

::

Loose Consistency in a Personal Con1puter Mail System

by

Michael H. Comer

® Michael H. Comer 1984

This paper describes research performed at
Hewlett-Packard Personal Office Computer Division

Massachusetts Institute ofTechnology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

1

::

Loose Consistency in a Personal Con1puter Mail System

by
Michael H. Comer

Submitted to the
Department of E1cctrical Engineering and Computer Science

on May 11.1984 in partial fulfillment of the requirements
for the Degrees of Bachelor of Science and Master of Science

Abstract

This thesis discusses a prototype mail system designed with the personal computer in mind. The
nature of the personal computer presents a number of problems for the traditional networked mail
system. The primary problem arises from the fact that personal computers are powered down more
often then their mainframe counterparts. This problem is compounded by the fact that a personal
computer that is powered up might not be listening to the network (online). Because of this. it is
potentially difficult to find a time when both the source and destination personal computers are
online so that a message can be exchanged. This problem is addressed by the mail system by using·a
mail serving machi!le·and the concept of localization of control. which states that the initiative for aU
exchanges of information resides with the local system (as opposed to with the server).

A secondary problem presented by the personal computer results from the fact that personal
computers are inexpensive. Because of this. a given user might have a number of machines. This
user would likely want a single mail identity across all of his/her machines. In addition. he/she
would like to have equal access from these machines to his/her messages. with a minimum of
repetition. For example. a message that is read and saved on one machine should not appear as a
new message on any of the other machines; but rather. it should be available for examination as a
saved message at any of these other machines. Such consistency. however. cannot always be strictly
maintained. Thus. the mail system implements the concept of loose consistency. The idea of a
machine is generalized to the concept of a mailbox. which contains the mail functionality and files
and which can be moved from one machine to another. A protocol is developed to maintain loose
consistency of a user·s mailboxes. A prototype mail system using this protocol was built and tested.
but not placed in service.

Finally. integration of the protocol into a mail system where loose consistency is maintained across
heterogeneous machines. is discussed. There is a discussion of how the prototype mail system might
be integrated with XERox·s Grapevine mail server. There is also a discussion of how the loose
consistency algorithm can be used in other systems that maintain multiple copies of some object

Key words: personal computer. electronic mail. loose consistency. mail server. weighted voting.

2

A c know Iedge1nents

I would like to thank Professor Jerome Salt.zer fi>r his comments and suggestions that prompted me to

examine the subject in a much broader light. and for the time he invested in reading the drafts of this

thesis.

This topic was investigated and the mail system developed at Hewlett-Packard Personal Office

Computer Division. I would like to thank Greg Sorknes for his supervision of the thesis at Hewlett­

Packard.

3

Table of Contents

Chapter One: Introduction 6
~

Chapter Two: The Prototype Environment 11

Chapter Three: Mail System Fundamentals 13

3.1 The Mail Protocol 13
3.2 The Mail System Architecture 15 :

3.2.1 The Mailbox 17
3.2.2 The Server In-Queue 21
3.2.3 The Server Out-Queue 22

Chapter Four: Mail System Operation 24

4.1 Mail System Operation: The Mailbox 24
4.1.1 Automatic Operation 24
4.1.2 User-Initiated Operation 27

4.2 Mail System Operation: The Server 29
4.2.1 Processing New Memos 29
4.2.2 Processing Update Memos 30

4.3 Remote Operation 36
.!

Chapter Five: The User Interface 39

5.1 The Prototype System 39
5.2 Improvements 42

Chapter Six: Extensions 44

6.1 The Protocol 44
6.2 The Algorithm 46

Glossary 48

References 50

4

..

Table of Figures

Figure 1·1: Types ofMail Networks
Figure 1·2: A Tries to Send Message to 8
Figure 2·1: Workstations
Figure 2·2: Prototype Target Network
Figure 3-1: Mail System Protocol Example
Figure 3-2: Memo Structure
Figure 3-3: Directory Entry Structure
'Figure 3-4: Hold Queue Entry Structure
Figure 3·5: Server Memo Structure
Figure 3·6: Mailbox Architecture
Figure 3·7: Server. Directory Entry Structure
Figure 3·8: Server Out-Queue Architecture
:Figure 3·9: Mail System Architecture
Figure 4·1: Normal Keep Update
Figure 4· 2: Normal Delete Update
Figure 4· 3: Delete After Keep Race
Figure 4·4: Keep After Delete Race
Figure 4·5: Remote Operation
Figure 4·6: Remote Name Breakdown

s

7
8

11
12
14
15
17
17
18
19
20
21
23
31
32
33
34
36
37

:

Chapter One

Introduction

Electronic mail is one of the primary services of a networked environment. Traditionally. this mail

system was restricted to multi-user computers where the high cost and complexity of providing the

network link could be distributed over a large number of users. The advent of the personal computer,

with its increasingly powerful processors, and the development of LSI and VLSI networking

technology, however, threaten to break this tradition.

