IMPLEMENTATION OF A CLASS MODEL
INFOBMATION STRUCTURING SUBSYSTEM

by
Gary Edward Vining

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
‘ BACHELOR OF SCIENCE

at the
MASSACHUSETTS INSTITUIE OF TECHNOLOGY

June, 1969

Signature‘ofAuthor....................
Department of Electrical Engineering

Certified by e o o @ o o o & o

° L] [L] (]] []] L] o L} [] []

Thesis Supervisor

-Acceptedby.......;...-.........-...
Chairman, Departmental Undergraduate Thesis Committee

-2—

ABSTRACT

This paper reports on the flowcharting and'coding
of a part of a model computing system., The particular
portion of the system Qhosen for the project was the
top half of the storage management subsystem. Coding
is done in a high-level programming language which
resembles PL-1., Both the flowcharts and the complete

programs are included in the appendices.

W

ACKNOWLEDGMENT

A considerable debt of gratitude for undersﬁanding
and advice 1s owed to my thesis advisor, Prof. J. H. Saltzer.
Explaining and answering an endless stream of questions,
often two or three times each, requires a remarkable
gift of patience, and I'm extremely fortunaté that he
had it, _

Thenks are also‘owéd to Mike Schroeder and Dave Clark
for help with their manual. Deépite his being bludgeoned
by the same tedious questions fhat Prof. Saltzer was
made to endure, Mike was always avalilable and ready to

supply answers,

-l

TABLE OF CONTENTS

Abstract
Acknowledgment
Introduction
Statement of the problem
Introduction to the system and the language
The CLICS system
The CIMPL language
The Storage Management Subsystem
Description of the work
lConclusions
Appendix Is flowcharts of'the subsystem
Appendix IIs code of the subsystem
Bibliography

0 W W N

10

- 10

12
13
19
21
23
41
80

INTRODUCTION

The curious goal of thls project is to produce
system programs for a computing system that does not
physically exist, in a language whose compller has not
béen written, The system 1nvquestlon is a model computing
system, which is used as a pedagoglical tool to help
students take a large step élong the way toward under-
stand;ng real computing systems.

In the study of such an idealized or model computing
Systeﬁ, one 1s tempted to ask the guestion, "Why conslder
a model system that neglects problems which must be dealt
with in real 1life? Why not investigate a real, existing
system so that one will be aware of the assoclated probiems
from the start?" There afe many answers to these guestlons,
two of which have some bearing on this paper.

j First of all, the model computing system can be
presented, and its 1ﬁplicatlons studied, to a depth not
possible with é realksystem The modern computing
system 1s so complex'that éne cannot hope to understsnd
.its operation at the end of one semester's or even one
yéar's study. The undergraduate who wants to get a
falrly subtle understanding of how a cémputing system

works, but who cannot afford to spend years in the study,

1s clearly in need of the model system.

Secondly, the model 1s useful for teaching concepts
as opposed to teaching facts, General principles are
easily isolated in the model system or are easily applied
to it. We are familiar with details like minor con-
venience features or those routines which do not logically
belong to the system, but which a real system must have
to get off the ground, Both of these problems, which
only cloud the important issues, are reduced or eliminated
in the model,

Prompted by the above discussion and the title of
this paper, another question might be generated: l"Why
implement a model computing system? Won't the process
of adding flowcharts and code to the written description
of the sjstem contamlinate the model with the same kind
of detall we sought to eliminate by creating the model?"
If these questions cannot be answered, this thesis 1s
of little value. Therefore the next four paragraphs

.present what seem to be reasonable answers.,

The addition of flowcharts to the model system 1s
easlly justified., Rather than cloud the 1ssues, flowcharts
add a loglcal organization to the written description
which can only make it more understandable., The value

“of generating code for a model system 1s less obvious
but not less in magnitude.

Coding the model system shows students that, while

it is idealized or unreal in terms of practlicality,

‘the modelis real in the sense that it can be simulated.

If the student has the time or the interest, he can actually
look at the programs to see how léng they are, what
algorithms are used, etc. As detailed a study of the

‘model as desired can be obtained if the code is included

in its presentation, | ‘ "

A second purpose of coding is to explore the model
and its consequences fully -- to prove that it actually
works. Without coding one cannot be sure that the
formulation of the model does not have 1nconspicuoﬁs
logical flaws which might make the model unfeaslble,

Thus the coding is not only helpful for detailedAétudy
of the model, but necessary for confidence in its valldlty.

Finally, the addition of code to the model serves
a very important pedagogical function. Oncé the students
have been presented with the programs, they may be asked
to make modifications in them in order to implement
small changes 1n the model. Taské of this nature would
test the students for a thorough understanding of the

‘subsystem and the language.

“

-y oe

STATEMENT OF THE PROBLEM

The princlpal goal of this projept was to produce
the flowcharts and actual code for the top half of the
Storage Management Subsystem of the CLICS model computing
s&stem. The system programs were written in CIMPL, a
high-level programming language developed for use with the
model system.,

This process was to generate two useful outcomes.
First, it would have completed a large step.toward the
actuai'implementation of the total system. If the |
gsystem was never 1lmplemented, ﬁhe project would still
facilitate a more detailled study of a part of the model
than would otherwise be possible., Secondly, it provided
the programmer with the opportunity to actually experience
the problems assoclated with coding a part of the system,

A related goal was the examinatlion of the subsystem
design for feasibiliéy. The model had not been tested
or considered in the.detail assoclated with flowcharting
and coding. Scrutin& of the subsystem at this level
_would uncover any problems that might have been over-
looked in the higher-level written specifications, The
clarity of the wrlitten specifications themselves was to be

considered, and appropriate changes in the text would

be suggested.,

The third topic for consideration was the useful -
ness of the model at a detailéd 1eﬁe1 as a pedagogical
tool. This would involve examining the flowdharts pro-
duced to see whether or not they followed directly from
the written teiﬁ. It also would involve deciding
whether or not the programs themselves were understandable
and clear to the student, given that he had previously
studied both the written description of the subsystem
and the associated flowcharts, |
_ A fourth and final outcome of the project was to
be the determination of whether or not the coding of
the subsystem was straightforward in the CIMPL language
as it was specified. The project would reveal the adequacy
of the language in writing the system prograﬁs of the
model system, If the programs were long or clumsy due
to the lack of certain featurés in the language, the
coding process would make thils obvious, Changes in the
language might, therefore, be suggested. Inconsistencles
in the language might also be revealed, and the appro-

priate revisions made,

=10-

INTRODUCTION TO THE SYSTEM AND THE LANGUAGE

' THE CLICS SYSTEM

The CLICS system, a small portion of which is the
concern of this thesis, is a model compufing systen
used to teach students at M,I.T. about complex infor-
mation systems. It 1s a rather completely specified,
but simplified verslion of MULTICS, a community-utility
type of computing system being developed by ProjectVMAC
at M.I.T. The specificaﬁion of the model system
(see reference 1) consists of a description of the
hardware, a description of the operating system, and a
description of the language used to write the system
programs. This paper relies quite heavily on that
written specificatibn, and derives most of the information
it presents about CLICS from those speclfications,

A 1ist of the simplifications and changes in
MULTICS that the model includes would be long and
-confusing, but some obvious examples might be helpful,
While the MULTICS system uses core, drum, and disc
memory with hardware-controlled paging in and out of

core, the CLICS system simply useé a very large core

-11-

(109 words), again with hardware paging. In the software,
the directories of the CLICS file system contain much
less information than those of MULTICS and are fixed-
length rather than variable-length, v
A famillarization with the CLICS operaﬁing system
is useful in uﬁderstanding this project, so a description
of its subsystems is 1n ordef. The Storage Management
Subsystem, the subsystem with which this thesis is con-
cerned, is one of the major subsystems, It controls
the allocation of physlcal storage and provides the various
protection mechanisms needed by fhe system itself.and its
usérs; The Processor Management Subsystem, another
ma jor subsysteﬁ, has several funétions. It performs
the multiplexing of processors among processes, provides
intercommunication among processes, serves as an interface
between processes and the hardﬁare fault-interrupt
mechanism, and assigns and releases processes to and
. from system users, The Command Subsystem provides an
interface between the user and the system itself.
System loading and initiallzation 1s performed by the
Operations Subsystem., Input/output between users
seated at typewrlter terminals and prccesses in the
system is made possible by the Input/output Subsystem,
’Finally, the Clock Subsystem constitutes the software
control of the timing operatlons needed for determining

charges to users.

