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ABSTRACT 

A set of operating system features are developed so that peripheral diagnostic pro­
grams may run under control of a general purpose operating system. Such a program 
is termed an "on-line diagnostic". The hardware and software environment for on-line 
diagnosis is modeled for typical computer systems. A new class of virtual resource 
for the deJice-under-test is developed and its characteristics identified. A manager 
for device-under-test virtual resources is described and its interfaces to the on-line 
diagnostic program are discussed. A trial implementation on the Hewlett-Packard 
HP 300 small business computer is discussed and evaluated. 
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Chapter 1 : Introduction 

In this thesis, features are identified and a design method developed so that 

peripheral programs can be run under control of a general purpose operating sys­

tem. We call such a program an on-line diagnostic. The basic strategy for on-line 

diagnosis described here is compatible with typical general purpose computer 

systems available today, as a goal was to describe a strategy that could be 

added to existing systems to extend their serviceability. 

of this scheme to show its viability is described. 

A trial implementation 

The source of both the difficulty and the power of on-line diagnosis is its execu­

tion environment. The environment is a general purpose computer that supports 

multiprocessing. The nature of other activities proceeding concurrently in the 

system is not known. Additionally, the operating system provides a number of 

services that are available to the application. The most important services for 

our purpose are virtual input and output devices that have more uniform charac­

teristics and are "better behaved" than the physical devices that implement 

them. This is especially true in the case of errors and malfunctions. For on-line 

diagnosis information about the nature of each error or malfunction must be avail­

able to the testing program. One of the functions of "well behaved" virtual dev­

ices is that much error information is hidden so that the virtual devices appear 

more uniform to the application. This hiding of error information is a difficulty in 

on-line diagnosis. The types of devices that may be accessed ranges from termi­

nals to communications lines to disk storage. 

The power of on-line diagnosis stems from two features of its environment. Since 

the computer system can perform many activities concurrently, diagnosis can be 

performed while other activities continue. On-line diagnosis does use system 
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resources, decreasing the availability of resources for other activities and thus 

delaying the compietion of some activities. It does not stop all other activities, 

however, in contrast with other diagnostic strategies. The second source of 

power tor on-line diagnosis is the availability of system services. The availability 

of these resources gives the diagnostic application programmer a powerful 

environment for the execution diagnostics. 

1.1: Nature of the problem 

The problem is to identify system features necessary to support on-line diagnos­

tics. The goal is to provide an interface through which an application program 

running under the operating system can perform diagnosis of a peripheral device. 

Some of these features will be implemented in the hardware of the peripherals, 

others in the operating system software. 

The key issue is disruption of other activities performed concurrently in the sys­

tem. Disruption can result from access timing conflicts at the peripheral device, 

destruction of data stored in the peripheral that is used by some other activity, 

or destruction of data used by the operating system to implement services. 

Another issue of concern is providing a means of communicating device-specific 

information to the application in a system designed to hide device-dependant 

details. 

--~-------------·-------------
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1.2: Relationship to other diagnostic and service strategies 

Since the first computers, failures in the hardware of the system have decreased 

system availability, to the dismay of users. Manufacturers have improved availa­

bility over the years by attacking the two components of availability, reliable 

operation and timely repair. Reliability has improved through advances in com­

ponent technology and through robust design. Timely repair is based on efficient 

operations (according to Fitzsimons, "have the right man with the right data and 

the right part in the right place at the right time") and on serviceability of the 

computer system. 

Serviceability has been enhanced through advances in packaging and modularity 

of design. But the biggest advances in serviceability have been from the area of 

diagnostic tools. Diagnostic tools give the service technician powerful help in 

locating a faulty component or subassembly, hence aiding him in quickly repairing 

the computer system. 

Test and diagnostic programs have long been a part of the service strategy for 

computer systems, but these programs have most often been designed to make 

exclusive use of the computer system. These programs execute in an environ­

ment without other activities, so that no other work is done by the computer sys­

tem during diagnosis. Furthermore, switching from the normal environment to the 

diagnostic environment is itself disruptive. 

We explore, here, the relationship between current diagnostic and service stra­

tegies and on-line diagnosis. The present diagnostic strategy can be viewed as 

a hierarchy of three levels. At the highest level a special set of diagnostic pro­

grams uses a subset of the system to diagnose the remainder of the system. 

This requires an operator with a small amount of training. At the next lowest 
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level, a skilled technician operates the self-testing capability of a subsystem, 

requiring no specialized knowledge to interpret whether the subsystem passed or 

failed the test. At the lowest level, diagnosis is performed by a highly trained 

technician using test equipment and specialized knowledge. 

More should be said about self-test. Self-test is a comprehensive, low level, 

functional test that a subsystem can perform internally. With the integration of 

microprocessors into subsystems, particularly into 1/0 devices, self-test can now 

easily be incorporated into most of the subsystems of a computer system. Self­

test is entirely internal to the subsystem, requiring only power, to test the sub­

system. This means that each subsystem may be tested individually to hasten 

system integration or to aid in diagnosis of multiple faults. Self-test is initiated in 

several ways. In is initiated automatically at power-on. It can be initiated manu­

ally from switches and testpoints internal to the subsystem. Or, for peripherals, 

it can be initiated by a command from the computer. 

There are several features of the present diagnostic method that should be 

noted. Each lev.el is less costly than the one below it because each higher level 

requires less time and less expertise to diagnose. The lowest level is slow and 

requires a highly trained technician with specialized knowledge about the subsys­

tem being diagnosed. This level also requires test equipment, often specialized. 

Self-tests, the next diagnostic level, are quick to perform and can locate most 

subsystem failures. They, however, require a trained technician to invoke 

because they are initiated from switches and testpoints internal to the computer. 

The diagnostic programs can be run by a technician with little training or by an 

unskilled operator under the telephone direction of a technician. Thus the custo­

mer may perform diagnosis by running diagnostic programs under the direction of 

a service engineer, so that the service engineer can be assured of having the 
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required replacement sub-assemblies when he arrives at the customer site. 

Another feature to note is that all of these diagnostic procedures are performed 

after stopping normal system activity. Diagnostic programs run in a special 

environment, without possible disruption from or disruption of other activities. 

Self-tests assume no interference from outside the subsystem ~•nder test; in 

most cases no interference means that the system must be stopped to prevent 

interference. Because diagnosis using test equipment is by largely ad hoc 

methods, it may be possible to diagnose some subsystems in this way without 

stopping system activities, but in general other activities must be stopped and in 

practice they nearly always are stopped. 

