Abstract—We study a generalization of the problem of broadcasting on trees to the setting of directed acyclic graphs (DAGs). At time 0, a source vertex X transmits a uniform bit along binary symmetric channels (BSCs) to a set of vertices called layer 1. Each vertex except X has indegree d. At time $k \geq 1$, vertices at layer k apply d-input Boolean processing functions to their received bits and send out the results to vertices at layer $k + 1$. We say that broadcasting is possible if we can reconstruct X with probability of error bounded away from $\frac{1}{2}$ using the values of all vertices at an arbitrarily deep layer k. This question is closely related to models of reliable computation and storage, probabilistic cellular automata, and information flow in biological networks.

In this work, we analyze randomly constructed DAGs and demonstrate that broadcasting is only possible if the BSC noise level is below a certain (degree and function dependent) critical threshold. Specifically, for every $d \geq 3$, we identify the critical threshold for random DAGs with layers of size $\Omega(\log(k))$ and majority processing functions. For $d = 2$, we establish a similar result for the NAND processing function. Furthermore, for odd $d \geq 3$, we prove that the identified thresholds cannot be improved by other processing functions if reconstruction is required from a single vertex. Finally, for any BSC noise level, in quasi-polynomial or randomized polylogarithmic time in the depth, we construct deterministic bounded degree DAGs with layers of size $\Theta(\log(k))$ that admit reconstruction using lossless expander graphs.

I. INTRODUCTION

We study a generalization of the problem of broadcasting on trees to the setting of directed acyclic graphs (DAGs). In the broadcasting on trees problem, we are given a noisy tree T whose vertices are Bernoulli random variables and edges are independent binary symmetric channels (BSCs) with common crossover probability $\delta \in (0, \frac{1}{2})$. Given that the root is an unbiased random bit, the goal is to decode the root from the bits at the kth layer of the tree as $k \to \infty$. It is well-known that $(1 - 2\delta)^2 \text{br}(T) > 1$ if and only if the minimum probability of error in decoding is bounded away from $\frac{1}{2}$ for all k, where $\text{br}(T)$ denotes the branching number of the tree [1]–[3]. A consequence of this result is that reconstruction is impossible for trees with sub-exponentially many vertices at each layer.

In our problem of broadcasting on bounded indegree DAGs, where all vertices are Bernoulli random variables and all edges are BSCs as before, there are two principal differences: (a) unlike trees, layer sizes are sub-exponential in the depth for DAGs; (b) a DAG vertex has several incoming signals, and its value is obtained by applying a Boolean processing function. The latter aspect enables the possibility of information fusion at the vertices, and our main goal is to understand whether the benefits of (b) overpower the shortcoming of (a) and permit reconstruction of the root bit with sub-exponential layer size.

This work has two main contributions. Firstly, via a probabilistic argument using random DAGs (defined in subsection I-B), we demonstrate the existence of bounded degree DAGs with layer size $\Omega(\log(k))$ in the depth k which permit recovery of the root bit for sufficiently low δ’s in section II. Secondly, we provide explicit deterministic constructions of such DAGs using regular bipartite lossless expander graphs in section III.

In particular, the constituent expander graphs for the first k layers can be constructed in either deterministic quasi-polynomial time or randomized polylogarithmic time in k. Together, these results imply that in terms of economy of storing information, DAGs are doubly-exponentially more efficient than trees.

A. Motivation

Broadcasting on DAGs has several natural interpretations. Perhaps most pertinently, it captures the feasibility of reliably communicating through Bayesian networks in the field of communication networks. Indeed, suppose a sender communicates a sequence of bits to a receiver through a large network. If broadcasting is impossible on this network, then the “wavefront of information” for each bit decays irrecoverably through the network, and the receiver cannot reconstruct the sender’s message regardless of the coding scheme employed.

Broadcasting on DAGs is also a close variant of the model of reliable computation using noisy circuits, cf. [4], [5]. Suppose we want to remember a bit using a noisy circuit. The “von Neumann approach” is to take multiple perfect clones of the bit and recursively apply noisy gates in order to reduce the overall noise [6], [7]. In contrast, the broadcasting perspective is to start from a single bit and repeatedly create noisy clones and apply perfect gates to these clones so that one can recover the bit reasonably well. Thus, the broadcasting model can be construed as a noisy circuit with perfect gates at the vertices and edges or wires that independently make errors.