-12-

THE CIMPL LANGUAGE

In order that one may appreclate the programs generated
by this project, a few comments about the language used
in writing them are necessary. CIMPL is the high-level
programming laﬁguage of the CLICS sysfem. It serves
as the language in which most of the system programs
are written, and it is also avallable to CLICS users,
although this is not its primary purpose. Thié language
is a simplification of PL-1 (most of the system programs
of MULTICS are written in a subset of PL-1) with special
built-in functions added., (A nearly complete specification
of the language can be found in Section B of reference 1,)

The simplifications in the PL-1 language were
introduced to make both the language and 1its cdmpiler
easier to understand, and to maeke the compller easler to
write. Although too numerous to list, a few examples
of these simplificatlons might be helpful in getting a
feel for the language. One 1s the lack of automatic
data conversion in CIMPL, a convenient feature of
complete PL-1, Another example is the inabllity to
equate or assign structures as in PL-1, Finally,
complex arithmetic operations like exponentiatlion are
not available in CIMPL,

Special functions in CIMPL serve two purposes,
First, they make up, to some extent, for CIMPL's lack

of certain powerful features., Data conversion functlons

-13-

belong to this category. A second use of CIMPL special
functions is to provide the necessary tools for system
programming, The lock function which cén be used to
lock a directory, thereby preventing other procedures
from altering it while it is being referenced, or theA
referencing of”program-aocessible registers like’the
interval timer register both provide necessary tools

to the system programmer,

THE STORAGE MANAGEMENT SUBSYSTEM

Because this project 1ls specifically concerned W1£h
a part‘of the Storage Management Subsystem, a more detalled
description of that subsystem,'especially the portion
being programmed, is required for a reasonable under-
standing of the project. The subsystem provides a
structure in which the system programs, system data bases,
user programs, and user data are all stored. The list
of unused memory blocks is the only plece of information
that can exist in the system without being a pért of
this structure. A1l information is dealt with in blocks
called segments (which can be either the procedure or
“data type). Each user (including the system) can
create, name, manipulate, reference, and destroy his
own segments and can share these Segments with other

users in a controlled way.

-]l

The Storage Management Subsystem is divided into
five modules, as shown in the diagram on page 153
memory control, segment control, éddress space control,
directory control, and hierarchy;control. Memory control
provides an interface to the hardware for obtalining or
releasing blocks of memory . It.can create, change the
length of, and destroy segmehts. |

Segment control keeps a table of all segments 1in
the system and calls memory control to perform physilcal
manipulation of the segments. The taﬁle entry for each
segment contains a unioue identifier for that segment,
an access control list (a list of processesvwhich may
reference the segment and their associated access mode
indicators, which specify read, write, or call permission),
and a 1list of the processes ourrently using the segment
g0 that they may bé informed if that segment.is altered
or deleted.,

Address space control keeps a list of the segménts
in the address space of each process. It assigns the
segments numbers within each process so that a process
may refer to a segmeht within its address space by that
number, This module, when called, can supply a (segment
number, wérd number) pointer to a segment, retrieve an

"access mode indicator from segment control, change the
address space of a process, or inform other processes thatb
a segment has been altered,

Directory control and hierarchy control are the

-15-

interface
------ ’ —_—l— T to user
Hierarchy
control
Y
Directory
control
//////
Segmeﬁz// ' Address
control o ~A‘ : ‘space
control'

\
Memory

control

Storage Management Sﬁbsystemll

1pavia Clark and Michael Sdhroeder, CLICS System Specification
Notebook (Preliminary version), (unpublished, 19697,
Section D,0.00, p.2.

two modules which have been programmed in this project.
Directory control organizes ail the segments of the system
into direétory segments, Eacﬁ directory segment contaiﬁs
its own segment identifler, a 1ist of its branches, the
name and segment ldentifler of éach branch, an indication
of whether that bfanch is itself a directory segment

or Jjust an ordinary segment, and a directory control

1ist for each branch that is a directory. The'directory
control 1list contalns the name of each user that may
manipulate that directory, and a directory access indicator
which specifies what kind of manipulation he is allowed
to perform, Dilrectory control can extract 1nforﬁatiqn
from a directory or make changes in the directory. It
can add or delete a branch or alter a directory control
1list,

The interface between the subsystem and the outside
world (the CLICS system and 1ts'users) is provided by
hierérchy control, It is also the only module in the
subsystem that is aware of the hierarchical structure
implicit in the construction of directory segments,

The entire collection of directoriésband non-directory
segments 1is lipked together to form a single large tree.
A segment 1s specified to the module by the path which
-must be followed through the tree to reach the segment,
Requests to obtain pointers to segments or to manipulate
them or to check access to them are received from the

outside world, Hlerarchy control validates the requests

-17-

against appropriate directory control 1list entries,
completes tree names if necessary, and calls on directory
control 6r address space contfol fo perform the required
manlpulation or to retrieve the éppropriate information.

One last element of detailjis needed. A description
of the procedure blocks within directory control and.
hiérarchy cohtrol must be given so that the functions
described by the flow charts and programs of this project
will be familiar, The interconnection of these procedure
blocks 1s shown in the diagram on page 24,

The directory manipulator 1s the only procedure block
in directory control. Calls from the hierarchy éccess
validator specifj directory manipulations to be performed.
The indicated change within a specified directory 1is made,_
and address space control is called to perform further
manipulations at lower levels, Calls from the segment
locator are to obtain pointers to brancﬁes Within
specific directory segments, The\directory.manipulator
first finds the branch's segment identifier in the directory
and then calls segment control for a pointer to the ségment
whose identifier has been found.

Finding a polnter to a directory or non-directory
segment, given its tree name, 1s the job of the segment
-locator. It traces the path specified by the tree name
through the hlerarchy of directories (using the directory
manipulator) until the desired segment is found.

The hlerarchy access validator receives calls from

-18-

the user interface manager to manipulate dlrectories,

given thelr tree names. First the tree name 1ls converted

to a polnter by calling the segment locator. Then the |
request 1s validated agalnst the proper directory control
list. If the validation succeeds, the directory manipulator
1s called to complete the processing of the request..