Currently, the thrust of the networking market for personal computers tends to be directed toward

sharing expensive peripheral devices such as printers and large disks. Mainframe systems may be

supported on the network but they will function primarily as intelligent servers. Neither the personal

computer nor the mainframe will be a full partner in the network of the other.

Although electronic mail is not yet a big issue in the personal computer network market, it seems as if

it is just around the corner. As soon as personal computer networks are in place, users (and vendors)

will be looking for ways to take advantage of their network. Mail is a logical candidate.

The next step seems to be the integration of the personal computer mail system into the mainframe

mail system. In this way, mail can be sent longer distances over the existing mainframe mail system.

This integration would probably occur in one of two ways.

One way to integrate the two systems is to simply build an interface between the two. For example,

there might be a mainframe server on the personal computer network that is connected to another

network. This server could act as a mail gateway, shuttling, and possibly translating, mail between

the two networks. This type of integration would probably be used in systems where the mail

protocols for the two networks differ.

The second way involves making the personal computer a full partner in the mainframe network.

This is a much more complex undertaking than the idea of the personal computer network presented

above. The interface to the mainframes is potentially much different than the notion of a server. This

type of integration would probably be used in systems that are designed from the stan for this

6

purpose.

(a)

(b) MF

MF (c) I MF l~=====t@F======t
----~

(a) PC-Only; (b) Mail-Gateway;
Cc) PC-MF.

Figure l·l:Types of Mail Networks

Three kinds of personal computer n:tail networks have been presented (see figure 1·1). They are: 1)

Personal computers only (PC-Only); 2) Personal computers with mail gateway (Mail-Gateway); and

3) Mixture of personal computers and mainframes (PC-MF). There are problems associated with

each of these schemes which result from the nature of the personal computer.

The personal computer tends to be offiine more often then its mainframe counterpart Because it is

personal, it will tend to be powered down by its owner when it is not in use. In addition, it might be

powered up but disconnected from the network, as might be the case if it is portable and/or its

connection to the network is via telephone line. As a result, the sending computer must take

responsibility for a potentially large requeuing effort, and, therefore, must be prepared to allocate the

appropriate resources. As the amount of resources across the network dedicated to this function

becomes large, it becomes reasonable to share these resources by (functionally) centralizing them

within the network.

This centralization of computing resources is the first step toward a mail server. This server would

probably be a more powerful machine that could handle the routing of all the mail within its network

7

and the requeuing of mail to nodes which arc not online. (The serving machine could also perform

other functions, such as managing shared resources.) Thus, any message from one personal computer

to another first goes to the mail server. which then queues that message for transmission. The server

transmits the message only when the destination machine asks for it. In this way, it can be sure that

the destination is ready to receive the message, minimizing requeuing efforts.

User A User B

(a) ~
Transmfssfon I >

(b) ~ ~
(c) ~ I
~

Retransmfssfon I (d) >

1~-Lf-lng I· Not. Ltat.entng I
Figure 1·2:A Tries to Send Message to B

There is another problem associated with the fact that a personal computer tends to be offline more

than its mainframe counterpart. Suppose there are two personal computers: A, online, and B, offiine.

A transmits a message to B (figure 1-Za). and, receiving no acknowledgement. requeues the message

for later transmission. B now comes online, works for a while, and powers down again (figure 1· 2b,c).

A retransmits the message, which fails again (figure 1·2d). In this manner, B might never receive the

message from A. The presence of a mail server would preclude this.

8

The argument is the same fi>r the Mail-Gateway scheme. In this scheme. it would make sense for the

machine that is acting as the mail gateway also to act as the local net mail server (although this is not

necessary).

The situation for the PC-MF scheme is different It is certainly desirable to have a single mail facility

that spans the entire network. This network-wide mail facility is. in fact, the goal of XEROX PARC's

Grapevine system [BIRRELL82]. Such a system would be even more desirable if it aiJowed the

integration of personal computers while preventing the problems discussed above. If such a network­

wide server is not available, it is necessary to have some kind of server to orchestrate mail flow

between the personal ~;omputers and the rest of the network.

