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Abstract. We present an algorithm for creating high resolution anatom-
ically plausible images consistent with acquired clinical brain MRI scans
with large inter-slice spacing. Although large databases of clinical images
contain a wealth of information, medical acquisition constraints result in
sparse scans that miss much of the anatomy. These characteristics often
render computational analysis impractical as standard processing algo-
rithms tend to fail when applied to such images. Highly specialized or
application-specific algorithms that explicitly handle sparse slice spacing
do not generalize well across problem domains. In contrast, our goal is
to enable application of existing algorithms that were originally devel-
oped for high resolution research scans to significantly undersampled
scans. We introduce a model that captures fine-scale anatomical similar-
ity across subjects in clinical image collections and use it to fill in the
missing data in scans with large slice spacing. Our experimental results
demonstrate that the proposed method outperforms current upsampling
methods and promises to facilitate subsequent analysis not previously
possible with scans of this quality.

1 Introduction

Increasingly open acquisition efforts in clinical practice are driving dramatic
increases in the number and size of patient cohorts in clinical archives. Unfor-
tunately, clinical volumes are typically of dramatically lower resolution than
the research scans that motivate most methodological development. Specifically,
while individual slices in the scan can be of high resolution, slice spacing is
often significantly larger, resulting in missing voxels, as illustrated in Fig. 1.
This presents significant challenges for even basic tasks, such as skull stripping
and registration, which are often necessary for downstream analysis [4,9]. We
present a novel method for constructing high resolution anatomically plausible
volumetric images consistent with the available slices in sparsely sampled clinical
scans. The restored images promise to enable computational analysis of clinical
scans with existing techniques originally developed for isotropic research scans.
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Fig. 1. Axial, saggital and coronal slices from an example scan in our clinical dataset.

Importantly, our method does not require any high resolution scans or expert
annotations, but instead imputes the missing structure by learning from the
available collection of clinical scans.

Our work is motivated by a study that includes brain MRI scans of thousands
of stroke patients acquired within 48 h of stroke onset. The study aims to quan-
tify white matter disease burden, necessitating skull stripping and deformable
registration into a common coordinate frame [16]. The volumes are severely
under-sampled (0.85mm × 0.85mm × 6mm) due to clinical constraints of acute
stroke care, as illustrated in Fig. 1. Such undersampling is typical of modalities
that aim to characterize tissue properties such as T2-FLAIR, even in research
studies like ADNI2 [9].

Since clinically acquired scans violate many algorithms’ underlying assump-
tions, even basic tasks present significant challenges [6,20,21]. In undersampled
scans, the image is no longer smooth, and the anatomical structure may change
substantially between consecutive slices (Fig. 1). Application-specific algorithms
promise to address these problems for certain clinical scans but do not generalize
well across applications and imaging modalities. In contrast, we harness the data
available in a given clinical image collection to reconstruct the high resolution
images that represent plausible anatomy from the low resolution scans (Fig. 2).
The resulting images can then be analyzed by widely used algorithms that require
nearly isotropic high resolution input. The imputed data acts as a medium for
improving analysis tasks. For example, although imputed data should not be
used in the clinical evaluation, the brain mask obtained through skull stripping
of the restored scans can be applied to the original clinical scan for further
analysis.

Prior Work. Traditional image restoration, or superresolution, techniques
depend on having enough information in a single scan to synthesize data. Unfor-
tunately, clinical slices are often sampled too sparsely for functional interpo-
lation, such as linear, cubic or spline [19], to succeed. Similarly, patch-based
methods that rely on redundancy within a single scan to “hallucinate” missing
fine scale structure [13–15] fail to produce anatomically plausible reconstructions
at this level of sparsity. Superresolution algorithms that use multiple images of



Population Based Image Imputation 661

High Resolution Image Z Sampling Mask Observed Image Y

NLM Restoration Linear Interpolation Our Restoration

Fig. 2. Problem setup and preview of the results. Top row: (unobserved) isotropic
image Z that we seek to recover is sampled according to the sampling mask which
produces observed image Y . Bottom row: restoration results for non-local means (NLM)
upsampling, linear interpolation, and our method, respectively. The most dramatic
improvement can be seen in restorations of the skull, dura matter, and ventricles.

the same subject to improve a single scan [2,10,15] are unsuitable for clinical
data where multiple similar acquisitions are not commonly available.