Furthermore, the broadcasting model plays a role in various discrete probability questions. For example, the special case of trees corresponds to ferromagnetic Ising models in statistical physics. Specifically, reconstruction is impossible on a tree if and only if the free boundary Gibbs state of the corresponding

Anuran Makur*, Elchanan Mossel†, and Yury Polyanskiy*

*EECS and †Mathematics Departments, Massachusetts Institute of Technology
Email: {a_makur, elmos, yp}@mit.edu

This work was supported in part by the NSF Grants CCF-1665252 and DMS-1737944, and in part by the DOD ONR Grant N00014-17-1-2598.

This work was supported in part by the NSF CAREER Award under Grant CCF-12-53205, and in part by Schneider Electric, Lenovo Group (China) Limited and the Hong Kong Innovation and Technology Fund (IT5/066/17FP) under the HKUST-MIT Research Alliance Consortium.
Ising model is extremal [2], [3, Section 2.2]. On a different front, broadcasting on 2D regular grids can be perceived as 1D probabilistic cellular automata (see e.g. [8, Section 1] for a definition) with boundary conditions that limit the layer sizes, and the feasibility of broadcasting on 2D grids is closely related to questions of ergodicity of probabilistic cellular automata.

Finally, special cases of the model have also found applications in theoretical computer science. Indeed, broadcasting on trees plays a crucial role in understanding ancestral data and phylogenetic tree reconstruction, cf. [9], [10], and phase transitions for random constraint satisfaction problems, see e.g. [11], [12]. Moreover, the existence results obtained here on DAGs suggest it might be possible to reconstruct other biological networks, such as phylogenetic networks or pedigrees, even if the growth of the network is very mild. It is also interesting to explore if there are connections between broadcasting on general DAGs and random constraint satisfaction.

B. Random DAG Model

A random DAG model consists of an infinite DAG with fixed vertices that are Bernoulli random variables and randomly generated edges that are independent BSCs. Let the root or source vertex be $X_{0,0} \sim \text{Ber}(\frac{1}{2})$, and let $X_k = (X_{k,0}, \ldots, X_{k,L_k})$ be the collection of vertices at distance $k \in \mathbb{N}$ from the root, where $L_k \in \mathbb{N}\backslash\{0\}$ is the number of vertices at distance k. In particular, we have $X_0 = (X_{0,0})$ and $L_0 = 1$.

For any $k \in \mathbb{N}\backslash\{0\}$ and any $j \in [L_k] \triangleq \{0, \ldots, L_k\}$, we first independently and uniformly select $d \in \mathbb{N}\{0\}$ vertices $X_{k-1,i_1}, \ldots, X_{k-1,i_d}$ from X_{k-1}, and then construct d directed edges $(X_{k-1,i_1}, X_{k,j}), \ldots, (X_{k-1,i_d}, X_{k,j})$. This process generates the underlying DAG (or directed multigraph) structure, and we let G denote this random DAG variable.

To define a Bayesian network on G, we fix a sequence of Boolean functions at the vertices and a crossover probability $\delta \in (0, \frac{1}{2})$. Then, for every $k \in \mathbb{N}\{0\}$ and $j \in [L_k]$, given i_1, \ldots, i_d and $X_{k-1,i_1}, \ldots, X_{k-1,i_d}$, we define:

$$X_{k,j} = f_k(X_{k-1,i_1} \oplus Z_{k,j,1}, \ldots, X_{k-1,i_d} \oplus Z_{k,j,d})$$

(1)

where $f_k : \{0, 1\}^d \rightarrow \{0, 1\}$ is the processing function at level k, \oplus denotes XOR, and $Z_{k,j,d}$ are i.i.d $\text{Ber}(\delta)$ random variables that are independent of everything else. The propagation process of $X_{0,0}$ through G is completely characterized by (1).