It seems that each of these proposed personal computer mail systems requires the presence of a mail

server, the primary function of which is to queue messages from one machine for another. The

maintenance of message integrity is an important part of this queuing function. Thus, when a

personal computer sends a message, the server is responsible for ensuring that the message is queued

for delivery.

If a moderately powerful machine is to be on the network, what is the use of the mail server? It seems

as if the mail system, at least on the local level, could be implemented using files on the larger

machine and remote file access to read and write to different mail files. This type of system would

work fine for a network consisting of diskless computers and a shared resource manager (SRM).

As the central machine becomes more loaded down, however, it becomes increasingly unreliable,

prone to crashing. A user will want to have access to his/her mail files regardless of the state of the

central machine. This problem can be solved by keeping a copy of all a user's messages on a local

disk, and providing a means by which the local machine can queue up messages to be sent when the

connection is reestablished. This set oflocal files and functionality is called a mailbox.

A user's mailbox resides within a particular memory. The fonn this memory takes can vary across the

spectrum from floppy disks to the hard disks typically found with very large systems. The larger the

memory the greater the potential for storing mailboxes. A single machine could, therefore, support a

large number of users if each user had his/her own floppy disk mailbox or if there was a single disk

containing all the mailboxes.

The first situation, a floppy disk for each user, introduces the idea of a portable mailbox, a mailbox

9

that exists outside any single machine. Such a mailbpx cannot be accessed until it is connected to

some machine and cannot access the mail server until it is connected to some machine on the

network. This connection of a mailbox to a machine on a network is called aclivating that mailbox.

Thus, the user has the ability to carry around his/her mailbox. activating it from time to time to

receive new messages. In this way, a single mailbox can be used on many machines. It is. therefore,

the memory that is important for consideration, rather than the physical machine.

The second situation, a single disk. shows a situation where the memory is not ponable. In this

situation, in order for the user to access his/her mail on another machine, that user would require a

mailbox on that other machine. Problems arise. however, when a given user wants to have more than

one mailbox. Suppose user A has two mailboxes, one of which is currently on a machine at work and

the other on a machine at home. Suppose further that user B sends A a message that is placed in the

mailbox at work. A docs not read the message at work, but rather goes home and logs on to receive

his/her new messages. Of course, the message from B will not be listed as a new message. A is forced

either to wait until he/she goes to work again or to examine all his/her messages in the server's copy

ofhis/her mail log, looking for messages not yet seen. Neither of these alternatives is attractive.

On the other hand, suppose that A has two activated mailboxes. B now sends a message to A that is

placed is both of these mailboxes. A later reads the message from one of the mailboxes and deletes it

A cenainly does not want that same inessage to appear as new in the other mailbox.

These problems introduce the concept of loose consistency. Ideally, the mail logs in each of a given

user's mailboxes should be identical. Unfortunately, this is not always possible since one of the user's

mailboxes might not be activated for a long period of time. Loose consistency guarantees that the

mail logs will eventually become consistent If a message is deleted from one mailbox, it will

eventually be deleted from all mailboxes. If a message is kept in one mailbox, it will eventually be

kept in all of them. Following from this, once a new message has been read, it must be either kept or

deleted, (loosely) ensuring that it will not be displayed as new again.

The primary goal of this project is to develop a mail system that implements the concept of loose

consistency. A further goal is make the system insensitive to the state of the server, providing the

user with the ability to read and create messages at any time, through the implementation of the

mailbox. The final goal is to build a mail gateway a11owing communications between mail networks.

A prototype mail system satisfying these goals was built and tested, but not placed in service.

10

Chapter Two

The Prototype Environntent

The prototyping effort for the mail facility was performed using Hewlett-Packard's Shared Resource

Management System. This system consists of a number of workstations (sec figure 2·1) and the

shared resource manager (SRM) connected together through a central multiplexer (sec figure 2·2).

The purpose of the multiplexer is to arbitrate requests for SRM resources (printers. files, etc.) from

each of the workstations. The network is, therefore, in a star configuration. Direct communications

between workstations is not supported by the network. The execution of user programs on the SRM

is also not allowed.

HP 9836
HP 9816

...