Nonparametric upsampling methods proposed to tackle the problem of super-
resolution often rely on an external dataset of high resolution data or cannot han-
dle extreme undersampling present in clinical scans. For example, some methods
fill in missing data by matching a low resolution patch from the scan with a high
resolution patch from the training dataset [3,7,10,11,18]. A recent approach to
improve resolution from a collection of scans with sparse slices jointly upsam-
ples all images using non-local means [17]. However this method has only been
demonstrated on slice spacing of roughly three times the in-plane resolution, and
in our experience similar non-parametric methods fail to upsample clinical scans
with more significant undersampling.

Parametric methods and low dimensional embeddings have been used to
model the common structure of image patches from full resolution images, but
are typically not designed to handle missing data. Specifically, priors [22] and
Gaussian Mixture Models [23] have been used in both medical and natural images
for classification [1] and denoising [5,23]. The procedures used for training these
models rely on having full resolution patches with no missing data. Unfortu-
nately, high (full) resolution training datasets are not readily available for many
image contrasts and scanners, and may not adequately represent pathology or
other properties of clinical populations. Acquiring the appropriate high resolu-
tion data is often infeasible, and here we explicitly focus on the realistic medical
scenario where only low resolution image sets are available.
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Overview. Our method takes advantage of the fact that local fine scale struc-
ture is intrinsically shared in a population of medical images, and each scan
with sparse slices captures some partial aspect of this structure. We borrow
ideas from Gaussian Mixture Model (GMM) patch priors [23], low dimensional
Gaussian embeddings [8], and missing data models [8,12] to develop a proba-
bilistic model that describes sparse 3D patches from all volumetric images in
a collection around a particular location using a low-dimensional GMM with
partial observations. We derive an iterative algorithm to learn the model para-
meters. We demonstrate our algorithm using scans from the ADNI cohort as
well as the motivating stroke study, and also illustrate a preliminary illustration
of potential improvements in the down-stream analysis using an example task of
skull stripping. Finally, we discuss initialization tradeoffs and modelling choices.

2 Method

We employ a Gaussian Mixture Model (GMM) to capture local structure in
sparse 3D patches in the vicinity of a particular location across the entire collec-
tion. We treat a patch as a high dimensional manifestation of a low dimensional
representation, with the intuition that the covariation within image patches has
small intrinsic dimensionality relative to the number of voxels in the patch. In
this section, we describe the model, the resulting learning algorithm, and our
image restoration procedure.

2.1 Generative Model

Let {Y1, . . . , YN} be an image collection of scans with large slice separation,
roughly aligned into a common atlas space (we use affine transformations in our
experiments). For each image Yi in the collection, only a few slices are known,
and we seek to restore the anatomically plausible high resolution volume by
imputing the missing voxel values.

We capture local structure using image patches. We assume a constant patch
shape, and use yi to denote a D-length vector that contains voxels of the image
patch centered at a certain location of image Yi. We perform inference at each
location independently. We model the set of patches Y = {yi} at a common
location as drawn from a K-component multivariate GMM. If generated by
cluster k, patch yi is a high dimensional observation of a low dimensional patch
representation xi of length d:

yi = μk + Wkxi + εi, where (1)
xi ∼ N (0, ID×D),

εi ∼ N (0, σ2
kID×D), and εi |= xi.

Here patch μk is the mean of cluster k, matrix Wk shapes the covariance structure
of the cluster, and σ2

k is the variance of image noise. The likelihood of all patches
at this location under the mixture model is
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p(Y; {μk}, {Wk}, {σ2
k}, π) =

∏

i

∑

k

πkN (yi;μk, Ck), (2)

where Ck = WkW
T
k + σ2

kID×D and π is a vector of cluster proportions.
Let Oi be the set of observed voxels, i.e., from the known slices, in patch yi,

and y
Oi
i be the corresponding vector of their intensity values:

y
Oi
i = μ

Oi

k + W
Oi

k xi + εi, (3)

where W
Oi

k comprises rows of Wk that correspond to the observed voxel set Oi.
The likelihood of the observed data is therefore

p(YO; {Wk}, {μk}, {σ2
k}, π) =

∏

i

∑

k

πkN (yOi
i ;μOi

k , C
OiOi

k ), (4)

where YO = {y
Oi
i }, and matrix C

OiOi

k extracts the rows and columns of Ck that
correspond to the observed voxel subset Oi.