Under this setup, our objective is to determine whether $X_{0,0}$ can be decoded from the observations X_k as $k \rightarrow \infty$. Let us define the proportion of 1’s at level $k \in \mathbb{N}$ as:

$$\sigma_k \triangleq \frac{1}{L_k} \sum_{m=0}^{L_k-1} X_{k,m}$$

(2)

where $\sigma_0 = X_{0,0}$. Given $\sigma_{k-1} = \sigma$, $X_{k-1,i_1}, \ldots, X_{k-1,i_d}$ are i.i.d. $\text{Ber}(\sigma)$, and as a result, each $X_{k,i}$ is the output of f_k upon inputting a d-length i.i.d. $\text{Ber}(\sigma \ast \delta)$ string, where $\sigma \ast \delta \triangleq \sigma(1-\delta) + \delta(1-\sigma)$. It is straightforward to verify that σ_k is a sufficient statistic of X_k for performing inference about σ_0. Therefore, we consider the Markov chain $\{\sigma_k : k \in \mathbb{N}\}$ in our achievability results. In particular, given σ_k, inferring the value of σ_0 is a binary hypothesis testing problem with minimum probability of error $\mathbb{P}(f_{k,\text{ML}}(\sigma_k) \neq \sigma_0)$, where $f_{k,\text{ML}}(\sigma_k) \in \{0, 1\}$ is the maximum likelihood (ML) decision rule without knowledge of the random DAG realization G. We say that reconstruction of the root bit $X_{0,0}$ is possible when:

$$\lim_{k \rightarrow \infty} \mathbb{P}(f_{k,\text{ML}}(\sigma_k) \neq \sigma_0) < \frac{1}{2}.$$

(3)

On the other hand, we will consider the Markov chain $\{X_k : k \in \mathbb{N}\}$ conditioned on G in our converse results. We say that reconstruction of the root bit $X_{0,0}$ is impossible when:

$$\lim_{k \rightarrow \infty} \left\|P_{X_k|G}^+ - P_{X_k|G}^-
ight\|_{\text{TV}} = 0 \quad \text{G-a.s.}$$

(4)

where $\left\| \cdot \right\|_{\text{TV}}$ is the total variation (TV) distance, $P_{X_k|G}^+$ and $P_{X_k|G}^-$ are conditional distributions of X_k given $\{X_0 = 1, G\}$ and $\{X_0 = 0, G\}$, respectively, and G-a.s. stands for “almost surely with respect to the law of G.” Moreover, the condition (4) is equivalent to $\lim_{k \rightarrow \infty} \mathbb{P}(h_{k,\text{ML}}(X_k, G) \neq 0|G) = \frac{1}{2}$ G-a.s., because for every realization of the random DAG G:

$$\mathbb{P}(h_{k,\text{ML}}(X_k, G) \neq 0|G) = \frac{1}{2} \left(1 - \left\|P_{X_k|G}^+ - P_{X_k|G}^-
ight\|_{\text{TV}}\right)$$

(5)

where $h_{k,\text{ML}}(X_k, G) \in \{0, 1\}$ is the ML decision rule with knowledge of the random DAG realization G.

II. Reconstruction on Random DAGs

In this section, we present two main results for random DAG models with general indegree $d \geq 3$ and $d = 2$, respectively. Note that $d = 1$ corresponds to the well-studied tree setting.

A. Phase Transition for Indegree $d \geq 3$

When $d \geq 3$, taking a majority vote of the d inputs at each vertex intuitively has good “local error correction” properties. So, we fix all Boolean functions in the random DAG model to be the majority rule, and prove that this model exhibits a phase transition phenomenon around a critical threshold of:

$$\delta_{\text{maj}} = \frac{1}{2} - \frac{2^{d-2}}{d \left(\begin{array}{c}d \\ \lceil \frac{d}{2} \rceil \end{array}\right)}$$

(6)

where $\lceil \cdot \rceil$ denotes the ceiling function.

Theorem 1 ($d \geq 3$ and Majority Processing). Let $C(\delta, d)$ and $D(\delta, d)$ be the constants defined in (12) and (10). Consider a random DAG model with $d \geq 3$ and all majority processing functions, where ties are broken by outputting random bits.

1) If $\delta \in (0, \delta_{\text{maj}})$ and the layer size $L_k \geq C(\delta, d) \log(k)$ for all sufficiently large k (depending on δ and d), then reconstruction is possible in the sense that:

$$\lim \sup_{k \rightarrow \infty} \mathbb{P}(\hat{S}_k \neq \sigma_0) < \frac{1}{2}$$

where $\hat{S}_k \triangleq 1\{\sigma_k \geq \frac{1}{2}\}$ is the majority decoder. Hence, reconstruction is also possible in the sense of (3).