Pointers can‘also be obtained for segments\whose
tree names are only partially specified. The search
director accomplishes this task using the search rules,

a per-process data base that lists the possible directory
paths one might follow‘to find the beginning of the
partially specified path, This procedure calls fhe
segment locator to try possible pathé and to get the
required pointer 1f the correct path can be found,

The only entry points in the Storage Management
Subsystem which may be called by CLICS users are found .
in the user interface manager. The module must'validateb
the user-provided arguments and convert them.to a form
acceptable within the subsystem, ‘It must also complete
tree names in calls intended for the hierarchy access
valldator by using the process working directory found
in the search rules., The calls are then passed on to
the intended entry points in other subsystem procedure

"blocks.

v

-1Y=

DESCRIPTION OF THE WORK

The actual work done on this project consisted
of flowcharting and coding the two sufsystem modules.
A detalled study of both the subsystem and the language
wés naturally involved in this process., Both flowcharting
and coding are mechanical processes, and detalls like
the kind of programming tricks used, ete. will add
1little to this discussion, However, a few general comments
wiil give the reader an overall picture of what was
happen;ng. |

One useful comment involves the order in which the
work was done, Both flowcharting and coding wére started
at the lowest level, the directory manipulator, and
proceeded upward to the highest level, the userlinterface
manager. Thls order was chosen for two reasons. First,
it glves the programmér immediate contact with the i
procedures at lower levels in the subsystem, Thus any
interfacing problems would be immediately discovered A
and dealt with, Secéndly,'this order glves the programmer

the clearest i1dea of how his programs bulld on one another

and flt together,
Another aspect of the order is the fact that the

code for each procedure block was written directly after

-20-

the flowcharts for that block were constructed., This
method was used because flowchafts and code are somewhat
interdependent., A given flowcharf often generated blocké
of excess or duplicate code, and approprlate restructuring
of such flowcharts was necessar&. This order was also

used so that cdnceptual flaws dlscoverable only by the
coding process would appear before the flowcharts of

higher levels were written. A good deal of fewriting
might be saved this way.

A note about debugging 1ls also approprilate, since
there was very little, At the time this project was
finlshed, a compiler for the CIMPL languagelhad nﬁt been
written, Therefore, no machine debugging-was possible,

The language 1tself had not been specified very completely.
And finally, the processor management subsystem, which these
programs must call on several dccasions, had not been
specified in any reasonable detall. The programs were
examined as closely as possible by hand, but machine
debugging would stlll be necessary before they could

become operational.

-21-

CONCLUSIONS

The proJjeot was successful in that it completed its
major goal, to flowchart and program the hierarchy control
- and directory control modules of the Storage Management

Subsystem. The assoclated analysis of the subsystem
deslign and the language proved them both to be quite
successful, ' ’

First of all, it has been shown that the subéystem
design can be implemented (coded), No major conceptual
errors in the design were discovered, and only a few
minor programming problems were encountered. The
written description of the subSystem is cloudy on some
minor points but is generally clear and easy to understand,

Secondly, both the flowcharts and the programs are
fairly strailghtforward and should present no difficulty
to the student wishing to study them, The flowcharts
follow directly from the written description of the
system, Although the programs seem quite lengthy, they
are reasoﬁably concise, given the job they have to

-perform., They should be transparent for anyone who
knows the language and has read the written description
of the subsystem and looked at the flowcharts., (The
complete flowcharts are given in Appendix I, and the

corresponding code resides in Appendex II,)

22~

Finally, the CIMPL language has survived the test
of extensive use Surpfisingly well. The programs
éould all be written transparently without any changes
or additions to the language, Some automatic data
conversion would have been helpful, but not necessary.
String manipulation was often a tedious process, and
Post-system-like capabilities wduld be handy. One thing
that did get gruesome was copylng structures one piece
of information at a time. Often programming tricks
were used to make the process less cumbersomé. But as
a whole, the language in its present foim is usable,
and the resulting simplifications in the compiler may

make 1ts inadequacles bearable,

=23-

APPENDIX I

Overall flowchart of the
Storaée Management Subsystem
and individual flowcharts
for the entrles of the
prodedure segments within
-the directory control and

hierarchy control modules,

2l

User calls

1
Hierarchy control | User Interface

mnager
Y
Search
] dlfector
y
Hierarchy Segment
accéss > locator
validator ////
N\
Directory controlV\\\‘ K///
. Direqtory Direc-
manipulator | \ tory

/ N\ /

/ X ¥

Segment control Address space control
D ——

!

Memory control
Storage

Management

Subsystem?

2Ibid., Section D.0.00, p.9.

25~

Directory manipulator: get_dir_ptr entry

.

s

earch J.nm:o.c%dure)
_ ! .

search directory branc | fall
~<list for branch name

return ptr = null

T call get_ptr'in pas_mgr
with branch identifier
and val_1lvl = 0

- . Y
return polnter returned
from get ptr

search del for
caller match

return no_dal_sw = 1

return dal from
del entry,
no_dal_sw = 0

- A

) . 4
return to caller

Directory manipulators get_nondlr_ptr entry

e ~lag m
| . ;
' .

search directory branch | fall
| list for bziamhnam/
i |
b e e e S |

suc,
Y
call get_ptr in pas_mgr y
with branch ldentifier return ptr = null

and val_1lvl = val_1lvl

y

return pointer returned
from pas_mgr

Y
return to caller

27~

Direcfory manipulators create_seg entry

-1'(search inprocedure)

search directory branch

list for branch name suc,

{
L_________ = e return code = 2

is directory full? return code = 5

no

assign branch btlock and
link to branch list

. call'create _seg in
is branch a directory? | S_cat_mgr with

length = length

yes ' ¢

call create_seg in s_cat_mgr | . | set seg_1d = seg_id
with 1ength 100 . returned from
s_cat_mgr,
Y dir_sw = -2,
set seg 14 = seg_1id returned name = branch name
from s_cat_mgr, dir_sw = -1,
name = branch name

Y
call change_acl in s_cat_mgr
with. seg_ 14 = seg_. id returned
from create_seg, ins _del_sw = 0,
user_name = %, ami = "10000000000"b

Y

call get_ptr in pas_mgr with
seg_1id = seg_1id returned from
create_seg, val_lvl = 0) 4

¥ return code = 0
use returned pointer to base &q-—
declaration of directory

header, initlalize it and 1link return to caller
all its blocks to free 1list

-28a-

Directory manipulator: change_seg_length entry

< _(search inpro %edure)
|

search directory branch ~_) fail [return code = 1

list for branch name

is branch a directory? es, | return code = 3

no

call change_seg_length
in s _cat_mgr with
new_length, branch
identifier

return code = 0

-

y
return to caller

—L Y-

Directory manipulator: delete_seg entry

[==—=—=—————mc o~ 5°8ICN 1NDpTo
|
' search directory branch return code = 1
: list for branch name |
|
—— e e L >
is branch a directory?
no Y

call get_ptr in pas_mgr
with branch identifier
and val_1lvl = 0

e pointer returne
empt from pas_mgr to search
branch list

o list -
return branch's del not empty

blocks to free list

A -

call delete_seg in s_cat_mgr
with branch identifieT

Y Y
return branch block return code = 4
to free list

Y

return code = 0

r

return to caller

-30-

Directory manipulators change_ctl_list entry

search direct;;;\;;;;;H\‘\\‘

f ——

fail

I 1ist for braW'
| |
L _1

compare dir_sw in branch
with calling parameter
of same name

1s branch a diifffffzz—,,,, yes

no

s_cat_mgr with branch
identifler, 1ins_del_sw,
user_name, indicator

y
;remove user_name
from decl

call change_acl 1in on inspect ins_del_sw

is directory full?

no

yes

and indica

for branch

add user name

tor

to new dcl block

) -]

y Y
return code = 0 return code = 5
' Y

2
return to caller

search directory branch
list for nameil

return code = 1

set branch namel = name2

u£§§§Igh_}nprocedure)
|
I
|

search directory branch
list for name2

set branch name2 = namel

return code = 0

return to caller

—-—Je=

Directory manipulator: 1list entry

yes does branch_name = null?

(search
—inprocedure)

copy directory's branch r)

names and corresponding | ;
dir_sw's into structure
based on target,
counting the branches
with num_branches

search directory
branch 1list: for
branch name

copy name, dir_sw

into structure I
based on .

target pointer return

yes is branch a directory?

copy branch's dcl
into structure based
on target pointer, call 1list in
counting the s_cat_mgr with
branches with branch identifier
num_ctl_list_entries and copy returned
info. into

Yy structure based
call list in s_cat_mgr on target pointer
with branch identifiler

and copy returned
num_users and length
into structure .