A third property of this strategy is that although the higher level methods are 

more cost effective, they cannot totally replace lower level diagnostic methods. 

The small kernel of subsystems required for testing may not be operable, forcing 

diagnosis of individual subsystems by using self-tests. There are failures that 

may not be found by self-tests, forcing diagnosis by a technician using test 

equipment. 

On-line diagnosis fits into this hierarchy as a fourth level of diagnostic tools that 

can be used without stopping normal system activity. Since on-line diagnosis can 

be performed without stopping other activities, it is particularly useful to verify 

subsystem function when no failure has yet been detected. A wary user might 

wish to verify that the printer is working before beginning a long application that 

will eventually use the printer. Verification is an important use of on-line diag­

nosis. 

On-line diagnosis is also useful when the system can continue to operate without 

the failing subsystem. Peripherals, in particular, may fail without disabling the 
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entire computer system. For example, most computer systems can continue to 

operate without a printer (for a while) by storing printer-bound output in files for 

later printing (spooling). 

The discussion above shows situations where a user might invoke on-line 

verification or diagnosis. Several other strategies can be envisioned for invoking 

an on-line diagnostic, running with the aid of operating system services. Since 

the communications services of the operating system are available the diagnostic 

could be invoked from a remote computer (or at least receive commands from a 

remote location and send diagnostic results back to the remote location). Thus, 

an engineer at a field service office could run diagnostics on a customer's 

machine before . going to the customer's site. 

Another strategy for using on-line diagnosis is to schedule periodic diagnostic 

tests to execute automatically. These periodic verifications of system peri· 

pherals might detect problems before they become manifest to the user. The 

system might tell the user, "Device PRINTER removed from service because it 

failed a periodic verification test. Call your service engineer and inform him/her 

that subassembly XXX has been diagnosed as faulty." A the computer system 

might go further and send the message to the service center over a computer 

network or over dial-up lines. 

Just as each of the other levels of diagnostic tools cannot completely replace 

lower levels of diagnostics, on-line diagnosis cannot replace other forms of troub· 

leshooting. Some failures will cripple essential system services, requiring diag­

nosis using the smaller kernel of subsystems used by the stand-alone diagnostics 

or requiring that the subsystems be tested individually with self-test. 
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On-line diagnosis is useful only when the system can continue to operate normally 

or nearly normally with the failed subsystem. Diagnosing this class of failures 

without stopping other system activities provides for graceful degradation of ser­

vices, permitting useful work to be done even while the failed subsystem is being 

diagnosed and repaired. 

1.3: Related work 

Most of the previous work in diagnosis of computer systems and reliable comput­

ing has been in the areas of component level diagnosis, particularly for produc­

tion testing. Production testing is a very different environment from system diag­

nostic testing or on-line diagnosis. There is also much literature on super-reliable 

computers, as used in aerospace applications. The cost of super-reliable comput­

ing puts it out of the general purpose computer market; super-reliable computing 

techniques are, therefore, not usable in the general purpose computing environ­

ment. There is, however, some literature that addresses the concerns of on-line 

diagnosis. 

The articles concerning the Electronic Switching Systems (Beuscher et al. and 

Downing et al.) provide insight into the problems of super-reliable computing in a 

real-time environment. These provide a good introduction to the power of on-line 

diagnosis. 

Clary and Sacane summarize the methods used to provide "built-in tests", those 

that test occasionally like self-test and those that test continuously such as 

error checking coding. This paper in a ·good overview of the methods available to 

the hardware and firmware designers to provide "built-in-tests". 
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Gowan explains the features of the Hewlett-Packard HP 300 small business com­

puter that enhance its serviceability. It outlines the presently used service stra­

tegy for the HP 300. It is particularly pertinent since my work in exploring on­

line diagnosis has been with this system. 

Taneda, Oku, and Nambe approach my subject most closely. They studied the 

the problems of on ·line diagnosis and describe an implementation of an on · lin~ 

test program for the Dendenkosha Information Processing System of Nippon Tele­

graph and Telephone Public Corporation. They identify three design objectives: 

detailed tests, no service interruptions, and ease of use. The former and latter in 

my system are left, for the most part, to the application program performing the 

diagnosis. My understanding of their work leads me to believe that what they 

mean by interruption is disruption. Preventing the disruption of normal service is 

performed in my system by a number of mechanisms discussed in later chapters. 

Taneda, Oku, and Namba identify sources of difficulty in meeting their design 

objectives. In particular they identify three sources of interruption (disruption) 

of normal service by the testing programs. One source is incorrect access to a 

device other than the device under test. Another source is garbage left on the 

test device media after testing is stopped either normally or abnormally. The 

third source of interruption (disruption) is conflicts over system resources 

between the test program and other system activities. These sources of disrup­

tion will be controlled by the system proposed here. 
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1.4: Method of Presentation 

This thesis is broken into 5 chapters. Of the remaining four, the next three 

divide the coverage of on-line diagnosis into environment, design, and implementa­

tion. 

Chapter 2 identifies the hardware and software structures involved in input and 

output and provides a perspective into the environment into which on-line diag­

nosis will be fitted. 

Chapter 3 develops the diagnostic manager as the manager of a new class of 

virtual resource. First the diagnostic manager is placed in the software hierarchy 

of chapter 2. Then services it must provide are motivated and developed. Also 

covered in chapter 3 are three functions performed by each 1/0 device for diag­

nosis. Next, methods of avoiding interference with other system activities are 

developed. 

Chapter 4 details the trial implementation of this strategy on the HP 300 com­

puter system. Covered are both hardware and software implementations. The 

purpose of the trial implementation was to develop an understanding of the real 

implementation problems encountered. It was also useful in showing that this 

strategy could be post-fitted to an existing system. 

Chapter 5 is a summary of the work presented here. Implications of the results 

are considered. Suggested, too, are directions for further work in on-line diag­

nosis. 

--- ----
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Chapter 2: System Environment Structure 

We begin by choosing a system structure that is representative of typical com­

puter systems available today. It is this structure that will serve as the basis 

for adding on-line diagnosis. 

The structure outlined here is similar to most computer systems and, therefore, 

provides a wide base of applicability to the development of techniques for on-line 

diagnosis. It is similar to the hardware and software structure of the Hewlett­

Packard HP 300 small business computer on which this work was done. This is 

not, however, meant to be a description of the HP 300. 