2) If $\delta \in (\delta_{\text{maj}}, \frac{1}{2})$ and the layer size $L_k = o(D(\delta, d)^{-k})$, then reconstruction is impossible in the sense of (4).

1Note that $\log(\cdot)$ and $\exp(\cdot)$ have base e in this paper.
Proof Outline. We outline the proof here, and refer readers to the full version of this paper [13, Section III] for details.

Suppose we are given that σ_{k-1} = σ for any k ∈ N\{0\}. Then, for all j ∈ [L_k], X_{k,j} are i.i.d. Ber(g(σ)), where e.g. when d is odd, the function g : {0, 1} → {0, 1} is defined as:

\[g(σ) = \mathbb{P}(X_{k,j} = 1 | σ_{k-1} = σ) = E[σ | σ_{k-1} = σ] \]

\[= \sum_{i=0}^{d-1} \binom{d}{i} (σ * δ)(1 - σ * δ)^{-i}. \]

(8)

Moreover, the Margulis-Russo formula yields [14, Section 2]:

\[g'(σ) = (1 - 2δ) \frac{d+1}{2} \frac{d}{d+1} ((σ * δ)(1 - σ * δ))^{\frac{d-1}{d+1}} \]

\[= \frac{d+1}{2} (1 - 2δ) \frac{d}{d+1} (1 - σ * δ)^{d-1}. \]

(9)

which means g' is positive on [0, 1], increasing on [\frac{1}{2}, 1], and decreasing on [0, \frac{1}{2}). Hence, g is increasing on [0, 1], convex on [\frac{1}{2}, 1], and has Lipschitz constant:

\[\hat{D}(δ, d) = g'(\frac{1}{2}) = (1 - 2δ) \frac{d+1}{2} \frac{d}{d+1} (1 - 2δ) \frac{d}{d+1} . \]

(10)

These properties also hold for even d. Let δ_{maj} be the critical value in (6) such that \(D(δ_{maj}, d) = 1 \). Then, there are two regimes of δ of interest.

1) Achievability: Suppose δ ∈ (0, δ_{maj}) so that D(δ, d) > 1. In this case, g has three fixed points at σ = 1 - δ, \frac{1}{2}, δ, where δ ∈ (\frac{1}{2}, 1), as g(\frac{1}{2}) = \frac{1}{2} and g(1-δ) = 1-g(σ) using (8).

We first construct a useful monotone Markovian coupling \{ (X^{-}_k, X^{+}_k) : k ∈ N \} between the Markov chains \{ X^{+}_k : k ∈ N \} and \{ X^{-}_k : k ∈ N \}, which are versions of the Markov chain \{ X_k : k ∈ N \} initialized at X^0 = 1 and X^0 = 0, respectively. For every realization of G, we couple these chains so that along any edge BSC, e.g. (X_{k,j}, X_{k+1,i}), either X^{+}_{k,j} and X^{-}_{k,j} are both copied with probability 1 - 2δ, or X^{+}_{k+1,i} = X^{-}_{k+1,i} = Ber(\frac{1}{2}) a.s. for a shared independent Ber(\frac{1}{2}) bit with probability 2δ. In other words, \{ X^{+}_k : k ∈ N \} and \{ X^{-}_k : k ∈ N \} “run” on the same underlying DAG G with common BSCs. Since the majority rule is monotone non-decreasing, this coupling is also monotone, i.e. X^{+}_{k,j} ≥ X^{-}_{k,j} a.s. for every k ∈ N and j ∈ [L_k].

Next, observe that γ(ε) = g(σ - ε) - (σ - ε) > 0 for all sufficiently small ε > 0, because g'(σ) < 1 and g(σ) = δ. Fix any such ε = ε(δ, d) > 0. Then, Hoeffding’s inequality yields:

\[\mathbb{P}(σ^+_k < g(σ^-_{k-1}) - ε | σ^-_{k-1}) ≤ \exp(-2L_k γ(ε)^2) \]

for every k ∈ N\{0\}, where σ^+_k and σ^-_k are defined using X^{+}_k and X^{-}_k, respectively, according to (2). Hence, we have:

\[\mathbb{P}(σ^+_k < σ^-_k - ε | σ^-_{k-1}) ≤ \exp(-2L_k γ(ε)^2) \]

(11)

because σ^+_k < σ^-_k - ε = g(σ - δ - ε) - γ(ε) implies that σ^+_k < g(σ^-_{k-1}) - γ(ε) when σ^-_{k-1} ≥ 1 - δ - ε (since g is increasing).