2.2 Learning

We learn the maximum likelihood estimates of the parameters {μk}, {Wk}, {σ2
k}

and π under the likelihood (4). As traditional Expectation Maximization for our
model does not lead to closed form update equations, we employ the Expectation
Conditional Maximization (ECM) [8,12] variant of the Generalized Expecta-
tion Maximization, where parameter updates depend on the previous parameter
estimates. Due to space limitations, we omit the derivations and provide the
resulting updates along with their interpretations.

The expectation step updates the class memberships based on the observed
voxels of the patches at this location:

γik
Δ= p(k|yOi

i ; {Wk}, {μk}, {σ2
k}, π) ← πkN (yOi

i ;μOi

k , C
OiOi

k )∑
k πkN (yOi

i ;μOi

k , C
OiOi

k )
. (5)

Next, we compute the statistics of the low dimensional representation x for each
patch as “explained” by each cluster:

x̂ik
Δ= E[xi|k] =

(
(W Oi

k )TW
Oi

k + σ2
kID×D

)−1
(W Oi

k )T (yOi
i − μ

Oi

k ), (6)

Sik
Δ= E[xix

T
i |k] − x̂ikx̂

T
ik = σ2

k

(
(W Oi

k )(W Oi

k )T + σ2
kID×D

)−1
. (7)

The maximization step uses the observed voxels to update the model para-
meters. We let Pj be the set of patches in which voxel j is observed, yj

i be the jth

element of vector yi, and W j
k be the jth row of matrix Wk. We update the mean

as the average residual of the predicted patch voxels W j
k x̂ik and the observed

values yi:

μj
k ←

∑
i∈Pj

γik(y
j
i − W j

k x̂ik)
∑

i′∈Pj
γi′k

. (8)
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Fig. 3. Image imputation. (a) Full resolution images, for illustration only. These are
unobserved by the algorithm. (b) Sparse planes acquired in clinical scans. (c) During
learning, we train a GMM that captures the low dimensional nature of patch variability
at a particular location (white dot). (d) Given an image from the collection, or a new
image, we infer the most likely cluster for each 3D patch, and restore the missing
data using the learned model and the observed voxels. We quilt the final volume from
overlapping restored patches. 2D images are shown for illustration only, the algorithms
operate fully in 3D.

The covariance factors and residual variance are updated based on the statistics
of low dimensional representation from (6) and (7):

W j
k ←

⎡

⎣
∑

i∈Pj

γik(x̂ikx̂
T
ik + Sik)

⎤

⎦
−1

∑

i∈Pj

γik(y
j
i − μj

k)x̂
T
ik (9)

σ2
k ← 1∑

j

∑
i∈Pj

γik

∑

j

∑

i∈Pj

γik

[
(yj

i − W j
k x̂ik − μj

k)
2 + W j

kSik(W
j
k )T

]
. (10)

Finally, we update the cluster proportions:

πk =
1
N

∑

i

γik. (11)

Throughout learning, we work in the atlas space, and approximate voxels as
either observed or missing in this space by thresholding interpolation weights
and ignoring interpolation effects due to affine alignment. Intuitively, learning
such a model with sparse data is possible because each image patch provides a
slightly different subset of voxel observations that contribute to the parameter
estimation (Fig. 3). The estimation can be extended to carry out the learning
by appropriately transforming model parameters into the subject-specific space
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in order to optimally use the observed voxels, but this leads to computationally
prohibitive updates.

In our experiments, all subject scans have the same acquisition direction.
Despite different affine transformations to the atlas space for each subject, some
voxel pairs are still never observed in the same patch, resulting in missing entries
of the covariance. Representing covariance using a low-rank approximation helps
to alleviate this lack of observations.

2.3 Restoration

To restore an individual patch yi, we first estimate the most likely cluster k̂
for patch yi by selecting the cluster with the highest membership γik. We then
estimate the low dimensional representation x̂îk given the observed voxels y

Oi
i

using (6). Finally, we reconstruct the high resolution patch:

zi = μ
̂k + W

̂kx̂îk (12)

using the estimates of the model parameters μ
̂k and W

̂k. We average overlapping
restored patches using standard techniques and form the restored volume Zi [13].

