable accurate inverse deformations, and analyzing algorithm
behaviour in the presence of limited training data or given training segmentation
maps. We demonstrate improved behaviour and accuracy in a range of experi-
ments.

1 Introduction

Deformable registration computes a dense correspondence between two images, and is fundamental to
many medical image analysis tasks. Classical methods such as elastic-type models [3], B splines [27],
dense vector fields [29], or discrete methods [9, 14] yield deformations by solving an optimization
problem. Diffeomorphic transforms, which ensure properties like topology preservations, have seen
extensive methodological development [1, 2, 6, 31]. However, since these methods solve a complex
optimization problem, they often require substantial runtime for a given image pair.

Recent learning-based methods propose to train neural networks that map image pairs to deformations.
Supervised approaches require ground truth registration fields, often derived via more conventional
registration tools [26, 28, 30]. Unsupervised or self-supervised methods [4, 5, 10, 20] use a spatial
transformer [17] to enable end-to-end training without explicit supervision. However, these methods
tend to lack the theoretical guarantees and properties provided by classical methods.

Methods introduced in the past six months use classical concepts to derive neural-network based
solutions that maintain desired properties such as diffeomorphic guarantees and uncertainty esti-
mates [8, 19]. However, these preliminary methods have only been demonstrated in limited settings.
In this work, we extend and analyze several aspects of one such method, VoxelMorph [8].

• VoxelMorph mathematical development approximates a spatially smooth deformation prior by
introducing independence at every voxel. We introduce a new approximation that encourages
deformations to be more consistent with a smoothness prior.

• The VoxelMorph loss function encourages an accurate forward deformation. We introduce a
bidirectional loss function that explicitly encourages accurate forward and backwards warps,
resulting in improved performance in subject-to-subject registration.

• VoxelMorph was demonstrated in the context of a large training dataset. Here, we perform an
analysis of test performance based on different numbers of training subjects.
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• VoxelMorph uses only MRI images during training. Here, we show that adding segmentation maps
during training significantly improves test-time accuracy.

2 Methods

We first briefly review diffeomorphic VoxelMorph [8], then describe our proposed extensions.

Let x and y be the images to be registered, and let z be a latent variable that parametrizes a
transformation function φz . In VoxelMorph, z is a stationary velocity field, which is integrated to
a diffeomorphic deformation φz . The multivariate normal prior p(z) = N (z;0,Λ−1z ) encourages
spatial smoothness by letting Λz = λL,where λ denotes a parameter controlling the scale of the
velocity field z, and L is the Laplacian of a neighborhood graph defined on a voxel grid. The model
further assumes that x is a noisy observation of warped image y: p(x|z;y) = N (x;y ◦ φz, σ2

I),
where σ2 reflects the variance of additive image noise.

The goal is to find the posterior probability of registration p(z|x;y), giving the most likely registra-
tion field φz as well as an estimate of uncertainty for each voxel. However, since p(z|x;y) is in-
tractable, the authors use a variational approximation modeled as a multivariate normal: qψ(z|x;y) =
N (z;µz|x,y,Σz|x,y), where the functions µz|x,y and Σz|x,y are estimated using a convolutional neu-
ral network. By minimizing the distance minψ KL [qψ(z|x;y)||p(z|x;y)], the authors arrive at the
network loss function: L(ψ;x,y) = 1

2σ2K

∑
k ||x− y ◦φzk ||

2 +KL [qψ(z|x;y)||p(z)], where zk
is a sample from qψ(z|x;y). The first term encourages image matching, and the second encourages
the velocity field to be smooth as specified by the prior. Registration for a new image pair {x,y} is
computed by evaluating the neural network, sampling from qψ(z|x;y), and computing φzk .

2.1 Proposed Approximate Posterior

In VoxelMorph, the covariance Σz|x,y is diagonal, leading to independent noise in z at each voxel.
This leads to smoothness only being encouraged through µz|x,y, and stationary velocity fields zk
sampled from qψ(z|x;y) can be noisy. We introduce a new approximation to encourage smoothness:

Σ̃z|x, y = Cσc
DDTCT

σc
, (1)

where D is a diagonal matrix outputted by the neural network and Cσc is a fixed smoothing
convolution matrix such that Cσcw is equivalent to 3D convolution of w by a gaussian filter with
variance σ2

c . We choose σc such that the smoothing operation matches the scale of the prior determined
by λ: 1√

2πσ3/2
= (λ ∗ 6)−1. Sampling from q̃ψ(z|x;y) = N (z;µz|x,y, Σ̃z|x,y) is then achieved

using the reparametrization trick [18]: zk = µz|x,y+CσcDr, where r is a sample from the standard
normal. Intuitively, compared to the original approximation, this sampling procedures smoothes the
term added to the mean.

2.2 Bidirectional cost function

The VoxelMorph loss encourages accurate deformation φ through the image matching term, but does
not constrain the inverse deformation φ−1. We propose to encourage accuracy for both deformations:

L(ψ;x,y) = 1

4σ2K

∑
k

(
||x− y ◦ φzk ||

2 + ||y − x ◦ φ−1zk ||
2
)
+ KL [qψ(z|x;y)||p(z)] . (2)

Because of the stationary velocity field representation, computing the inverse deformation field φ−1z
can be achieved by taking the negative of the velocity field: φ−1z = φ−z [1, 24], enabling the
computation of both fields inside one network.