D ~

] - =
I

~ - -c_J I
/ l?l •

Figure 2·l:Workstations

The workstations supported on this network are the Hewlett-Packard (HP) 9816, 9826, and 9836

desktop computers. Each of these workstations can provide access to the SRM through either a

PASCAL or BASIC operating system. Because the PASCAL system runs faster than the BASIC

system, PASCAL was chosen as the development environment The PASCAL operating system also

provides a mechanism through which a user-written routine can be linked in with a timer interrupt

11

service routine (ISR -- Sec Glossary). In this way. the user can create a routine that will periodically

awaken and pcrfonn some task.

- D [J
[2J

[i] .1'1----1-

HCA<STRTI~ HCA<STATI~

IMU)Q

L[J
-

D I H .1'1----1- r

f'fliL SERVER I - I
HORKSTATI

Hatlbo)(

SRM

Figure 2·2:Prototypc Target Network

The prototype mail facility is based upon an exis~ing mail facility on the SRM network. This existing

mail facility uses a shared disk to store the mailboxes of each user. For example, if user A wants to

send a message to user B, A merely writes the message into the message fi1e belonging to B. B has a

routine that (by using the timer ISR) periodically wakes up and examines this file to see if there is any

mail. If there is, a message appears on B's screen.

u

Chapter l,hree

Mail Systent Fundantentals

· 3.1 The Mail Protocol

The mail protocol describes the sequence of messages required to maintain loose consistency in the

mail system. Under nonnal circumstances, all of these messages originate at a workstation. The

server merely routes the messages, either from one user to another, or from one mailbox to another

belonging to the same user. The only time the server creates a message is when a user must be

infonned of an error; such as an illegal destination name. There are three classes of messages that are

used in the protocol: new, keep, and delete.

A new message is a message that is to be presented to the user as not having previously been read in

any of the user's mailboxes. When a message, M, is created for a user, that message is marked as new

and queued for .the destination user, D. All of D's mailboxes that arc activated will eventually query

the server and obtain M and all other new messages. These new messages will be queued in the

mailbox until the user makes a decision concerning their dispositions, whether each is to be kept or

deleted.

Suppose that D now accesses the mail system through one of his/her activated mailboxes. He/she

will then be presented with each of the new messages. After each is read, D decides whether the

message is to be kept or deleted. If the message is kept in the mailbox, another message is sent to the

server reflecting that fact The server then queues the keep message for the other mailboxes

belonging to the user. The server maintains a copy of all the messages that are kept by the user. The

primary reason for this is to provide security against loss of infonnation in the event of the

destruction of the mailbox. If the message is deleted, a message to that effect is sent to the server,

which deletes the orginal message and queues the delete message for the user's other mailboxes.

When a mailbox receives a keep message, it stores the specified message and then removes that

message from the queue of new messages. When a mailbox receives a delete message, it removes the

specified message from the queue of new messages unless that message has previously been kept In

this case, that message is removed from the set of kept messages. Keep and delete messages are

13

~~
WORKSTATI~

fTty mess ages? >
< Yes, k of them

Hsgn
Mig n+1

< Hsg n+k-1

l Mess age n read and saved by user I
Save message n

>
Message m deleted by user

from different mailbox.
fTty messages? >

< Delete message m.

Figure 3-1 :Mail System Protocol Example

transmitted by the server to the mailbox in the same way that new messages are. Therefore, when a

user requests messages from the server, the messages he/she will receive may be of the types new,

keep, or delete.

Figure 3-1 displays a sample situation. The mailbox in the workstation requests any new messages

from the mail server. The mail server indicates that there are k of them and proceeds to transfer them

to the mailbox. The owner of the mailbox then accesses the mailbox to read his/her mail. He/she

decides that message n should be kept A message to that effect is therefore sent to the mail server to

be reflected to the user's other mailboxes. The disposition of the next k-1 messages is not displayed.

Some time later, the user accesses the mail system through a different mailbox and decides that

message m should be deleted. A message to this effect is sent to the server where it is queued for

14

each of the user's other mailboxes. 'fbe delete message m message is placed in the first mailbox when

that mailbox reads in its messages, as shown in the last line of the figure. Message m is then deleted

from that mailbox.

3.2 The Mail System Architecture

The mail system architecture is composed of two fundamental functional units: the mailbox and the

server. The mailbox represents the user end of the communications path. It provides the user with a

facility for reading messages transmitted to him/her and for creating and queuing messages to be sent

to other users. lbere is theoretically no limit to the number of mailboxes a given user can have. An

arbitrary, artificial limit of8 mailboxes, however, has been imposed in the prototype design.