2.1: Hardware organization 

The hardware structure for the input/output part of a computer system can be 

viewed as a hierarchy. There is a single computational cluster of the system, 

consisting of the processor and the memory. One or more 110 channels each 

interface one or more 1/0 devices to the computational cluster. This structure is 

diagrammed in figure 2.1. What follows is a discussion of the function of each 

level in the hierarchy. 

2.1.1: Computational Cluster 

The computational cluster of the system controls input and output operations. It 

initiates operations by issuing requests to the 1/0 channels. The cluster is the 

source of data for output operations and is the destination of data for input 

operations. During on-line diagnosis, the computational cluster serves as the 
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diagnostician, accessing a peripheral in order to determine if the device is func· 

tional. Programs executed by the computational cluster perform the diagnosis. 

Accesses to the device under test (OUT) are initiated by issuing a request to 

the channel controller associated with the device. 

Errors encountered by either the channel or the OUT are reported to the compu· 

tational cluster. Reporting these errors allows lhe diagnostic programs to detect 

them and may allow the diagnostic test program to test the error detection 

mechanisms, as well, by introducing known errors. Some of the errors detectable 

by these mechanisms cannot be forced by the diagnostic program because they 

are internal on the device or the channel controller, or because they reflect phy-

sical errors and malfunctions of the device. Some errors detectable by these 

mechanisms should not be forced in the on-line environment as they might affect 

other 1/0 devices and other operations proceeding concurrently in the system. 

In order to perform on-line diagnosis we assume that the computational cluster is 

functioning correctly. This is reasonable since without a functional computational 

- -·---·-- ---- _____ _________ _ _____ , , .. ...... , .. ____________ __ 
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cluster, the operating system could not run and diagnosis cannot proceed on-line. 

2.1.2: 1/0 Channel Controller and 1/0 Bus 

The principal functions of the 1/0 channel controller are managing the usage of 

the shared 1/0 bus, relaying requests from the computational cluster to the 1/0 

devices, and controlling data transfers to and from the devices. As such, its 

function is communication between the computational cluster and the devices. 

The shared 1/0 bus connects several devices to the channel controller. Since 

the channel controller is the interface to the computational cluster and the com­

putational cluster controls all 1/0, the channel controller must be the source or 

the destination of each 1/0 bus transfer. Hence, direct device to device 

transfers are prohibited. We assume for concreteness that the channel con­

troller performs 1/0 bus allocation and arbitration. 

The relaying of requests from the computational cluster to the devices and the 

managing of the data transfers often involve considerable mechanism in implemen­

tations. In many systems, requests are presented as channel programs to be 

interpreted by the channel controller, producing a series of commands to the 1/0 

device. We will consider channel programs part of the physical device driver 

software. This presents the difficulty for on-line diagnosis that channel programs 

can be written that perform error handling without notifying the diagnostic pro­

gram. This will be discussed in Chapter 3. Data transfer management usually 

involves keeping counts of data transferred and performing address calculations 

for directly accessing the memory in the computational cluster. We need do no 

more than note its possible presence in the system, as these functions do not 

interfere with on-line diagnosis. 
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The 110 channel controller and 1/0 bus are introduced into this system model 

because they present a problem in on-line diagnosis. They present a point in the 

access path from the computational cluster to the OUT where access to several 

devices share the same path. A failure in this path will affect all the devices 

serviced by it. Furthermore, a failure of one of the devices may affect all the 

devices by causing the access path to fail. For example, if a bus driver for one 

of the devices becomes permanently active it could jam the bus, causing errors 

on bus transfers between the controller and any device. 

Last, it should be noted that some computer systems connect 1/0 device directly 

to the computational cluster without the shared 1/0 channel controller and 1/0 

bus. This arrangement does not invalidate this model but is a special case of it. 

In this case each 1/0 device has its own channel controller. This simplifies the 

probler.; above greatly by removing the channel imposed problem discussed 

above; however, in most systems there is some other point of shared access 

path so that this same problem appears elsewhere. 

2.1.3: 110 Devices 

The 1/0 devices connect to the system through the 1/0 bus. Requests from the 

computational cluster reach the device as a series of commands from the channel 

controller. The commands fall into four classes: data reads, data writes, status 

reads, control writes. 1/0 devices cover a wide variety of apparatus. Two 

important classes of 1/0 devices are storage devices and hardcopy devices. For 

concreteness, consider a storage device to be a disc pack drive and a hardcopy 

device to be a lineprinter. 
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Asynchronous signaling of request completion and of status changes is usually 

implemented but need not be detailed here. For our purposes it can be included 

in our model of the channel controller's bus allocation function. 

2.2: Software organization 

The software involved in 1/0 operations is also organized in a hierarchy. Each 

level presents an interface with more uniform characteristics than that below. 

Physical devices are transformed to logical devices and logical devices are used 

to make virtual resources such as files and virtual communication circuits. These 

virtual resources are used by applications to solve the user's problems. Figure 

2.2 diagrams this hierarchy. All software executes in the computational cluster. 

Virtual 
Resource 
Managers 

Logical 
Devices 

I 

User 

Application 

Hardware 

Figure 2.2 
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2.2.1: Physical Device Driver 

The physical device driver transforms the physical device interface into a logical 

device interface. It is the software module that issues requests to the 1/0 chan­

nel controller. As a result it must be an expert on the device. Since devices 

vary widely, there is typically one physical device driver for each model of dev­

ice connected to the system. 

The logical devices presented by the physical device driver are uniform in their 

recognition of generic requests and uniform within a device class for other 

requests. For example, the only differences between two different disc drives at 

tile logical device interface are the amount of storage on the device and its 

speed of operation. 

Physical device drivers also perform device specific error handling, often involv­

ing retrying the operation. This is a problem for on-line diagnosis as the test pro­

gram should know about each error that occurs during testing; however, other 

accesses to the device should not have to know about recoverable errors. The 

problem of error reporting will be approached in Chapter 3. 

2.2.2: Virtual Resources 

The logical devices of the physical drivers provide a somewhat uniform interface, 

but require considerable management to be useful. An additional layer of 

software provides this management, relieving the application from the burden of 

management and protecting the system from mismanagement. The virtual 

resources provided by these managers are more powerful than the logical and 

physical resources that implement them. For example, the files and directories 
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provided by a file manager present a simple interface to the application but may 

implement more storage than is available on a, single disc drive. 