2ot P

return code = 0

-
4

return to caller

-33-

Segment locators get_dir entry

set ptr = pointer to root

check that system
administrator owns
alling proces

is directory root?

no

lock root directory
Y lock root directory,
current directory = root | return dal = "1000"b,
[[mext directory = next 7 |no_dal_sw = "0"b, ptr
l tree name component :
b —— ‘
(strip I
inprocedure) ‘ -
return null
pointer,
have all tree name yes no_dal_sw = "1"b
components been used?
' y
call get_ptr in dir_manip | ' | return dai,
with ptr, next directory, no_dai sw,
dal, no_dal_sw current pointer
\ P
was branch jiffiz,’,/— no .
yes unlock current
directory, return
lock directory branch, null pointer
unlock current directory
. l -
Y L gl
-| lcurrent directory = next directory return to caller
Mnext directory = next tree name !
|| component 1
________ |7 77 7 (strip inprocedure)

-3~

Segment locator: get_nondir entry

.call get_dir 1in seg loc
with nondir_t_name with
last name deleted

was director%:EEEEEE::::> no

yes

call get_nondir_ptr in dir_manip
with returned pointer,
branch_name = last component of
tree name, val_lvl = val_lvl

return null pointer

!

unlock directory polnted to by
pointer returned from seg_loc

!

return pointer returned
from dir_manip

et
Yy
return to caller

Hierarchy access validgtora

[T T o T o o T e e e . — e — — — — — o ——— — S s s i,

delete_seg, rename, and list entries

create_seg, change_seg length

_______________________________________ -
call get_dir in seg loc (validate |
with dir _t_name inprocedure) I
|

]

|

|

I

|

wag directory found? return code = 6 | __ |
|

|

|

|

]

\)

. was dal returned? no :
/ l

|

|

|

|

|

check returned dai :
for proper permissio [|
return code = 7 |

I

|

]

4

—— — — —— — —— — - —— — — —— — — ——— —— S—

call same_named entry
in dir manip with
user-supplied parameters

<

return to caller

_36-

* Helerarchy access validator:

e

call get_dir in seg_loc
wlth dir_t_name

was directory found?

change_ctl_list entry

check returned dal
for proper permissio

|

1

i

I

I

|

I

|

I

|

|

|

o |

|

|

_ I
|

\ '
was dai returned? no : :
/ '
: I

) |

|

|

|

|

|

|

]

|

is indicator :;\;;\\‘_added

___________________ 1
(validate
inprocedure)
| return code = 6 | _
| return code = 7 >
___________________]

added or deleted?

deleted _
direc-

tory

—
check validity of
V-field in
user-supplied dai and
change 1f necessary

1s branch a directory
or non-directory?

non=-directory

check validity of

all filelds in
user-supplied ami

and change if necessary

P

/

call change_ctl_list in dir_manip
with user-supplied parameters B

return to caller

-37-

Search director: get_nondir entry

mal-
formed

inspect tree name return ptr = null

well-formed -

" is tree nanme wles 1

call get_nondir
in seg_loc with
tree name and

val_1vl
have all search ves
rules been used? ;
ptr = pointer
returned
from seg_loc,
append first/next found_t_name =
search rule to tree name
left of
tree name
Y
{ return
ptr = null
call get_nondir

in seg_loc with
combined tree name
and val_1lvl

ptr = pointer
returned from
seg_loc,
found_t_name =
combined tree name

was directory
path valid?

y &

return to caller

-0~

. User interface manager: create_seg, change_seg_length,

change_cfl_llst,'rename, and list entries

{ __________
| does user have
: access permission
| to argument 1list?
|
I
_ Y

copy user arguments

into sutomatic variables
R e T ——

inspect tree name

well-formed

s tree name complete?

T T S e e e G e e e v — — t— — — — — — — — — — —— —

return control to
listener in ring 4
by call to proc.,
mgmt ., subsystem

return code = 8

L—_ inprocedure) _ __ 1

no

(check_nameval

complete tree name
by appending the

working directory
to the left of it

check validity of
ser's valldation_leve

reset validation level
to ring of caller

call same-named entry in ha_val
with automatic variables,
complete tree name, and

checked validation_level

Y f“_¢2. _____________________________ —
Y
into user's arguments

copy returned varlables

e

Ve

return to caller

-39-

User interface manager: get_nondir entry

return control to
listener in ring 4
by call to proc,
mgmt, subsystem

does user have
access permission
to argument 1list?

copy user arguments :
into automatic variables

check validiz;\;;S\\\\ invalid

validation_level

reset
validation_level
valid) to ring of caller

call get_nondir entry

in sreh_dir with
automatic variables and
checked validation level

!

copy returned variables
into user's arguments

Y

return to caller

=140~

User interface managers check_access entry

return control to
listener in ring 4
by call to proc.
mgmt, subsystem

does user have
access permission
to argument list?

L _iyes
(access inprocedure)
. <

call get_ami entry
in pas_mgr with
ptr, ami

1s requested
access allowed?

result = "1"b

result = "0"b

$‘A

return to caller

e e

=41~

APPENDIX II

Code of the procedure segments
within the directory control and
hierarchy control modules of the

Storage Management Subsystem

-42-

/%* the name of thls segment will be di:_manip
procedure;
declare 1 dir based,
2 lock integer,
2 capacity integer,
2 frée_llst integer,
2 branch_list integer,
2'dir_1d integer,
2 block (100),
3 1ink integer,
3 name (32) character,
3 seg_1d integer,
3 dir_sw integer;
declare 1 dcl_entry based,
2 link integer,
2 user_name (32) character,
2 dai (4) bit;
declare 1 branch_cnts based,
2 name (32) character,
dir_sw bit,
length integer,
num_users integer,

num_ctl_list_entries integer,

DN N NN

ctl_list (500),
3 user_name (32) character,

3 indicator (11) bit;

*/

43

declare 1 info based, -
2 length lntéger.
2 num;users integer;
declare calr (32) character, indexl integer, index2 integer,
1d integer, point pointer, x integer, bptsl
pointef, ptré1l pointer, ptr62 pointer, ptr63 pointer,
countrl integer, targ pointer, countr2 integer,
dclpt8 pointer, temptrg pointer; A
declare subr entry, suc_sw bilt, dsw integer, ident integer,

backlink integer, index integer;

declare block (size(info)) integer;

inprocedure;
searchs entry(dpoint pointer, bname (32) character);
/¥ this internal procedure searches a directory for
a branch of a given nahe. if found, the index of
the branch i1s returned in index, its segment
ldentifier is returned in ident, and the branch's
directory switeh is returned in dsw., the index
of the preceding branch in the chain 1s returned
in backlink. 1f not found, then suc_sw is set
equal to zero */
index = dpoint->dir.branch_list;
‘backlink = -1
test: 1if index = -1 then doj;
suc_sw = "0"b;

retumm;

end;
if dpoint-> dir.block(index) .name = bname then do;
suc_sw = "1"bj;
ident = dpoint-> dir.block(index).seg_1d;
dsw = dpoint-s dir.block(index’.dir_sw;
return;
end;.
else dos
backlink = index;
index = dpoint-> dir.block(index),link;
go to tests
end;
returﬁ;

end search;

'get_dir_ptrc entry(dirptr pointer, branch_name (32)
character, dal (4) bit, no_dal_sw bit, ptr pointer);
call search (dirptr, branch_name);
/* Aif branch cannot be found, return null pointer */
if suc_sw = "0"b then doj
ptr = ""p;
return;
end;
call "pas mgr.get_ptr"p-s subr(ident,.o, ptr);
- /* set'calr eqﬁal to the present user by call to
processor management subsystem (call not gilven

here) */

e

-l5.