Fix any τ > 0 and any sufficiently large K = K(ε, τ) ∈ N such that \sum_{m>K} \exp(-2L_m γ(ε)^2) ≤ τ. Note that such K exists because \(L_m ≥ C(δ, d, log(m)) \) for all sufficiently large m (depending on δ and d), where we define:

\[C(δ, d) = \frac{1}{γ(ε(δ, d))} ≥ 0. \]

(12)

Now let E = \{ σ^+_k ≥ δ - ε, σ^-_k ≤ 1 - δ + ε \}, and observe using the Hoeffding based bound in (11) that:

\[\mathbb{P}\left(\bigcap_{k>K} \{ σ^+_k ≥ δ - ε \} \right) \geq \prod_{k>K} 1 - \exp(-2L_k γ(ε)^2) \]

\[≥ 1 - \sum_{k>K} \exp(-2L_k γ(ε)^2) \]

where (11) can be shown to hold with the additional conditioning required. Therefore, we have for any k > K:

\[\mathbb{P}(σ^+_k ≥ δ - ε | E), \mathbb{P}(σ^-_k ≤ 1 - δ + ε | E) ≥ 1 - τ \]

(13)

where the \(\mathbb{P}(σ^-_k ≤ 1 - δ + ε | E) \) case holds mutatis mutandis. Finally, notice that for all k > K:

\[\mathbb{P}(σ^+_k ≥ 1 - δ + ε | E) ≥ \mathbb{P}(σ^+_k ≥ 1 - δ + ε | E) ≥ (1 - 2τ) \mathbb{P}(E) \]

where the first inequality uses the monotonicity of our Markovian coupling, \{ \{ σ^+_k ≥ 1 - δ + ε \} \}, the second inequality holds because \(1 - δ + ε < \frac{1}{2} < δ - ε \), and the final inequality follows from (13). It is straightforward to verify that this implies that lim supremum_{K → ∞} \mathbb{P}(σ^+_K ≠ σ^-_K) ≤ 1/2.

2) Converse: Suppose δ ∈ (δ_{maj}, \frac{1}{2}) so that D(δ, d) < 1. In this case, the only fixed point of g is σ = \frac{1}{2}.

First, using our monotone coupling and the maximal coupling representation of TV distance, it can be shown that:

\[\mathbb{E}\left[\left\| P^+_X | G - P^-_X | G \right\|_{TV} \right] ≤ \mathbb{P}(X^+_X ≠ X^-_X) \]

\[≤ L_k \mathbb{E}[σ^+_k - σ^-_k] \]

(14)

where the second inequality follows from the union bound, the relation \(\mathbb{P}(X^+_X ≠ X^-_X) = \mathbb{E}[X^+_X - X^-_X] \), and (2). Then, we can bound \(\mathbb{E}[σ^+_k - σ^-_k] \) using the Lipschitz continuity of g and the monotonicity of our coupling. Indeed, observe that:

\[\mathbb{E}[σ^+_k - σ^-_k] = \mathbb{E}[g(σ^-_{k-1}) - g(σ^-_{k-1})] \]

\[≤ D(δ, d) \mathbb{E}[σ^-_{k-1} - σ^-_{k-1}] \]

(15)

where the equality follows from the tower property and (7). Therefore, we recursively have:

\[\mathbb{E}\left[\left\| P^+_X | G - P^-_X | G \right\|_{TV} \right] ≤ L_k D(δ, d)^k \]

where we use (14) and \(\mathbb{E}[σ^+_0 - σ^-_0] = 1 \). Letting \(k → ∞ \) produces lim supremum_{K → ∞} \mathbb{E}[\left\| P^+_X | G - P^-_X | G \right\|_{TV} = 0 because L_k = o(D(δ, d)^k) \) (with \(D(δ, d) < 1 \)). Finally, a monotonicity and bounded convergence theorem argument yields (4).