The other aspect of virtual resource management is coordination. In a multipro­

cessing environment, care must be taken to control multiple accesses. Accesses 

for diagnosis must not cause errors in normal accesses. Since diagnosis may 

place the device into states that are illegal in normal operation, in most cases, 

other accesses to the device must be blocked during diagnosis. 

In order to provide virtual resources the manager must keep data about the state 

of the virtual resource and about the state and characteristics of the logical 

device. The virtual resource manager must protect this data against incon­

sistency by verifying that all requests are consistent with the current state. 

The state data is not accessible to the application. Not only must an on-line 

diagnostic be careful not to leave the device in an inconsistent state, but it must 

also be careful not to leave any virtual resource management data in an incon­

sistent state. 

2.2.3: Applications 

Applications are all users of virtual resources. These programs do not deal 

directly with devices or synchronization. They have at their disposal all virtual 

resources in the system. All user programs and most system utilities are written 

as application level programs. The wide variety of resources and system ser­

vices, such as multitasking and memory management, make this a powerful 

environment for program execution. Thus it is desirable that an on-line diagnostic 

be written to run as an application program. 

- -----·-------- _ ,._ - ·· ·-- .. ---····-------------- ---
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2.3: Summary 

An environment has been developed in this chapter ·for the development of an 

on-line diagnostic strategy. The hardware hierarchy was built outward ·from com­

putational cluster through the 1/0 channel controller to the peripheral device. 

The software hierarchy of physical device driver, virtual resource manager, and 

application was also developed. Along the way problems for on-line diagnosi~ 

were identified. 

In the next chapter we will explore the placement of a diagnostic interface in 

this hierarchy and what functions it should perform. Solutions will be sought for 

the problems mentioned in this chapter. 
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Chapter 3: Diagnostic Manager 

It is evident from the discussion in chapter 2 that the virtual resources provided 

in· computer systems have very different characteristics than the devices used 

to implement them. A new class of virtual resource is proposed here whose 

characteristics are more similar to those of the device under test. 

3.1: Characteristics of the Device-Under-Test Virtual Resource 

The characteristics of a device-under-test virtual resource (OUT) should be 

chosen to aid on-line diagnosis. To that end the OUT should mimic the state of 

the physical device implementing it, as it is this device that is being tested. In 

addition access to the OUT should not cause misoperation of any other activity in 

the system. 

To aid on-line diagnosis a OUT virtual resource must report an error whenever the 

physical device that implements it encounters an error. Failed operations should 

not be automatically retried. Furthermore, the errors reported should map one-to­

one onto the physical device errors producing them. In other words, each device 

error should have a distinct error representation at the OUT interface. We will 

call this characteristic truthful error reporting. 

The power of access to the low level characteristics of the device must be con­

trolled so that other activities can proceed unharmed. Certainly, the truthful 

error reporting characteristic can easily be provided by allowing access directly 

to the physical device, bypassing the physical device driver. However, this 

uncontrolled access can interfere with other activities. Device access must be 

coordinated among the various activities using the device. Furthermore, 
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accesses to the device must not make illegal access to the 1/0 channel con­

troller or leave the device in an illegal state. While the later could be solved by 

careful device design, in most cases it is not. 

A better solution is to provide at the virtual resource level a diagnostic manager 

as a manager ot OUT's which has the responsibility tor synchronizing access to 

the physical device with other activities and for assuring that the channel is 

never improperly accessed and that the device is left in a state so that "normal" 

accesses can continue after testing. 

In order for the diagnostic manager to report device errors truthfully, all errors 

must be reported truthfully by the physical device driver. We said, however, in 

chapter 2 that the physical device driver handles all device specific errors, often 

by retrying. Retrys violate the characteristic of truthful error reporting by hiding 

retry recoverable errors from the diagnostic manager. 

The only apparent solution to the retry problem is to add new requests to the 

logical device interface (between the physical device driver and the diagnostic 

manager). These requests should provide accesses to the device without invok­

ing the normal retry mechanism should an error be encountered, but report the 

error instead. 

This, then, is the basic architecture of on-line diagnosis: the OUT virtual 

resource is managed by the diagnostic manager accessing logical devices 

through special requests that report errors truthfully. The software hierarchy is 

diagrammed in figure 3.1 below. The remainder of this chapter adds further detail 

to this strategy and discusses how to solve other problems mentioned in chapter 

2. 
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User 

Diagnostic Application 

Diagnostic Manager 

Physical Device Drivers 
(truthful error reporting) 

Hardware 

Figure 3.1 

3.2: Diagnostic Manager Interfaces 

In this section we will explore several diagnostic interfaces to the application 

program. First we will explore some administrative interfaces and then some use-

ful test functions. These interfaces are service procedures that may be called 

by any program that has the right to use them. Since sufficient protection for 

other activities is provided by the diagnostic manager this is no reason that all 

programs cannot have the right to use these interfaces. On the other hand, the 

diagnostic interfaces may breach the security system. In that case the right to 

access the diagnostic interfaces should be controlled in the interest of maintain-

ing security. 
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3.2-1: Begin Testing 

The interface to create a DUT virtual resource is called diagnostic open. The 

name is indicative of its analogy to file management open. Like file management 

open, the user calls this procedure to create an instance of the virtual resource 

in the environment of the application. Like the file manager, the diagnostic 

manager handles most synchronization when the virtual resource is created. 

Local data used to store the state of the virtual resource is allocated and initial­

ized at this time. 

The diagnostic open interface accepts a device name to indicate which physical 

device is to be tested. This name is translated by the diagnostic manager into a 

logical device address. For consistency all virtual resources should use the same 

device names. 

Coordination by the diagnostic manager at a diagnostic open consists basically of 

checking whether any other use is being made of the device and if it is not 

already in use, allocating it for the exclusive use as a DUT for a particular user. 

If the physical device is already in use the application is denied access. This 

strategy of exclusive allocation is simplistic and not always desirable. Therefore, 

we will return to it later. 

3.2.2: End testing 

At the conclusion of testing the application calls diagnostic close to handle deal­

location of the virtual resource and its implementation data in the OUT manager. 

Diagnostic close also releases synchronization control by the diagnostic from the 

device. In the case of exclusive access, the lock is removed so that other 



- 26 . 

activities can access the device. 