2.3 Training with Limited Data

Learning-based methods like VoxelMorph replace classical pair-specific optimization over deforma-
tion fields with a global optimization of network parameters. The generalizability of the deformations
depends on the amount and variability of training data. In the original work, VoxelMorph was
trained on thousands of scans. In this work, we train the models on various numbers of scans and
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Figure 1: Left: Example image pair, sample velocity field, and standard deviation across several samples for
original VoxelMorph (top) and our smoother distribution (bottom). Right: VoxelMorph (blue) results in less
accurate inverse warp φ−1 compared to deformations φ. The proposed bi-directional loss (purple) leads to both
deformations performing equally well, and on par with the VoxelMorph forward deformations.

evaluate the accuracy of the resulting models at test time. Furthermore, the resulting deformation
can be interpreted as simply an approximation or initialization to the optimal deformation, and we
experiment with improving it using instance-specific optimization.

2.4 Training with additional information: Segmentation Maps

VoxelMorph was trained using MRI images. Here, we leverage segmentation maps during training to
improve test-time accuracy. Anatomical label maps are sometimes available during training. These
are produced by human experts or automated pipelines. Letting slx, s

l
y ◦ φ be the set of voxels of

structure l for x and y ◦φ, respectively, we quantify the volume overlap for structure l using the Dice
score [12]. We expand the VoxelMorph loss by adding a segmentation term αLseg:

Lseg(sx, sy ◦ φ) = −
∑
l

Dice(slx, s
l
y ◦ φ) = −

∑
l

2 ·
|slx ∩ (sly ◦ φ)|
|slx|+ |sly ◦ φ|

. (3)

Segmentation maps are not not used to register a test image pair.

3 Experiments

For most experiments below, we use the data used in the original VoxelMorph paper, and focus on
3D atlas-based registration. Specifically, we register each scan to an atlas computed using external
data [13]. We use a large-scale, multi-site dataset of 7829 T1-weighted brain MRI scans from eight
publicly available datasets: ADNI [25], OASIS [21], ABIDE [11], ADHD200 [23], MCIC [15],
PPMI [22], HABS [7], and Harvard GSP [16]. We performed standard pre-processing, including
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Figure 2: Left: effect of training set size on accuracy (blue line), and instance-specific deformation optimization
(green line) after these are initialized to the VoxelMorph results (blue line). Right: significant improvement in
test performance when segmentation is used during training.
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resampling to 1mm isotropic voxels, affine spatial normalization, brain extraction, and segmentation
of 29 anatomical labels using FreeSurfer [13], and crop the final images to 160 × 192 × 224. We
split the dataset into 7329, 250, and 250 volumes for train, validation, and test sets respectively.

To evaluate registration quality, we register each subject to an atlas, propagate the segmentation map
using the resulting warp, measure volume overlap using the Dice metric for each label, and report the
average Dice metric across labels.

Proposed Approximate Posterior We train a network using the proposed smoothing approximate
posterior (1), as well as the original VoxelMorph approximation. We find that the two methods result
in similar performance for the test set: (0.752± 0.021). However, we also evaluate the diffeomorphic
property of the final deformations φz by counting the number of voxels p such that |Jφ(p)| ≤ 0,
where J is the Jacobian matrix, and find that VoxelMorph samples average 2.6 non-diffeomorphic
voxels, while our proposed method yields only 1.0. Figure 1 Left shows that the new posterior yields
significantly smoother stationary velocity fields, consistent with the model prior.

Bidirectional cost function We train a registration network using the proposed bi-directional cost
function, as well as the original VoxelMorph network, for both atlas-based registration, as well as
subject-to-subject registration. For atlas-based registration, both methods perform similarly. However,
Figure 1 Right shows that for subject to subject registration, the VoxelMorph loss leads to the inverse
deformations performing lower (0.716±0.042) than the forward deformations (0.726±0.043), while
the new bidirectional cost function leads to both deformations performing equally well (0.725±0.042
and 0.725± 0.041 Dice scores), on par with the VoxelMorph forward deformations.

Training Set Size and Instance-Specific Optimization We train VoxelMorph on subsets of differ-
ent sizes from our training dataset. We evaluate Dice score on the test set as well as the test set when
each deformation is further individually optimized for each test image pair using gradient descent on
each stationary velocity field z (instance-specific optimization). Figure 2 Left shows that a small
training set size of 10 scans results in slightly lower test Dice scores compared to larger training set
sizes. There is no significant difference when training with 100 scans compared to the full dataset of
over 7000 scans. Further optimizing the deformation on each test image pair results in better test
Dice scores regardless of training set size.

Training with Segmentation Maps We train a VoxelMorph network using the proposed seg-
mentation loss along with the original VoxelMorph scan. Figure 2 Right demonstrates that using
segmentations at training time yields a significant registration improvement at test time.

Conclusion We introduce several extensions and analyses for VoxelMorph. We demonstrate that
the proposed approximating posterior results in smoother velocity fields, and the bi-directional cost
function improves accuracy of the inverse deformation. We show that VoxelMorph can be used even
with limited training data, and using segmentations at training can dramatically improve performance.
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