Part 1 of Theorem 1 illustrates that reconstruction is possible on random DAGs with majority rule processing using the majority decoder \(S_k \) when \(δ ∈ (0, δ_{maj}) \), while part 2 establishes that even if the ML decoder knows G and has access to \(X_k \), it cannot beat the \(δ_{maj} \) critical threshold in all
but a zero measure set of DAGs. We remark that the \(\delta_{maj} \)
critical threshold in (6) has appeared in past literature. For
example, reliable computation using formulae with \(\delta \)-input \(\delta \)-noisy gates, where \(\delta \geq 3 \) is odd, is impossible if and only
if \(\delta \geq \delta_{maj} \), cf. [6], [7]. In fact, the analysis of the fixed
point structure of \(g \) when \(d = 3 \) and \(\delta_{maj} = \frac{1}{2} \) can be traced
back to von Neumann’s seminal work [4]. Furthermore, the
recursive structure of \(g \) was also analyzed in [14] in the context
of recursive reconstruction on periodic trees. However, our
analysis also requires significant applications of concentration
of measure and coupling arguments not used in these works.

Part 2 of Theorem 1 is only a partial converse result. We
conjecture that: In the random DAG model with \(L_k = O(log(k)) \) and fixed \(d \geq 3 \), reconstruction is impossible for all
choices of Boolean processing functions (which may vary
between vertices and be graph dependent) when \(\delta \geq \delta_{maj} \). In
fact, it is known that this conjecture is true when \(\delta > \frac{3}{2} - \frac{1}{2\sqrt{2}} \),
cf. [5], [13, Section II-C]. The ensuing proposition establishes
another special case of our conjecture. It portrays that the ML
decoder based on a single vertex, e.g. \(X_{k,0} \), cannot reconstruct
\(X_{0,0} \) in all but a vanishing fraction of DAGs when \(\delta \geq \delta_{maj} \),
although reconstruction is possible using \(X_{k,0} \) when \(\delta < \delta_{maj} \).

Proposition 1 (Single Vertex Reconstruction). As in Theorem
1, consider a random DAG model with \(d \geq 3 \).

1) If \(\delta \in (0, \delta_{maj}) \), \(L_k \geq C(\delta, d) log(k) \) for all sufficiently
large \(k \), and all processing functions are the majority
rule, then reconstruction is possible in the sense that:
\[
\lim\sup_{k \to \infty} \mathbb{P}(X_{k,0} \neq X_{0,0}) < \frac{1}{2}
\]
where \(X_{k,0} \) is the single vertex decoder.

2) If \(\delta \in [\delta_{maj}, \frac{1}{2}) \), \(d \) is odd, \(\lim_{k \to \infty} L_k = \infty \), and \(R_k = \inf_{n \geq k} L_n = O(d^2k) \), then for all choices of processing
functions, reconstruction is impossible in the sense that:
\[
\lim_{k \to \infty} \mathbb{E}\left[\left\| P_{X_{k,0}|G} - P_{X_{k,0}|\hat{G}} \right\|_{TV} \right] = 0.
\]

This is proved in [13, Appendix A], and part 2 exploits the
aforementioned impossibility results on reliable computation.

We next present an immediate corollary of Theorem 1 which
proves that deterministic DAGs (i.e. Bayesian networks
on specific realizations of \(G \)) admitting reconstruction of the
root bit with logarithmic layer sizes in the depth do exist.

Corollary 1 (Existence of Deterministic DAGs). For every
\(d \geq 3 \), \(\delta \in (0, \delta_{maj}) \), and layer sizes \(L_k \geq C(\delta, d) log(k) \) for
all sufficiently large \(k \), there exists a deterministic DAG \(G \) with
all majority processing functions such that:
\[
\lim_{k \to \infty} \mathbb{P}(h_{ML}(X_k, G) \neq X_0) < \frac{1}{2}.
\]

This follows from a probabilistic method argument; see [13,
Appendix B]. Since \(\delta_{maj} \to \frac{1}{2} \) as \(d \to \infty \), a consequence of
Corollary 1 is that for any \(\delta \in (0, \frac{1}{2}) \), there exists a deter-
nomistic DAG with sufficiently large \(d \) and \(L_k = \Omega(log(k)) \)
which admits reconstruction of the root bit.