There is one additional function that may be performed by diagnostic close. If 

one of the diagnostic tests fails, diagnostic close may, at the request of the 

diagnostic application, mark the device as off-line so that other programs cannot 

access the failed device. This function should be performed by diagnostic close 

if there is the chance that device may be allocated to some other activity 

immediately after being closed. This is not a problem in systems where the com­

mon allocation and synchronization mechanism allows a device to be in use but 

not available for further allocation. In that case an additional interface should be 

available to remove the device from service. 

3.2.3: Device Diagnostic Functions 

Device diagnostic functions provide the interface to perform the actual diagnosis. 

Two different approaches can be taken to choosing these interfaces. These rou­

tines could have access to all of the functions at the logical device level, thus 

the diagnostic manager would only perform synchronization with other activities 

and pass all other calls unchanged to the proper logical device interface. This 

strategy gives the diagnostic application programmer a low level interface to the 

device and assures that each diagnostic application will work with only a small 

number of different devices. 

The other approach is to provide higher level diagnostic functions such as write­

read-compare. Diagnostic applications can then be written with little or no dev­

ice specific knowledge. To that end, five high level test functions are proposed 

in this section. 
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Three of the diagnostic functions are based on physical device commands that 

are recognized by devices in the HP 300 computer system. They were designed 

by foresighted engineers to aid in system diagnosis. Their use is presented here 

because they aid the diagnostic writer greatly. With the limited set of diagnostic 

functions presented here they are necessary for any meaningful diagnosis. With 

another set of diagnostic functions they might not be needed. The other two 

tests are diagnostic write and diagnostic read. These provide for end-to·end 

functional testing. 

3.2.3.1: Identify 

The identify diagnostic function uses the identify command to request a particu­

lar device to respond with its identify code. This code indicates the type of 

device (ie printing) and the particular model. 

While this command was conceived to aid in automatic configuration , it is also 

useful for diagnosis. Identify provides an initial. check that the OUT is present at 

the channel address expected and is alive. Alive here means at least partially 

functional. Additionally, a garbled identify code usually indicates that two dev­

ices . are sharing the same 110 address. 

The identify function returns "failed" if the device does not respond with the 

identify code that is ex:pected for that device. Identify should be used at the 

beginning of every diagnostic so to ensure that diagnosis is being performed on 

the right device. It can also save much time if the device is powered-off or 

disconnected from the 1/0 bus. 
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3.2.3.2: Loopback over 1/0 bus 

Loopback over the 1/0 bus consists of sending data to the peripheral device 

interface and then reading it back. This allows the access path from the compu­

tational cluster to the device to be checked. Loopback only tests the device 

interface to the 1/0 bus not the device function. The goal of loopback testing is 

to isolate testing the 1/0 bus interface, 1/0 bus, and channel controller from test­

ing the device functions. Patterns can be chosen to test for "stuck at" and 

shorted faults in the 1/0 bus. 

The loopback function uses the loopback device command to effect the transfers. 

The data returned is compared to the data sent. If any data differ loopback 

returns "failed". Loopback, too, should be performed before any functional tests. 

3.2.3.3: Self-test 

Self-test is a comprehensive, low level, functional test that a subsystem per­

forms internally. Self-test is a powerful change in the way diagnosis is per­

formed. Self-test places the burden of fault isolation on the device, providing an 

object-oriented approach to diagnosis (command the device to diagnose itself). 

An advantage of self-test is that in testing itself, the device has much greater 

accessibility to internal nodes than any of the software in the computational clus­

ter can, thus diagnostics are less involuted easier to write and to understand. 

By using the same encoding for "passed" the interface to each device can be 

the same for all others except for the interpretation of the "failure" code that 

indicates which subassembly to replace. Verification programs that test whether 

a device is functional can be written so that they will test any physical device. 



. 29 . 

3.2.3.4: Diagnostic Write 

Diagnostic write performs otherwise normal accesses to the device, but reports 

all errors truthfully. Naming the destination of writes could be handled in several 

ways. The names could be addresses on the logical device. This violates the 

goals of high level interface and device independence and may compromise sys­

tem security. The destination could always be a reserved "test area". Reserv­

ing the extra space is wasteful of storage space on the device for the infre­

quently used diagnostic. Also, the fact that the space is "special" indicates that 

accesses to it are not the same as normal accesses and may not use the same 

mechanism. 

The destination could be a file on the tested device already opened by the diag­

nostic application using the fi·le management open interface. The diagnostic 

manager must be carefully designed to avoid deadlock in the access control 

mechanisms governing files and OUT's when the file is implemented in storage on 

the OUT. Another concern when using application provided files for testing is the 

handling of the file on abnormal program termination. Most file managers provide 

files that are in a legal state after abnormal termination. If, in addition, the file 

manager provides a means to declare a file as temporary so that its space will 

automatically be reclaimed after use, the problem of collecting diagnostic garbage 

is solved as well . If the file manager does not provide temporary files of this 

type the diagnostic application will need to perform diagnostic garbage collection 

as best it can. While application provided files are a flexible choice for naming 

the destination of diagnostic writes, this choice does not compromise system 

security since all security features of the file manager intermediate in the file 
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open and in the diagnostic accesses as well. 

3.2.3.5: Diagnostic Read 

Diagnostic read reads data from the device implementing the OUT, reporting any 

errors truthfully. Like diagnostic write, diagnostic read should be implemented 

using as much of the normal mechanism for reading as is possible. Normal 

mechanism in most cases means that access should be through the file manager's 

read mechanism. 

As in diagnostic write, there are several alternatives for .determining the address 

for reading from the device. The most important consideration is that diagnostic 

read and diagnostic write be consistent in their interface to the application. As 

discussed above, application provided fil&$ seem the most flexible and easiest to 

use. 

3.3: Synchronization of Accesses to the Physical Device 

Care must be taken so that accesses to the device for diagnosis do not inter­

fere with normal accesses. The simplest solution to this problem is to give the 

diagnostic exclusive access to the device while diagnosis is being performed. 

Exclusive access, however, is not always best. In some cases diagnostic 

accesses and normal accesses can be interleaved, just as accesses to data 

may in some cases be interleaved. The. advantage of interleaving accesses is 

that diagnosis can minimize its impact on system performance in verification 

usage by testing a device that is in service. 
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There are three ways that tests can be grouped, according to whether and how 

they can be interleaved safely with other accesses. Some tests, such as iden­

tify, do not alter the state of the device in any way, are performed by a single 

request, and do not demand internal consistency in the device state or the data 

stored by it. A test of this class can be performed at any point in any stream of 

requests to the logical device, without interfering. We will term this class of 

tests, concurrent. 