2.4 Implementation

We stack together the affinely registered sparse images from the entire collection
and split the stack into overlapping subvolumes of 18 × 18 × 18 voxels in the
isotropically sampled common atlas space. Subvolumes are centered 9 voxels
apart in each direction. Within each subvolume, we learn the mixture model
parameters. Instead of selecting just one patch from each volume at a given
location, we collect all overlapping patches within the subvolume centered at
that location. This aggregation provides more data for each model, which is
crucial when working with severely undersampled volumes. Moreover, it offers
robustness in the face of image misalignment. Given the learned parameters at
each location, we restore all overlapping patches within a subvolume. We use
a cubic patch of size 9 × 9 × 9 voxels, and found K = 5 clusters and d = 21
to be sufficient. We use a hierarchical implementation, where the subvolume
parameters are trained at three iterative scales.

While learning is performed in the common atlas space, we restore each
volume in its original subject space to limit effects of interpolation. We apply
the inverse of the estimated subject-specific affine transformation to the cluster
statistics, and use them to restore patches via (12) in the original subject space.

Our implementation is freely available at https://github.com/adalca/papago.

3 Experiments

We demonstrate the proposed imputation algorithm on two datasets and eval-
uate the results both visually and quantitatively. We also include a preliminary
example of how imputation can aid in a skull stripping task.

https://github.com/adalca/papago
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Fig. 4. Representative ADNI restorations. Representative reconstruction by NLM, lin-
ear interpolation, and our method, and the original high resolution images for two rep-
resentative subjects in the study. Our method reconstructs more anatomically plausible
substructures as can be especially seen in the close-up panels, for example in the skull
or temporal lobe.

3.1 Data

ADNI Dataset. We evaluate our algorithm using 326 T1-weighted brain MR
images from ADNI [9]. We downsample the isotropic 1mm3 images to slice
separation of 5 mm (1mm×1mm in-plane), and use these low resolution images
as input. All subjects are affinely registered to a T1 atlas. The original images
serve as the ground truth for quantitative comparisons.

Clinical Dataset. We also demonstrate our algorithm on a clinical set of 127
T2-FLAIR brain MR scans in a stroke patient cohort. These scans are severely
anisotropic (0.85 × 0.85mm in-plane, slice separation of 6 mm). All subjects are
affinely registered to a T2-FLAIR atlas and intensity normalized. The slices are
resampled to 1.2mm × 1.2mm resolution.

3.2 Evaluation

We compare our algorithm to three upsampling methods: nearest neigh-
bour (NN) interpolation, linear interpolation, and non-local means (NLM)
upsampling [13]. For ADNI images, we found the hierarchical implementation
was unnecessary and only ran the final scale of our algorithm. We compare the
reconstructions to the original isotropic volumes both visually and quantitatively
(ADNI images only). We use mean squared error MSE (Z,Zo) = 1

N

∑
(Z −Zo)2
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Fig. 5. Reconstruction accuracy statistics. Accuracy improvement over nearest neigh-
bor interpolation for different image restoration methods. Left: MSE (lower is better),
Right: PSNR (higher is better). Our method performs significantly better. For Nearest
neighbor interpolation, MSE = 0.004±0.001 and PSNR = 23.7±1.1. All statistics were
computed over 40 scans randomly chosen from the ADNI dataset. Image intensities are
scaled to a [0, 1] range.

Ground truthOur methodLinear interpolationNLM

Fig. 6. Skull stripping example. Example of a skull stripping failure for linear and NLM
interpolation. Skull stripping dramatically improves when applied to the imputed image
for this example.

of the reconstructed image Z relative to the original high resolution scan Zo, and
peak signal to noise ratio PSNR = log10

max(Zo)
MSE(Z,Zo) . Both metrics are commonly

used in measuring the quality of reconstruction of compressed or noisy signals.
Additionally, we illustrate a preliminary example application where skull strip-
ping fails using the original scan and improves dramatically if an imputed image
is used.

3.3 Results

Figure 4 illustrates representative restored images for typical subjects in the
ADNI dataset. Our method produces more plausible structure both in coronal
and saggital slices. The method restores anatomical structures that are almost
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Fig. 7. Representative clinical restorations. Reconstruction using NLM, linear interpo-
lation and our method for two representative subjects. Our method reconstructs more
plausible substructures, as can be especially seen in the close-up panels of the skull
and periventricular regions.

entirely missing in the other reconstructions, such as the dura or the sulci of the
temporal lobe. Figure 5 reports the error statistics in the ADNI data. Due to
high variability among subject scans, we report improvements of each method
over the nearest neighbor interpolation baseline in the same scan. Our algorithm
offers significant improvement compared to the linear interpolation and NLM.