indexl = dirptr-> dir.dir_id;
/* search branch's dcl for name of caller and return
appropriate indicator */ |
do while indexl A= -1;
if dirptr-> dir.block(indexl).dcl_entry.,user_name =
calr | dirptr->
dir.block(indexi).decl_entry.,user_name = *
then dog
dal = dirptr;> dir,.block(indexl).dcl_entry.dal;
no_dal_sw = "0"bs;
return; -
end;
else indexl = dirptr-> dlr.block(indexl).dcl;entry.link;
end;
no_dal_sw = "1"b;

return;

get_nondir_ptrs entry(dirptr pointer, branch_name (32)
character, val_1vl integer, ptr2 pointer);
call search (dirptr, branch_name);
/* if branch cannot be found, return null pointer ¥/
if suc_sw = "0"b then do;
ptr = ""p;
return;
end;
call "pas_mgr.get_ptr"p-> subr(ident, val_lvl, ptr2);

returng

-L6-

create_segt entry(dirptr pointer, branch name (32)
character, length integer, code3 integer);
call search (dirptr, branch_name);
/¥ Af branch cannot be found, return null pointer */
if suc_sw = "1"b then doj;
code3 = 23
return;
end ;
/* if directory is full, return appropriate code */
dirptr-> dir.branch list = dirptr-> dir.free_list;
indexl = dirptr-> dir.branch_list;
dirptr-> dir.free_list = dirptr-> dir.block(indexl).link;
/%* for a non-directory segment, create the segment
and fill in its branch block */
‘1f dsw A= -2 then do;
call "s_cat_mgr.create_seg"p-> subr(length, 1d);
dirptr-> dir.block(indexl).seg 1d = 14d;
dirptr-> dir.block(indexl).dir sw = -2;
dirptr-> dir.block(indexl).name = branch namej
code3 = 0;
returng
ends
/¥ for a directory, create the directory segment and
fill in 1ts branch block */
call "s_cat_mgr.create_seg"p-> subr(size(dir), 1d);
dirptr-> dir.block(indexl).seg_id = 1d;

dirptr-> dir.block(indexl).dir_sw = =1;

47~

ldirptr->—dir.block(indéxl).name = branch_name;
/* make approprilate entries in acl of new directory'*/
call "s_cat_mgr.change_acl"p-> subr(id, 0, ¥,
*10000000000"b) 3
/* initlialize new directory's header and link its
blocks to its branch list */ -
call "pas_mgr.get_ptr"p-> subr(id, 0, point);
point-> dir.lock = 03 '
point-> dir.capaclty = 100;
point-> dir.free_list = 99;
point-> dir,.branch list = -1;
point-5 dir.dir_id = 1idj
do x = 0 by 1 while x < 100;
point-> dir.block(x).link = x-1;
ends
code3 = 03

return;s;

change_seg_lengtht entry(dirptr pointer, branch_name (32)
character, new_length integer, coded integer);
call search (dirptr, branch name);
/* Af branch cannot be found, return null pointer #*/
if suc_sw = "0"b then do;
coded = 14
return

end;

~48-

/* Af branch is a directory, return to caller with
appropriate code */
Af dswi= -2 then doj
codeld = 3;
return;
end;.
call "s_cat_mgr.change seg_length"p-> subr(ident, new_length);
codelt = 0;

return; v

delete_segs entry(dirptr pointer, branch_name (32)
' character, code5 integer);
call search (dirptr, branch_name);
/* if branch cannot be found, return null pointer #*/
if suc_sw = "0"b then do;
code5 = 13
return;
ends;
/* branch to non_dir for a non-directory segment */
Af dsw = -2 then go to non_dir;
call "pas_mgf.get_ptr“p-> subr(ident, 0, point);
/¥ if directoryibranch's branch 1list not empty, return
to caller with appropriate codé */
"if point-> dir.branch_list A= -1 then doj
code5 = 4; '
return;

end;

=49~

/% return branch's del blocks to directory's free
1ist */ ”
indexl = dirptr-> dir.block(indexj.dir_sw;
index2 = dirptr-> dir.free_list;
dirptr-> dir,.free_list = indexl;
testrs bpt5l = addr(dirptr-> dir,block(indexi));
Af bpt5l-> del_entry.link = -1 then go to next;
indexl = bpt5i-> dcl_entry.link;
go to testr;
nexts bpt51-> block.link = index2;
non_dir: call "s_cat_mgr.delete_seg"p-> subr(ident);
/* return branch's block to directory's free llst */
if backlink = -1 then do;
dirptr-> dir.branch_list =
dirptrq>‘dir.blqck(index).link;
go to then; '
end;
dirptr-> dir.block(backlink).link =
dirptr-> dir.block(index).link;
then: dirptr-> dir.block(index).link =
dirptr-> dir.free_list;
dirptr-> dir.free_list = index;
code5 = 03

return;

~50-

change _ctl_1lists entry(dirptr pointer, branch_name (32)
character, dir_sw bit, ins_del_sw bit, user name (32)
character, indicator (*) bit codebé integer);

call search (dirptr, branch name);

/* Af branch cannot be found, return appropriate code */

Af suc_sw = "0"b then doj '

codeb = 1;
retumm;
end; .
/* 1f supplied dir_sw doesn't match dir_éﬁ of branch,
return to caller with appropriate code */
if dsw = =2 then if dir_sw = "1"b then doj
codeb = 13 |
return;
end;
else dos
call "s_cat_mgr.change_acl"p-> subr(ident,
ins_del_sw, user_name, indicator);
go to setcode;
end s '
/* 1f supplied dir_sw doesn't match dir_sw of branch,
return to cailer with appropriate code */

if dir sw = "0"b then do; |

codeb = 1;
return;

end;

-51-

/% if caller attempts to add a dcl entry to a full
directory, return the appfopriate code */
1f ins_del_sw = "0"b then if dirptr-> dir.free_list = -1
then doj; |
codeb6 = 53
retufn;
end;
else dos
/* 2dd new entry to dcl list, obtaining needed
block from free list */
indexl = dirptr-> dir.free_list;
dirptr-> dir.free list =
dirptr-> dir.block(index1).1link;
Index2 = dirptr-> dir.block(index).dir_sw;
dirptr->-dir.block(index).di:_sw = index1;
ptr6l = addr(dirptr-> dir.block(index1);
ptréi-> del_entry.link = index2;
ptrél-> dcl_entry.user_name = user_name;
ptrél-> del_entry.dal = indicator;
go to setcode;
end;
index2 = dirptr-> dir.block(index).dir_sw;
1f index2 = -1 then go to setcode; |
ptré3 = ""p;
remove: ptr62 = addr(dirptr-> dir.block(index2));

1f ptr62-> dcl_entry.user_name = user_name then doj;

-52-

if ptr63 A= ""p then ptr63-> dcl_entry.link =
ptré62-> dcl_entry.link;
dirptr-> dir.block(index2).link =
dirptr-> dir,.free_list;
dirptr-> dir,.free_list = index2;
g0 to setcode; '
ends
index2 = ptr62-> dcl_entry.link;
ptr63 = ptr62;
go to removes
setcode:t codeb = 03

return;

renamei entry(dirptr pointer, namel (32) character,
namel (32) character, code? integer);
call search (dirptr, namel);
/* Af branch cannot be found, return null pointer */
if suc_sw = "O"b then do;
code?7 = 13
return; '
ends
/* save 1lndex o} branch */
index1l = index;
/* rename branch with new name and rename second
branch (if found) with first name */
call search (dirptr, name2);

dirptr-> dir.block(indexl).name = name?2j;