Some tests do alter the state of the device, but transform the device state from 

one legal state to another. Normal read and write transactions have similar pro­

perties. One way they alter the device state is by advancing the read/write 

point by performing a seek operation or by advancing the media past the 

read/write point. Additionally, these tests may make several requests to the log­

ical device that must be performed without intervening requests. This is si.nilar 

to update access to data, the state of the device must not change between 

requests. We will call this class of tests, shared access. Shared access 

requir.es blocking other accesses to the device at the beginning of a test and 

releasing it at the end of the test. Self-test is a shared access test. 

The third class of tests require exclusive access to the device. Exclusive 

access is required whenever two or more tests must execute in sequence 

without any intervening state changes in the device or whenever a test leaves 

the device in an illegal state. Depending on the details of how the operating 

system implements multiprocessing the diagnostic may be able to measure timing 

of operations on a device being tested with exclusive access. The diagnostic 

manager must return the device to a legal state (usually reset) before returning 

the device to normal service. 
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Specification of the class of test as either concurrent, shared, or exclusive may 

occur when the DUT is opened, just as the access mode of a file is specified at 

open. The diagnostic manager must be certain that all access control for a OUT 

is released when the device is closed or when the diagnostic terminates abnor­

mally. 

3.4: Diagnostic Data Bases 

In order to implement the diagnostic interface for a wide variety of devices, the 

diagnostic manager needs a data base. The diagnostic data base contains useful 

and necessary information about each physical device. The data base includes 

such information as which diagnostics test functions may be performed on the 

device and the size of the loopback buffer provided by the device. 

The diagnostic manager also needs access to other data. It must have access 

to the mapping from device names as known by the user to logical device 

addresses. It must also access synchronization data tor control of accesses to 

the device. Synchronization data must be shared by all virtual device managers 

to prevent interference at the device between accesses by different virtual 

resource managers. Of course, the diagnostic manager must observe the same 

protocol as the other resource managers in accessing the synchronization data to 

protect the integrity of the synchronization data. 
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3.5: Diagnostic Manager Summary 

In this chapter we have developed a diagnostic manager that manages physical 

devices during diagnosis and verification. Its chief purposes are to protect other 

activities from the diagnostic activity and to provide higher level interfaces for 

diagnosis, removing much low level detail. Basic diagnostic interface functions 

were introduced. Diagnostic open and diagnostic close control the allocation anp 

deallocation of diagnostic virtual resources and control some synchronization. 

The test functions identify, loopback over 110 bus, self-test, diagnostic write, 

and diagnostic read provide basic diagnostic test capability. The issues of syn­

chronization and of diagnostic data bases were also discussed. 

In the next chapter specifics are given of a trial implementation on an HP 300 

computer system. 
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Chapter 4: Implementation on the HP 300 

In this chapter a trial implementation on the HP 300 small business computer is 

detailed. The purpose of . implementing the diagnostic manager is to show the via­

bility of this approach and also to show that this approach can be built into an 

existing operating system of the common form outlined in chapter 2. 

While the implementation is not complete, it is viable for demonstrating the 

approach. Only diagnostic open, diagnostic close. identify, and self-test were 

implemented. Loopback, diagnostic write, and diagnostic read were not imple­

mented. In addition an error message formatter provides English language trans· 

lations of error .codes provided by the diagnostic test functions. 

4.1: Diagnostic Manager Implementation 

The diagnostic manager consists of a set of applications interface procedures 

and a diagnostic data base. The interface procedures are the diagnostic inter­

faces developed in chapter 3. These interfaces manipulate the diagnostic data 

and issue requests to the logical devices. 

The diagnostic manager implementation was complicated by implementation time 

limitations that prevented the modification of all physical device drivers to recog­

nize diagnostic requests and report errors truthfully. As a solution a very simple 

physical driver was written that recognizes only the diagnostic requests for iden­

tify, loopback, and self-test and reports their errors truthfully. This physical 

driver works properly with most devices in the system for these commands. 

Installing this diagnostic device driver as a temporary physical driver for a dev­

ice is a delicate process which will be described, briefly, in this section. 
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4.1 . 1 : Diagnostic Data Bases 

The diagnostic manager stores data for four purposes. Static data is stored con­

cerning the diagnostic capabilities of the physical devices in the system and the 

physical drivers for those devices. A static symbol table associates device 

names as known by the user with logical devices. Synchronization data is shared 

with all other virtual device managers. And, last, the state of each allocated DUT 

is kept by the diagnostic manager. 

Diagnostic capabilities of the devices vary. Not all devices implement self-test, 

for example. To avoid making invalid requests to a device, the diagnost.ic 

manager should know which requests the device can perform. The diagnostic 

manage.· also requires device specific constants that are parameters to ·the 

requests. The size of the device input buffer used for loopback is such a device 

specific constant and is the only device specific constant used in the trial imple­

mentation. 

For each device, an indication is kept of whether its normal physical device 

driver can recognize diagnostic requests and report errors truthfully. This indica­

tion makes possible for a gradual transition from having no device drivers recog­

nize the diagnostic requests to having all devices recognize them. If the normal 

device driver does not recognize the diagnostic commands the diagnostic device 

driver replaces it temporarily. 

The device name table is a system wide data base that associates device names 

as known by the user with logical . device addresses. The contents of the device 

name table is fixed when the hardware configuration is defined. Additionally, each 
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process has an active equate table which allows local renaming of devices and 

files. To determine the logical device address the active equate table is searched 

for the device name supplied by the application. If the name is found in the 

active equate table, it is translated to the corresponding global name, if not, the 

name is already a global name. The global name is looked up in the device name 

table and logical device address is retrieved. 

Synchronization data is maintained to control multiple accesses to each of the 

devices. The synchronization data is shared by all virtual resource managers so 

that accesses by different virtual resource managers to the same device are 

properly_ controh~d . Careful adherence to the established protocols for accessing 

the synchronization data are necessary so that synchronization errors do not 

occur. 

Each instance of a OUT has some state information associated with it, called the 

diagnostic control block. This information includes the logical device address of 

the device being tested, pointers to buffer space used for 1/0 transfers, and a 

list of system resources that can be allocated for implementing a particular OUT. 