We also show a preliminary result where imputed data facilitates downstream
image analysis. Specifically, the first step in many analysis pipelines is brain
extraction – isolating the brain from the rest of the anatomy. Typical algorithms
assume that the brain consists of a single connected component separated from
the skull and dura by cerebral spinal fluid [20], and often fail on sparsely sam-
pled scans that no longer have clear contrast between these regions. Figure 6
illustrates an example result where the brain extraction fails on the original
subject scan but succeeds on our reconstructed image.

Figure 7 illustrates representative restoration improvements in the clinical
population. Our method produces more plausible structure, as can be especially
seen in the close-up panels focusing on anatomical details.
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4 Discussion and Conclusions

We propose an image imputation method that employs a large collection of
low-resolution images to infer fine-scale anatomy of a particular subject. We
introduce a model that captures structural similarity across subjects in large
clinical image collections, and fills in the missing data in low resolution scans.
The method produces anatomically plausible volumetric images consistent with
sparsely sampled input scans.

Latent Structure. In this paper, we explicitly model and estimate the latent
low-dimensional embedding for each patch. Additionally, we also explored an
alternative choice that instead models each missing voxel as a latent variable.
The resulting ECM algorithm estimates the expected missing voxel statistics
directly, and then updates the cluster parameters. The most notable difference
between this formulation and simpler algorithms that iteratively fill in miss-
ing voxels and then estimate GMM model parameters is in the estimation of
the expected data covariance, which captures the covariance of the missing and
observed data (c.f. [12], Chap. 8). We found that this variant often got stuck
in local minima and had difficulty moving away from the initial missing voxel
estimates, and was an order of magnitude slower than the presented method.
We provide both implementations in our code.

Initialization. In contrast to the classical EM algorithm, the M-step of the
ECM algorithm employs previous parameter estimates to perform parameter
updates. This makes the initialization more challenging compared to the classi-
cal GMM learning, where initializing cluster memberships is sufficient, and also
leads to slower convergence than simpler GMMs. We experimented with several
initialization schemes, and provide them in our implementation. The experi-
mental results are initialized by first learning a simple GMM from the linearly
interpolated volumes, and using the resulting parameter as initializations for our
method. This leads to results that improve on the linear interpolation but still
maintain slightly blocky effects caused by interpolation. More agnostic initial-
izations, such as random parameter values, lead to more realistic anatomy but
noisier final estimates. Different methods perform well in different regions of the
brain. Future research will further investigate the effects of initialization on the
resulting reconstruction.

Restoration Method. Our restoration method, assumes that the observed
voxels are noisy manifestations of low dimensional patch representations, and
reconstructs the entire patch, including the observed voxels, leading to smoother
images. We also explored an alternative reconstruction method of filling in
just the missing voxels given the observed voxels (not shown). This formula-
tion imputes the most likely missing voxels assuming the observed voxels are
true observations, leading to sharper but noisier patches. The two restoration
methods therefore yield images with different characteristics. This tradeoff is a
function of the noise in the original acquisition: higher noise in the clinical acqui-
sition leads to noisier reconstructions using the alternative method, whereas in
the ADNI dataset the two methods perform similarly.
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Varying Resolution. The proposed method can be used for general image 
imputation using datasets of various resolutions. For example, while acquiring a 
large high resolution dataset for a clinical study is often infeasible, our algorithm 
will naturally make use of any additional image data available. Even a small 
number of acquisitions in different directions or higher resolution than the study 
scans promise to improve accuracy of the resulting reconstruction.

Slice Thickness. In many clinical datasets the slice spacing is unknown or varies 
by site, scanner or acquisition. Therefore, throughout our model we simply treat 
the original data as high resolution planes. Explicitly modeling varying slice 
thickness is an interesting direction of future research.

Our method does not require high volumetric resolution scans or expert annota-
tions, but can instead build the missing structure by learning from collections of 
clinical scans of similar quality to that of the input image. This enables the use 
of untapped clinical data for large scale scientific studies, promising to facilitate 
novel clinical analyses.
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