B. Phase Transition for Indegree \(d = 2 \)

Our second main result considers the \(d = 2 \) setting, where it
is not immediately obvious that deterministic DAGs admitting
reconstruction exist. Indeed, it is not clear which processing
functions are good for “local error correction” in this scenario.
We fix all Boolean functions in the random DAG model to
be the NAND rule. It is straightforward to verify that for
the purposes of broadcasting, this is equivalent to a random
DAG model with all AND functions at even levels and all OR
functions at odd levels. For simplicity, we analyze this model
at even levels, and establish a phase transition phenomenon
around a critical threshold of \(\delta_{nand} \). In particular, it is not clear which processing
functions, reconstruction is impossible in the sense of
\(\delta \leq \delta_{nand} \). For simplicity, we analyze this model
at even levels, and establish a phase transition phenomenon
around a critical threshold of \(\delta_{nand} \).

Theorem 2 (\(d = 2 \) and NAND Processing). Consider a
random DAG model with \(d = 2 \), all AND processing functions
at even levels, and all OR processing functions at odd levels.

1) Suppose \(\delta \in (0, \delta_{nand}) \). Then, there exist \(C(\delta) > 0 \) and
\(t = t(\delta) \in (0, 1) \) such that if \(L_k \geq C(\delta)\log(k) \) for all
sufficiently large \(k \) (depending on \(\delta \)), then reconstruction is
possible in the sense that:
\[
\liminf_{k \to \infty} \mathbb{P}(\hat{T}_{2k} \neq 0) > \frac{1}{2}
\]
where \(\hat{T}_{2k} \triangleq \{ \sigma_k \geq t \} \) is a threshold decoding. Hence,
reconstruction is also possible in the sense of (3).

2) Suppose \(\delta \in (\delta_{nand}, \frac{1}{2}) \). Then, there exists \(D(\delta) \in (0, 1) \) such that if \(L_k = o(E(\delta)^{-k/2}) \) and
\(\liminf_{k \to \infty} L_k > \frac{2}{E(\delta) - D(\delta)} \) for all \(\delta(\delta) \in (D(\delta), 1) \), then
reconstruction is impossible in the sense of (4).

Theorem 2 is an analogue of Theorem 1 for \(d = 2 \), and
is proved in [13, Section IV] using the same proof technique.
Moreover, analogues of part 1 of Proposition 1 and Corollary 1
also hold for Theorem 2. As before, the \(\delta_{nand} \) threshold has appeared in the reliable computation literature. In particular,
it is well-known that reliable computation using formulae
consisting of \(\delta \)-noisy NAND gates is possible when \(\delta < \delta_{nand} \)
[15] and reliable computation using formulae with general
2-input \(\delta \)-noisy gates is impossible when \(\delta \geq \delta_{nand} \).

C. Optimality of Logarithmic Layer Size Growth

The next result shows that if \(L_k \) grows sub-logarithmically
with the depth, then reconstruction is impossible for deterministic
and random DAGs regardless of the decision rule used.

Proposition 2 (Layer Size Impossibility Result). For any
deterministic DAG with parameters \(\delta \in (0, \frac{1}{2}) \) and \(d \in \mathbb{N}\{0\} \), if
\(L_k \leq \log(k)/(d\log(1/(25))) \) for all sufficiently large \(k \), then
for all choices of Boolean processing functions, reconstruction
is impossible in the sense that \(\lim_{k \to \infty} \left\| P_{X_k}^+ - P_{X_k}^- \right\|_{TV} = 0 \),
where \(P_{X_k}^+ \) and \(P_{X_k}^- \) denote the conditional distributions
of \(X_k \) given \(X_0 = 1 \) and \(X_0 = 0 \), respectively.

Proposition 2 is proved in [13, Appendix C]. Moreover,
under the conditions of Proposition 2, reconstruction is also
impossible for random DAG models in the sense of (4). Thus,
our assumption that \(L_k \geq C(\log(k)) \) for reconstruction to be
possible in our previous results is in fact necessary.
III. EXPLICIT CONSTRUCTION OF DAGS WHERE BROADCASTING IN POSSIBLE

Finally, we present an explicit construction of deterministic bounded degree DAGs such that $L_k = \Theta(\log(k))$ and reconstruction is possible using the majority decision rule. Our construction is based on a variant of regular bipartite lossless expander graphs. Using results like [17, Lemma 1] and [18, Proposition 1, Appendix II] which establish the existence of expander graphs via the probabilistic method, we show in [13, Corollary 2] that for any $d \in \mathbb{N} \setminus \{0\}$ and every sufficiently large $n \in \mathbb{N} \setminus \{0\}$ (depending on d), there exists a d-regular bipartite graph $B_n = (U_n, V_n, E_n)$ with two disjoint sets of degree d vertices U_n and V_n such that $|U_n| = |V_n| = n$, undirected edge set E_n (where multiple edges are allowed between two vertices), and the lossless expansion property:

$$\forall S \subseteq U_n, |S| = \frac{n}{d^{\delta/5}} \Rightarrow |\Gamma(S)| \geq \left(1 - \frac{2}{d^{\delta/5}}\right)d|S|$$