System resources include buffer space, id's, files, etcetera. These system 

resources must be deallocated when the OUT is closed and on abnormal termina­

tion of testing. State information also includes the state of the diagndstic physi­

cal driver if used by this OUT. 

The id's provided by the HP 300 operating system are its means of providing an 

object interface to virtual resources. Open creates an id which is only valid in 

that user's process. All further references to the virtual resource use the id 

number corresponding to that id. The id number is used by the virtual resource 

manager to access the state (control block) of the virtual resource. Additionally, 

··---- --·--·---·--·- --- -------·· · ···--·-··- ··-- - - - ----------------
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id's are typed. Virtual resource managers check the type of the id's passed to 

them to ensure that each manager only operates on its own type of object. 

Additional mechanism .in the HP 300 operating system provides for termination 

deallocation of virtual resources. For each process a list is kept of all currently 

held id's. On either normal or abnormal process termination the list is scanned 

and the proper virtual resource manager's termination handler is invoked for each 

virtual resource still allocated. The proper virtual resource manager can be 

determined by examining the type of the id. 

In order to implement a new type of object for OUT, minor changes were made to 

the id manager. More major changes were required · to the termination handler to 

properly handle OUT id's. The changes to the termination handler were not imple­

mented. 

4.1.2: Application Interfaces 

Five diagnostic interface procedures were implemented, diagnostic open, diag­

nostic close, identify, self-test, and diagnostic error message formatter. The first 

four are implementations of diagnostic interfaces developed in chapter 3. Loop­

back, diagnostic write, and diagnostic read were not implemented. 

Diagnostic open creates an instantiation of a DUT. It takes as one argument the 

name of the device to be tested. The device name is translated to a logical 

device address by look up in the system wide device name table. The diagnostic 

control block is allocated and initialized with device specific information from the 

diagnostic data base and parameters supplied by the application as arguments to 

diagnostic open. One argument is the class of test. If the class of test is 
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exclusive an attempt is made to allocate the device to the application for 

exclusive access. If the class of test is shared an attempt is made to allocate 

the device for shared access. Of the class of test is concurrent the device is 

not allocated to the application. An id of type OUT is allocated and is initialized 

with a pointer to the diagnostic control block. If any error is encountered during 

open, all allocations are backed out and the error is reported to the application. 

Diagnostic close deallocates the resources allocated by diagnostic open and 

other temporary resources used by the diagnostic tests that for some reason 

were not previously deallocated. Additionally, if the device failed any of the 

diagnostic tests, it is marked unavailable for use and a warning is sent to the 

application. Diagnostic close will not abort if it encounters an error in attempting 

to deallocate a resource but will continue attempting to deallocate the other 

resourc..:s. If an error occurs the application will always receive an error indica­

tion; however, if multiple errors are encountered, the application will only receive 

a single error indication corresponding to one of the errors actually encountered. 

Identify and self-test are diagnostic tests that rely on the hardware diagnostic 

capabilities of the peripherals on the HP 300. They issue requests to the logical 

device. If the device fails the diagnostic test, the failure is marked in the diag­

nostic control block and an error code and failure syndrome are returned .to the 

application. 

Because the system physical device drivers do not recognize diagnostic 

requests, a special diagnostic physical driver must be installed temporarily as the 

physical driver for the device being tested. The installation and removal of the 

diagnostic physical driver is performed at the beginning and end respectively of 

the diagnostic tests. Installation involves interfacing to memory management to 
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make the diagnostic driver present in physical memory at a fixed physical 

address, then manipulating hardware tables under protection against interruption. 

The diagnostic error message formatter accesses the diagnostic error message 

text data base to translate error codes returned by the test routines into English 

text. For some errors additional information about the error is returned by the 

test routine. The additional information, called the error syndrome, is vital fo.r 

ascertaining the exact fault in the device. For example, self-test returns the 

error code for "failed self-test" and, in addition, the failing sub-test number 

returned by the device. The diagnostic error formatter could translate the error 

information into text such as "Self-test failed testing SEEK function on device 

FLEXDISC. Replace subassembly C." 

4.2: Physical Device Driver 

The physical device driver must present a logical interface with normal functions 

for 110 operations plus additional functions for _diagnostic requests. These addi­

tional functions provide truthfully reported versions of normal requests and addi­

tional requests that use the diagnostic commands of the devices. To add these 

functions would require substantial changes to each physical device driver. How­

ever, since for these functions, no error processing is required and since the 

interface to device diagnostic commands is uniform, a single diagnostic device 

driver can serve all of the devices for these functions. 
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4.3: Limitations of the Diagnostic Subsystem Implementation 

The implementation of the diagnostic subsystem suffers from several limitations. 

The limitations are not inherent in the strategy of chapter 3, but present in this 

implementation. All are the result of incomplete implementation or incomplete 

implementation design. 

The most noticeable limitation is the inflexibility of the application interface. The 

only diagnostic test interfaces provided are identify and self-test. The applica­

tion does not have many options in testing a device. Typically, identify is per­

formed followed by self-test. If the device passes both tests, no further and 

more rigorous tests are available. With all of the test interfaces described in 

chapter 3 considerably more choices are available for the application to pursue 

additional testing. It is my feeling, however, that additional diagnostic test inter­

faces, beyond those described in chapter 3, need to be defined to increase the 

flexibility of the application interface. 

Another serious problem with the implementation is that the test routines were 

not designed to work with all types of 1/0 channel controllers. The implementa­

tion design was for a general 1/0 channel controller. The HP 300 may, however, 

have other types of channels. In particular, the asynchronous data communica­

tion controller 110 channel, which interfaces terminals to the computer via asyn­

chronous communication facilities, is not supported by the diagnostic manager. 

The difficulty lies in different logical device commands and different channel struc· 

ture. The capability to access · different types of channels for diagnosis would 

have expanded the base of applicability of the implementation; however, it also 

would have complicated the diagnostic manager. More seriously, though, diagnos­

tic test interfaces appropriate to all channels, such as diagnostic read and diag-
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nostic write must be developed. For example, the semantics of loopback in a 

communication channel are not immediately apparent. 

A third limitation of the diagnostic manager implementation involves abnormal ter­

mination of the diagnostic. The problem is that program termination is delayed 

until all outstanding 1/0 to the logical devices has completed. This is a design 

feature of the HP 300 operating system. On some devices, however, the self­

test request may take as long as a minute to complete or to fail due to a 

timeout. The termination strategy in the HP 300 was not designed for very long 

1/0 transactions. As a result, termination of the diagnostic program may be 

delayed for up to a minute while diagnostic 1/0 completes. A clever design will 

be needed to correct this problem in the HP 300 termination strategy. The prob­

lem is not fundamental, but is a problem in this operating system. 