-53-

code? = 0y
Af suc_sw = "O"b then dirptr-> dir.block(index).name =
namel s

returng;

list:s entry(dirptr pointer, branch name (32) character,
target pointer, code8 integer);
if dbranch name = "" then do;
/* copy directory's branch names and corresponding
dir_sw's into user-suppllied structure */
countrl = 0;
‘indexl = dirptr-> dir.branch list;
loop81ls Aif indexl = -1 | countrl = 500 then doj;
/¥ copy number of branches 1hto user's structure ¥/
target-> branch_names_list.num_branches =
countri;
go to coder;
end;
countrl = countrl+ls
target-> branch_names_list.branch(countrl).name =
dirptr-> dir.branch(indexl) .name;
if dirptr-> dir.branch(indexi).dir_sw = -2 then
target-> branch_names_iist.branch(countrl).
dir_sw = "0"b;
else target-> branch names_list.branch(countri).
dir_sw = "1"b;

indexl = dirptr-> dir.branch(indexi).link;

-54~

go to loop8i;
end;
call search (dirptr, brahcn_name);
/* if branch cannot be found, return appropriate code */
if suc_sw = "0"b then do; |
code8 = 1;
return;
end;
target-> branch_cnts.name = branch_name;
/* insert appropriate dir_sw into user's structure */
if dsw = -2 then target-> branch_ents.dir_sw = "0"b;
else target-> branch_cnts,dir_sw = "1"bj
if dsw = -2 then do; |
/* for non-directory branch have s_cat_mgr copy
required information into user's structure */
targ = addr(target-> branch_cnts.length);
call "smcat_mgr.list"p-> subr(ident, targ);
return;
end;
countr2 = 03 '
index2 = dirptr-> dir.block(index).dir_sw;
/¥ copy directofy-branch's del into user'shstructure *®/
loopB2: 1if index2 = -1 | countr2 = 99 then doj
target-> branch_cnts.num_ctl_list_entries =
countré;
go to next8;

’ehd;

-55-

countr2 = countr2+l;

declpt8 = addr(dirptr-s dir.block(index2));

target-> branch_cnts.ctl_list(countr2).indicator(7:k4) =
delpt8-> dcl_entry.dals

target-> branch_cnts.ctl_list(countr2).user_name =
dclpt8-> del_entry.user name;

index2 = dclpt8-> dcl_entry.link:

go to loop82;
/* use s_cat_mgr to get number of users and length

and copy into user's structure */ v

next8: temptrg = addr(block);

call "é_cat_mgr.list"p-> subr(ident,temptrg);

target-> branch_cnts.length = témptfg-> info.length; -

target-> branch_cnts.num_users = temptrg-> info.num usersj

codert code8 = 0;

returns;

end dir_manip;

=56~

/* the name of this segment will be seg_loc */
procedure; ‘
declare x1 integer, x2 1ntegei, dirname (320) character,
bname (32) character, .dptr pointer, nextdir (32)
character, pname (320) character, tpoint pointer,
subr entr&, 1 integer, lock integer based,
root_segno parameter (8), user (32) character;
inprocedure;
‘strips entrys
/% remove next component from tree name and set
nexfdir equal to it */
Af pname(0) = "" then doj
nextdir(0) = "";
returns
end;
do 1 =1 by 1 while 1 < 33;
if pname(i) = "," l phame(i) = "" then do;
nextdir = pname(0:1);
pname(01320-1-1) = pname(i+11320-1-1);
. returng
end;
end;

end strips;

get_dir: entry(dir_t_name (320) character, dail (4) bit,

no_dai_sw bit, ptr pointer);

-57-

ptr make_ptr(root_ségno,'o);

/* if the root directory itsélf is to be manipulated,
a check must be made to insure that the system
administrator (ADMINISTRATOR) owﬁs the calling
process. if the check succeeds, the appropriate
dai muét be constructed */

if dir_t_name(0s4) = "root" & dir_t_name(4) = "" then do;

/* set uéer =.owner of the calllng process by call to
processor mahagement subsystem. (call not
shown here) */

if owner

"ADMINISTRATOR" then dog
dai

"1000"bs

no_dal_sw = "0"b;

call "locker.lock"p-> subr(ptr-> lock, 1);

return;
end;

else dogs
ptr = " "b;
no_dal_sw = "1"bj
returns
end;

end;
pname = dir_t_name(5:315);
call strip;

call "locker.lock"p-> subr(ptr-> lock, 1);

_s8-

/* if tree name components have been exhausted,
we're done */ A
loops 1if nextdir(0) = "" then return;
call "di:_manip.getﬁdir_ptr"p-> subr(ptr, nextdir, dei,
no_dai_sw, tpoint);
/% Af diréctqry can't be found, return null pointer #/
if tpoint = ""p then doj '

call "locker.unlock"p-> subr(ptr-> lock);

ptr = ""p;
returng;
end;

call "locker.lock"p-> subr(tpoint-> lock, 1);
call "locker,unlock"p-> subr(ptr-> lock);
ptr = tpoint; |
call strip:
go to loop;
return;
get_nondir: entryinondir_t_name (320) character, val_1lvl
integer, ptrl pointer);
/* Af tree name doesn't begin with a directory name
return null pointer to caller */
Af nondir_t_name(4) A= "." then do;
ptrl = ""p;
return;
end;

x2 03

I

-59-

/* 1solate last component of tree name */
do 1 = 5 by 1 while 1 < 320;
Af nondir_t_name(i) = "." then do;
x1 = x23
x2 = 1;
“end;

if nondir_t_name(1)

" then do;
x1 = x2; |
X2 = 13
go to outg
ends
if 1 = 319 then x2 = 320;
end; '
/* set dirname equal to tree name with last component
removed */
out: dirname = nondir_t_name(0sx1);
/% set bname equal to last component of tree name */
bname = nondir_t_name(xl+lt x2-x1-1);
call "seg_loc.get_ﬁir"p-> subr(dirname, dai, no_dal_sw,
dptr):

|

/¥ if directory not found, return null poilnter */

if dptr = ""p then do;
p‘brl =" np ;
return;

ends;

=60~

call "dir_manip.get_nondir_ptr"p-> (dptr, bname, val_1vl,
ptrl); _
call "locker,unlock"p-> subr(dptr-> lock);

returng;

end seg_locy

/* the name of this segment will be ha val */
procedure;
declare ptr pointer, x integer, dal (4) bit, ins_del sw bit,
subr entry, r_val blt, no_dal_sw bit;
inprocedure;
validates entry(code 1nteéer, t_val bit);
call "seg_loc.get_dir"p-> subr(dir_t_name, dal, no_dal_sw,
ptr); | '
/* Af directory not found, return appropriate code */
if ptr = ""p then do;
code = 63
r_val = "1"by
return;
end
/¥ Af dai not found, return appropriate code */
if no_dal_sw = "1"b then go to;féilz
/* check validation level against dal */
if val_1vl > bit_to_int(3, dai(1:3)) then go to fall;
/¥ check for-.appropriate manipulation permission */
if da1(0) = "1"b | da1(0) = t_val then do; |
r_val = "0"b;
return;
ends
falls code = 73
r_val = "1"b;
returng

end valildates

-62-

create_segs entry(dir_t_name (320) character, branch_name
(32) character, val_lvl integer, length integer,
codel integer);

call validate (codel, "1"b);
/¥ if validation fails, return to caller */

if r_val = "1"b then return;

call "dir_manip.create_seg"p-> éubr(ptr, branch_name,
length, codel);)

returni

change_seg_lengthi entry(dir_t_name (320) character,
branch_name (32) character, val_1vl 1ntegeré
new_length integer, code2 integer); |
call validate (code2, "1"b);
/* Af validation falls, return to caller %/
Af r val = "1"b then return;
call "dir manip.change_seg_length"p-> subr(ptr, branch_nanme,
;new;length, code2) |
returns