(16)

where $\Gamma(S) \triangleq \{v \in V_n : \exists u \in S, \{u, v\} \in E_n\}$ denotes the neighborhood of S. Note that we only require subsets of U_n to expand (not V_n). Moreover, strictly speaking, $nd^{-6/5}$ must be an integer, but we neglect this detail for simplicity. In the sequel, we refer to graphs B_n that satisfy (16) as d-regular bipartite lossless $(d^{-6/5}, d-2d^{4/5})$-expander graphs. The next theorem constructs deterministic DAGs with majority processing where reconstruction is possible by concatenating d-regular bipartite lossless $(d^{-6/5}, d-2d^{4/5})$-expander graphs.

Theorem 3 (Expander Based DAG Construction). Fix any $\delta \in (0, \frac{1}{2})$, any sufficiently large odd $d = d(\delta) \geq 5$ satisfying

$$8d^{6/5} + d^{6/5}\exp\left(-\frac{(1-2\delta)^2(d-4)^2}{8d}\right) \leq \frac{1}{2}.$$

(17)

and any sufficiently large $N = N(\delta) \in \mathbb{N}$ such that $M \triangleq \exp(N/(4d^{2/5})) \geq 2$ and for every $n \geq N$, there exists a d-regular bipartite lossless $(d^{-6/5}, d-2d^{4/5})$-expander graph $B_n = (U_n, V_n, E_n)$. Define $L_0 = 1$, $L_1 = N$, and $L_2 = 2^n N$ for all $n, k \in \mathbb{N}$ such that $M^{2^m} < k < M^{2^{m+1}}$, where $|\cdot|$ is the floor function, and $L_k = \Theta(\log(k))$. Then, either in deterministic quasi-polynomial time $O(\exp(\Theta(\log(r) \log\log(r))))$, or if N additionally satisfies $N \geq 11/(5d^{-6/5}(1 - d^{-6/5}))$, in randomized polylogarithmic time $O(\log(r) \log\log(r))$, we can construct levels $0, \ldots, r$ of a deterministic DAG with layer sizes L_k, indegrees bounded by d, outdegrees bounded by 2d, and the following edge configuration:

1) Every vertex in X_1 has one directed edge from $X_{0,0}$.
2) For every pair of consecutive levels k and $k+1$ such that $L_{k+1} = L_k$, the directed edges from X_k to X_{k+1} are given by the edges of B_{L_k}, where we identify the vertices in U_{L_k} with X_k and V_{L_k} with X_{k+1}, respectively.
3) For every pair of consecutive levels k and $k+1$ such that $L_{k+1} = 2L_k$, we partition the vertices in X_{k+1} into two sets, $X_{k+1}^1 = (X_{k+1,0}, \ldots, X_{k+1,L_k-1})$ and $X_{k+1}^2 = (X_{k+1,L_k}, \ldots, X_{k+1,2L_k-1})$, so that the directed edges from X_k to X_{k+1}^i are given by B_{L_k} for $i = 1, 2$, where we identify U_{L_k} with X_k and V_{L_k} with X_{k+1}^i, as before.

Furthermore, if this infinite deterministic DAG has all identity processing functions in level $k = 1$, and all majority processing functions in levels $k \geq 2$, then reconstruction is possible:

$$\limsup_{k \to \infty} P(S_k \neq X_0) < \frac{1}{2}$$

where $S_k = \mathbb{I}\{\sigma_k \geq \frac{1}{2}\}$ is the majority decoder.

We refer readers to [13, Section V] for a proof and a detailed discussion. Our quasi-polynomial time algorithm constructs the desired expander graphs by exhaustively enumerating over all d-regular bipartite graphs and testing property (16) by brute force. We phrase our randomized polylogarithmic time Monte Carlo algorithm in [13, Section V]. In closing, we note that the question of finding a deterministic polynomial time construction of DAGs that admit reconstruction remains open.

REFERENCES