Memo

4
bytes

seBii!l
byt .. :

I
tJfl : ...
•. I
¥-· I

Structure

Message
ID

Length

Message

Src/Dest
String

Subject

Figure 3-2:Memo Structure

The server represents the communications path itself. It is responsible for ensuring the transmission

IS

of a message from one user to another. It is further .responsible for ensuring that each of a given

user's mailboxes is loosely consistent with each of the user's other mailboxes. The server is designed

to handle incoming messages from all the users and outgoing messages to each of the users. while

maintaining the aforementioned responsibilities.

In order to handle incoming and outgoing messages. the server is divided into two subunits. The first

· subunit is called the server in-queue. The server in-queue is responsible for accepting messages from

all the users. The number of in-queues for the local mail network is small. The prototype was built

with only one. One would probably be sufficient to support a moderately-sized network.

The second subunit is the server out-queue. The server out-queue is responsible for holding messages

bound for a particular user. There is, therefore, one out-queue for each user. The out-queue is the

subunit that is responsible for keeping the information necessary to maintain loose consistency.

The fundamental structure around which both the mailbox and the server are built is the memo. The

memo structure is the basic unit of communications between a mailbox and the server, containing

both the text of the message to be sent and administrative information specific to that message. The

structure, shown in figure 3-2, is made up of five fields. The first two fields pertain to administrative

details of the message. The message id field is the unique identifier by which a particular memo can

by identified to the server or to a mailbox. The length field specifies the length of the body of the

message.

The next three fields pertain to the actual text of the memo. The first is the message field. This field

contains the textual body of the memo. The length of the message cannot exceed 5000 characters. The

next field is the source/ destination string. This string contains information concerning the source of

the memo, the destination list of the memo, and the time that the memo was created. This string is

used by the mail facility to determine the source of a memo and by the user interface to display with

the message. The third field is the subject field. This field contains a string that specifics the subject

of the memo. This string is used solely by the user interface when displaying a message.

Both the server and the mailbox contain a number of macrostructures designed to store memos and

to allow efficient access to these stored memos. These macrostructures will be examined in detail in

the next sections.

16

3.2.1 The Mailbox

Directory Entry
Structure

Used?

Message
ID

Ms

Figure 3-3: Directory Entry Structure

Hold Queu.e Entry
Structure

Used?

Memo

Figure 3-4:Hold Queue Entry Structure

New
Keep New
Keep Old
Delete

The mailbox is composed of three macrostructures: the memo queue, the hold queue, and the memo

out-queue. The memo queue is the macrostructure charged with holding memos that have not yet

been seen by the owner of the mailbox. This macrostructure is basically a file of memo structures.

17

In order to efficiently access the memos in the memo queue. a directory macrostructure is

implemented. This macrostructure is basical1y a file of directory entry structures. a structure for each

memo structure in the memo queue. The directory entry structure. as shown in figure 3-3, contains

three fields. The first field indicates whether the directory entry is in usc. If the entry is in use. the

corresponding memo is valid. The second field specifics the unique identifier of the corresponding

memo.

Server
Memo

Structure

~ Destfnatfon
byt .. : String

D ~~----So--u_r_c_e----~

a,yt .. l ~ --=S~r-=c;...N~Mame:.::a:.;.f..:..l b=-o=-x;.;._-t

5158.
b)-tee: Memo

MsgTYJ?e

Figure 3-S:Scrver Memo Structure

The third field gives the message type of the corresponding memo. Memos come in four varieties:

new, keep new, keep old, and delete. A new type memo indicates that the memo has (probably) not

been read by the user at any of his/her mailboxes. A keep new type memo indicates that the user has

already read the memo at another mailbox and that the memo should be kept by the mailbox. A

keep old type memo indicates that the user has already read memo M at another maiJbox and that M,

which has been placed in this maiJbox's memo queue at some earlier time. should be kept. The

delete type memo indicates that the user has deleted memo M from another mailbox so M should

also be deleted from this mailbox.

18

In lhe mailbox. the directory and lhe memo queue m.acrostmctures each have the same number of

entries and arc of fixed size. In lhis way, lhc presence of a specific pointer is avoided. ror instance.

suppose one wants to find lhe subject of the first valid message. The first directory macrostmcturc

entry might be unused so lhc second entry would be examined. lftl1is entry is used, lhc second entry

of lhc memo queue would be examined for the desired subject. 'l11e number of entries in lhe

macrostructures depends on trade-ofTs in memo delivery time versus disc space. In lhc prototype. a

value often was chosen.