[}
delete_seg: entry(dir_t_name (320) character, branch name
(32) character, val_1vl integer, code3 integer);
call validate (code3, "1"b);
/* if validation falls, return to caller %/
if r val = "1"b then return;
call "diq_manip.delete_seg"p-:>subr(ptr,.branch_pame,

codel);

-63-

returng

renames entry(dir_t_name (320) charaéter, namell(jz)
character, val_lvl integer, name2 (32) character,
code5 integer);

call validate (codeS, "1"b)s
/* Af validation fails, return to caller */

if r_val = "1"b then return; |

call "dir_manip.rename"p-> subr(ptr, namel, name2, code5);

returns

1ists entry(dir_t_name (320) character, branch_name (32)
character, val_lvl integer, target pointer, codeb
integer);

call validate (codeb, "0"b);

/* if validation falls, réturn to caller #*/

if r val = "1"b then return;

call "dir_manip.list"p-> subr(ptr, branch;name, target,
codeb);

returni

change_ctl_list: entry(dir_t_name (320) character,
branch_name (32) character, val_ivl integer, dir_sw
bit, ins_del_sw bit, user_name (32) character,
indicator (%) bit, codel integer);

call validate (codel4, "1"b);

/* Af validation falls, return to caller */

-6l-

if r_val = "1"b then return;
Af ins_del_sw = "1"b then go to change;
if dir_sw = "1"b then doj
/* check directory's dal and change if necessary */
1f bit_to_int(3, indicator(1:3)) < val lvl then
“indicator(113) = int_to_bit(3, val lvl);
end; |
else dog »
/* check segment's ami fields and change if necessary ¥/
if bit_to_int(3, indicator(2:3)) < val_lvl then
Aindicator(2:3) = int_to_bit(3, val_1lvl);
if bit_to_int(3, indicator(5:3)) < val_1vl then
indicator(513) = int_to_bit(3, val_lvl);
if bit_to_int(3, indicator(8:3)) < val_1vl then
indicator(813) = int_to_bit(3, val_lvl);
end;
change: call "dir_manip;change_ctl_list"p-> subr(ptr,
branch_name, dir_sw, ins_del_ sw, user_name, lndlcator,
codelt); |

returns '

end ha_vals

=65~

/* the name of this segmént will be srch_dir */
procedure; |
declare 1 srch_rules based,
2 wrk_dir (320) character,
2 num_rules integer,
2 rules (*),
. 3 dir_t_name (320) character;
- declare x1 integer, x2 integer, n integer, countr integer,

compname (320) character, subr entry;

get_nondirs entry(t_name (320) character, val_1vl integer,
ptr pointer, found_t_name (320) character);
/¥ inspect tree name for prbper form */

X2 = =13

don =0 by 1 while n < 3203

\

if t_name(n) = "." | t_name(n) = "" then do;
X1l = x23% '
X2 = nj

if x2-x1 =1 | x2-x1 > 33 then do;

/¥* if tree name is mal-formed réturn null pointer */

ptr = ""p;
return;
end;
end;
if t_name(n) = "" then go to out;
if n = 319 then if t_name(n) = "." then do;

ptr - " "p;

=00=

return;
ends
else x2 = 3203
end;
/* if tree name is complete, call seg_loc to get
the reduired pointer */

outt 1if t_name(0:15) = "root.” t_name(0t4) = "root" &

t_name(4) = "" then doj

call "seg_loc.get_nondir"p-> subr(t_name,
val_1vl, ptr);
found_t_name = t_name;
return;
end;
countr = 03
/* this loop tries the search rules one at a time */

loops 1if countr > "srch_rules"p-> srch_rules,num_rules.

.

then do;
ptr = ""p;
return;
end;

don =0 by 1 while n+x2+1 < 320;
if "srch_rules"p-> srch_rules.rules(countr),
dir_t_nesme(n) = "" then doj
/* append current rule to left of tree name and set
compname equal to the compound name */
compname = "srch rules"p->

srch_rules.rules(countr).dir_t_name(Oin);

-67-

compname(n) = ",";
compnamé(n+1lx2) =.t_name(03x2);
go to next;
end
end;
next1 call“seé;loc.get_nondir"p-> subr (compname,
val_1lvl, ptr); |
countr = countr+1;
/% if valid directory was not constructed using
current rule, try next rule */
if ptr = ""p then go to loops;
found_t_name(01x2+n+l) = compname (0 1x2+n+1) 5

~

returns

end srch_dir;

-68-

/* the name of this segment will be uface_mgr */
procedure; '
declére dir_tree_name9 (320) character automatic,
branch_name9 (32) character automatic, validation_level9
integer automatic, length9 integer automatic,
code9 integer automatic;
declare new_length9 integer automatic;
declare dir_sw9 bit automatie, 1héert_de1ete_sw9 bit
automatic, user_name9 (32) character automatic,
indicator9 (*) bit automatics
declare branch_namel9 (32) character automatic, branch_nam329
(32) character automatic, target9 pointer automatic;
declare t_name (320) character aﬁtomatic, pfr9 pointer
automatic, found_t_name9 (320) character automatic;
declare subr entry, ami (11) bit, no_ami_sw bit;
declare x1 integer, x2 integer, malform bit, rulept
pointer, code integer, found_t_name (320) character, '
i integer, z integer, res (3) bit, ring integer;
declare names_block (size(branch_names_list9)) integer;
declare cnts_block (size (branch_cnts9)) integer;
declare 1 blockr (%) based,
2 dumnmy 1nﬁeger;‘
declare 1 prr based,
2 dummy (61) bit,
2 val (3) bit;
declare 1 srch_rules based,

2 wrk_dir (320) character;

-0 -

declare 1 branch_names_list9 based,
2 num_branches lnteger,
2 branch (100),
3 name (32) character,
3 dir_sw Dblt; ‘
declare 1 branch_cnts9 based,
2 name (32) character,
2 dir_sw bit,
2 length integer,
2 num_users integer,
2 num;ctl_list_entries integer,
2 ctl_list (500),
3 user_name (32) character,

3 indicator (11) bit;.

inprocedure;
xcessi entrys;

/* this internal procedure checks the caller's
access to the argument list and returns control
tb the listener of the Command Subsystem if the

" check falls */
call "pas_mgr.get_ami"p- > subr("ap"p, ami, no_ami_sw);
if no_ami_sw = "1"b then go to listens
if bit_to_int(3, ami(513)) >= bit_to_int(3, "sp"p->
prr,val) then returng
listens /#* return control to listener by call to processor

management subsystem (call not shown here) */

=70~

returng

end xcessg

inprocedure;
check nameval:s entry;
/% check for»manipulation of working directory only ¥*/
if dir_tree_name(0) = "" then doj
x2 = 03
go to out;
end;
/* check tree name for proper form */
X2 = =13
do i1 =0 by 1 while 1 < 3203
if dir tree_name(i) = "." | dir_tree_name(i) = ""
then do;
x1l = x2;
x2 = 13
1f x2-x1 =1 | x2-x1 > 33 then do;
/% if tree name is malformed, return appropriate
indicator to uface_mgr %/ |
| malform = “1"ﬁ:
return;
end;
end;
if dir_tree_name(il) = "" then go to out;
if 1 = 319 then if dir_tree_name(i) = "." then doj

malform = "1"b;

-71-

return;
end;
else x2 = 3203
end;
outs malform = "O0"bj

/% Af tree name 1s complete, branch to comp */
Af dir_tree_name(015) = “root."” | dir_tree_name(0ik4) =
"root" & dir_tree_name(4) = "" then doj
dir_tree_name9 = dir_tree_name;
go to comps

end;