Another limitation of this implementation is that the disc drive containing the sys­

tem volume may not be tested. The reason for the difficulty may be seen by 

comparing the system structure of the HP 300 to the structural model of chapter 

2. The system .volume is used both as ordinary file storage and as backing store 

for the virtual memory subsystem. The only way to fit the virtual memory function 

of the disc into the model of chapter 2 is to place that function of the disc into 

the computational cluster. Since the diagnostic application and the diagnostic 

manager execute in the computational cluster, the diagnostic manager may not 

test the system volume without disrupting the operation of the computational clus­

ter on which the diagnostic manager must run. Unless the system provides for 

dynamic reconfiguration of the virtual memory backing store so that a different 

disc may serve, at least temporarily, as backing store, the system volume cannot 

be tested by on-line diagnostics. The problem with testing virtual memory back­

ing store is fundamental to this diagnostic strategy, stemming from the 
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incompatibility with the underlying system model. 

4.4: Sample Diagnostic Application 

A sample diagnostic application program was written to exercise the diagnostic 

manager and demonstrate it. The application allows the user to select a device 

for test by giving its name, and then, execute the diagnostic test of either of 

the diagnostic test interfaces by pressing a "soft-key" beside the name of the 

test on the screen. The application takes advantage of the multi-window display 

of the HP 300 console to present a history of the tests performed and errors 

encountered, as well as the menu of tests, an environment window stating that 

the display is for the "On-line Diagnostician", an input window showing user input, 

and an error window showing input errors. 

The interface to the user puts diagnosis and verification in terms that are familiar 

to the user. Device names are the same names used in all dialog with the com­

puter system. Even the display is familiar to the user as the diagnostician's 

usage of the display is similar to that of other subsystems. In all, the user need 

not feel intimidated by diagnostics or the on-line diagnostician. 

Much of the elegance of the user interface is attributable to having operating 

system services to extend the diagnostic application environment. Services to 

enhance user interface are seldom if ever found in stand alone diagnostic moni­

tors, but are usually found in general purpose operating systems. 

·--------------·---------------- ---------- --------
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4.5: Implementation Summary 

The implementation of the diagnostic manager on the HP 300 was an educational 

experience. Experimentation with the implementation pointed the way for much 

of this thesis. But, also, the implementation substantiates the thesis by showing 

that it is a workable approach. It also shows that the diagnostic strategy of 

chapter 4 can be built after-the-fact into an existing computer system. 
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Chapter 5: Conclusions 

In this thesis features were identified and a design methodology developed to 

implement an interface so that on-line diagnostic programs can be written. An 

implementation was discussed that was undertaken to gain greater understanding 

of the problem and to show the viability of the design methodology developed. In 

this chapter the results of this thesis will be summarized and their implications 

noted. Additional directions for research will be suggested. 

5.1: Summary of the Results 

In chapter 2 a model was developed of the hardware and software environment 

of concern for diagnosis in a general purpose operating system. A design metho­

dology was developed for on-line diagnosis in systems of the form modeled in 

chapter 3. The basis of the design methodology is a virtual resource manager 

for device-under-test virtual resources (OUT's). 

accesses a OUT to diagnose a physical device. 

A. diagnostic application program 

The diagnostic manager makes 

diagnostic requests to the logical device which is implemented by the physical 

device driver. The physical device driver accesses hardware. 

The virtual resources supplied by the diagnostic manager have characteristics 

that aid on-line diagnosis. In chapter 3, characteristics of a OUT to aid on-line 

diagnosis and protect other activities from disruption were developed. These 

characteristics are truthful error reporting and controlled access synchronized 

with accesses by other activities. 

Also, in chapter 3, seven interfaces that the diagnostic manager might provide to 

the application are described. These interfaces fall into three categories. 
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Diagnostic open and diagnostic close are administrative interlaces, for allocating 

and deallocating bUT's. Diagnostic write and diagnostic read are truthfully 

reported versions of interfaces available from other virtual resource managers. 

Identify, loopback, and self-test are special purpose diagnostic functions utilizing 

special device capabilities for diagnosis. 

In chapter 4, a trial implementation is described. The implementation both serveq 

as an arena for developing the ideas presented here and as a verification of 

their viability. 

5.2: Implications 

The availability of the capability for on-line diagnosis greatly reduces the · cost .of 

using diagnosis and verifjcation. Use of lile diagnostic capabilities to verify that 

peripherals will particularly benefit from the low cost of on-line diagnosis. The · 

low cost takes several forms. Since other activities are not stopped to run a 

diagnostic, availability is enhanced since the computer system is still available 

during diagnosis. Additionally, a trained technician is not needed ·to diagnosis the 

system; the user may diagnosis a peripheral without aid. Also, the ease of use 

and the immediacy of being able to perform diagnosis while other work proceeds 

will enhance user satisfaction with the computer. 
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5.3: Additional Research 

Several areas of additional research are suggested. As suggested in chapter 4, 

more work is needed in defining the diagnostic manager interfaces to the applica­

tion. The set presented here is restrictively small. 

The problem of diagnosing the backing store for virtual memory is typical of the 

problems of diagnosing any resource that cannot be accessed exclusively, 

except for a very short time. This problem, too, deserves attention as its solu­

tion will allow the 1/0 channel controllers and the components of the computa­

tional cluster to be tested on-line in addition to peripherals. 

While not discussed previously here, it became apparent during this research 

that there exists a close logical link between the system error logging facility 

and the diagnostic monitor. Some means of integrating the two seer11s a 

profitable undertaking. One possible link is in automatic invocation . of diagnosis 

when there is an excessive error rate on a particular device. Another link might 

be to use trend analysis to aid diagnosis. It seems clear that the diagnostic 

manager and the error log exist to serve similar purposes. Both serve to aid 

maintenance and service. 

5.4: Concluding Remarks 

On-line diagnosis is a tool that can change the user's perception of computer · sys­

tem reliability. The availability of tools to verify and diagnose parts of the sys­

tem easily by users and service technicians alike will give the user added 

confidence in the computer system by encouraging verification of system parts 

using the diagnostic tools and also increase system availability by allowing diag-
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nosis to be performed without stopping other productive activities. 
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