/* set dir_tree_name9 equal to given tree name with
working directory appendéd to left of it */
do 1 =1 by 1 while 1 < 320;
if “srch_rules"p-> srch_rules.wrk_dir(i) = "" then doj
dir_tree_name9 = "srch_rules"p->
srch_rules,wrk_dir(0si);
dir_tree_name9(i) = ".";
'dir_tree_name9(1+1ux2) = dir_tree_name(0:1x2);
go to comp;
end;
end;
/¥ check validation level supplied by caller against
his ring number and change if necessary */
comps 1if validation_level9 < bit_to_int(3, "sp"p-> prr.val)
then valldation_level9 = bit_to_int(3, "sp"p-> prr.val);
1f validation level9 > 7 then validation_level9 = 73

returns

end check_namevalj

create_segt entry(dir_tree_name (320) character,
branch_name (32) character, validation level integer,
length integer, codel integer);
call xcess} | | ‘
/¥ copy user's arguments into automatic variables for
ring zero */
branch_name9 = branch_namej
validation_level9 = validation_level;
length9 = length;
code9 = codels
call check namevalj
/% if tree name is malformed, return appropriate code
to caller */
if malform = "1"b then doj
codel = 83
return;
end;
call "hé_yal.create_seg"p->,sﬁbr(dir_tree_nameQ,
branch_name9, validation_level9, length9, code9);
codel = code9;

return;

=73~

change_seg_lengtht entry(dir_tree_name (320) character,
branch_name (32) character, valldation_level 1nteg¢r,
new_length integer, code2 1nﬁeger);
call xcess;
/* copy user-suppiied arguments into automatic
variables for ring zero */
branch_name9 = branch_namej |
valldation_level9 = valldation_level;
new_length9 = new_length;j
code9 = code2s
call check_namevalj
/% if tree name is malformed, return appropriate
code to caller */ |
if malform = "1"b then do;
code2 = 8;
returnj;
end;
call "ha_val,.change_seg_length"p-> subr(dir_tree_name9,
branch_name9, validation_level9, new_length9, code9);
code2 = code9s

'return;

delete_segs entry(dir_tree_name (320) character,
branch_name (32) character, validation_level integer,
code3 integer);

call xcessg

Pl

/*.copy user-supplied arguments 1nto automatic
variables for ring zero */
branch_name9 = branch_naﬁe;
vallidation_level9 = validatlon_level;
code9 = code3s;
call check_naméval;
/* Af tree name 1s malformed, return appropriate code
to caller #/
if malform = "1"b then do;
code3 = 8;
return;
end; . : , -
call "ha_val.delete_seg"p-> subr(dir_tree_name9,
branch_name9, validation_;evé19, code9);
code3 = code9;

returns;

change_otl_1ist: entry(dir_tree name (320) character,
branch_name (32) character, valldation_level integer,
dir_sw bit, ins_'del_sw bit, user_name (32) character,
indicator (*) bit, codelt integer);

|
call xcess; '

/* copy user-supplied arguments into automatic
valiables for ring zero %/
branch_name9 = branch_name;
validatlion_level9 = validation_levels;

dlr sw9 = dir_sw;

et

ins_del_sw9 = ins_del_sw;
user_name9 = user_namej

indicator9

indicators;
code9 = codek;
call check_nameval;
/# Af tree name 1s malformed, return appropriate
code to caller */
if malform = “"1"b then do;
codeld = 83
returns;
. end; »
call "ha_val.change_ctl_1ist"p-> subr(dir_tree_name9,
branch_nameg, validation_level9, dir_sw9, 1ns_de1_§w9,
user_name9, indicator9, code9);
codelt = code9;

returns

rensme: entry(dir_tree_name (320) character, branch_name 1
(32) character, validation_level integer,
branch_name_2 (32) character, code5 integer)

call xcess;

/% copy user-supplied arguments into automatic
variables for ring zero */

branch_name_19 = branch_name 1;

validation_level9 = validation_level;

branch_name_29 = branch_name_2;

code9 = code5s

76~

call check_namevals
/* if tree name 1s malformed* return appropriate

code to caller */

if malform = "1"b then do;

code5 = 83
retufn;
end;

©0all "ha_val.rename"p-> subr(dir_tree_name9, branch_name_19,
validation_level9, branch_name_29, code9);

code5 = code9;

return;

‘1ists entry(dir_tree_name (320).charaoter, branch_name
(32) character, validation_level integer, target
pointer, code6 integer);

call xcesss
/* copy user-supplied arguments into automatic

variables for ring zero %/

branch_name9 = branch_name;

validation_level9 = valldation_level;

code9 = codeb;

call check _namevalj;

/¥ Af tree name i1s malformed, return appropriate
code to caller */

if malform = "1"b then doj

code6 = 8 H

-77=-

return;
end;

/* make target9 point to ring zero storage of
appropriate size %/

if branch_name9 = "" then target9 = addr(names_block);
else target9 = addr(cnts_block)s

call "ha_val.list"p-> subr(dir_tree_name9, branch_name9,
validation_level9, target9, code9);

codeb6 = code9;

if branch_name9 = "" then z = size(names_block);

else z = size(cnts_block);

/¥ use structure-referencing trick to copy data
stored in ring zero area.back into user-supplied
area */

do 1 =0 by 1 while 1 < z;
target-> blockr(i).dummy = target9->
blockr(1) .dummy;
end |

returns

get_nondirs entry(t_name (320) character, validation levell
integer, ptrl pointer, found_t_name (320) character);
call xcess;s
/* copy user-supplied arguments into automatic
variables for ring zero */
t_name9 = t_name;

validation_level9 = validatlon_levell;

~78-

ptr9 = ptri;

found_t_name9 = found_t_name;
/* check validation level suﬁplled by caller againsf

his ring number and change if necessary */

if valldation_level9 < bit_to_int(3, "sp"p-> prr.vel) then
validation_level9 = bit_to_int(3, "sp"p-> prr.val);

if validation_level9 > 7 then validation_level9 = 73

call "srch_dir.get_nondir"p-> subr(t_name9, validation_level9,
ptr9, found_t_name9);

ptrl = ptr9;

found_t_name = found_t_name9;

returns

check_accesss entry(ptr2 pointer, access (3) bit, result
bit);
call xcess;j
call "pas_mgr,.get_ami"p-> subr(ptr2, ami, no_ami_sw); '
if no_ami_sw = "1“blthen do;
result = "0"bs
vreturn:
end;
fing = bit_to_int(3, "sp"p-> prr.val):
res = "000"b;
/* if read permission desired, check R2 field of
segment's aml agalnst caller's ring and indicate

result of check in res %/

=79~

if access(0) = "1"b then.do;
if ring <= bit_to_int(3, ami(5:3)) then res(0) = "1"bs
else res(0) = "0"b; |
end;
/¥ Af write permission desired, check Rl and T
fields of ami */
if access(1) = "1"b then do;
if ring <= bit_to_int(3, ami(2:13)) & ami(0) = "1"b
then res(1) = "1"b;
- else res(1) = "0"b;
end;
/* if call permission desired, check R3 field of ami */
if access(2) = "1"b then do;
if ring <= bit_to_int(3, ami(813)) then res(2) = "1"b;
else res(2) = "0"5;
end;
/¥ compare res tb access to determine whether
requested pérmission is allowed */
1f bit_to_int(3, res) = bit_to_int(3, access) then
result = "1"bj
else result = "0"b;
ieturn;

end uface _mgr;

-80-

BIBLIOGRAPHY

Clark, D., and Schroeder, M., CLICS System Specification
Notebook (Preliminary version), unputlished, 1969.

Corbato, F.J., and Vyssotsky, V.A., "Introduction
and Overview of the Multlcs System," Proceedings
of the Fall Joint Computer Conference, 27, Spartan
Books, Washington, D.C., 1965, pp. 185-196,