Memo Queue

Ma; 1 box

Figure 3-6:Mailbox Architecture

When a new type memo in lhc memo queue has been examined by tlle user, tllat memo must be kept

19

or deleted. If the memo is deleted. it is removed from the memo queue. If it is kept, it is transferred

into the hold queue macrostructure. 'll1is macrostructure is a file composed of hold queue entry

stntcturcs. The hold queue entry stntcturc. as shown in figure 3-4. is simply made of two fields: the

used field and the memo field. The used field specifics whether the memo to follow is valid. This

field allows the deletion of a memo from within the hold queue without requiring tl1c whole hold

queue file to be rewritten.

The mail facility of the mailbox is completed by the memo out queue. The out queue is responsible

for queuing messages to be sent to the server. For this reason. an entry in the out queue

macrostructure is identical to that of the server in queue macrostructure. This entry has the fonn of

the server memo structure.

This structure, called the server memo structure, consists of five fields, as shown in figure 3-5. The

first field is the destination string. 1l1is string contains the names of all users to which this memo is to

be sent The second and third fields, source name and source mailbox, pertain to the source of the

message. Source name is the user name of the creator of the memo and source mailbox is the number

of the mailbox where the memo was created. The last two fields contain the actual memo and its

message type.

Server
Directory Entry

Structure
Used?
F"ull?

Message
ID

Figure 3-7:Server Directory FJltry Structure

The complete mailbox appear5 in figure 3-6. The mail interface is the interface between the mailbox

20

and the server. and the user intcrfac~ is that between Lhc mailbox and Lhc user.

3.2.2 The Server In-Queue

The server in-queue macrostructure is essentially a fi1e whose entries arc server memo structures

(figure 3·5). The purpose of this macrostructure is to queue all messages from mailboxes until Lhe

server can process them. Once the server has examined a memo from the in-queue and determined

its destination, Lhat memo is deleted from Lhe in-queue and placed in Lhe out-queues of the

destination users.

Hold Gueue
/

"' Memo Queue

Di r

Server Out Queue
C1 per user)

Figure 3-S:Server Out-Queue Architecture

21

3.2.3 The Server Out-Queue

The server out-queue is divided into two macrostructures: the memo queue and the hold queue. The

server memo queue macrostructure is a file whose entries arc memos (figure 3·2). The primary

purpose of this macrostructure is to queue messages for transmission to a particular user. The memo

queue also plays a key role in the maintenance of loose consistency. This role is facilitated through

. the serv~r directory macrostructure. very similar to the mailbox's directory macrostrurc (figure 3-3).

The server directory macrostructure is a file composed of server directory entry structures. The

server directory entry structure, as shown in figure 3· 7, is a superset of the memo directory entry

structure (figure 3-3). In this manner, the server directory and the server memo queue perform

exactly the same as their mailbox counterparts. It is the extra two fields that provide the additional

functionality.

The two extra fields are Full and Mailboxes. The mailboxes field is used to keep track of which

mailboxes have read the corresponding message. When a new message is sent to a user, the entries

(in the mailboxes field) for each of the user's mailboxes are set to zero, all unused entries are set to

one. When a mailbox receives a message, the corresponding entry in the mailboxes field is set to one.

When all the entries of the mailboxes field are set to one, the full field is set to true. (The full field is

used primarily for reclamation purposes.)

The server hold queue macrostructure functions identically to the mailbox's hold queue

macrostructure (figure 3-4). The purpose of this macrostructure is to maintain a copy of each user's

hold queue that is identical to each of the user's copies, as loose consistency also pertains to .memos

placed in the hold queue. The functional diagram of the server out queue, incorporating the hold

queue and the memo queue, is shown in figure 3·8.

A completed picture of the mail system architecture appears in figure 3-9. The dashed cirtle

represents the sphere of influence of the server. The circles represent mailboxes and the squares,

server out queues. Note the presence of one server in-queue, one server out-queue per user, and a

multiple number of mailboxes allowed per user.

22

User

Server
Out-Queue

User

User

Server
In-Queue

'y
\

I
I

/

-"'~Server

Figure 3-9:Mail System Architecture

23

User

.,

Chapter Four·

Mail Systen1 Operation

lbe mail system operation is specific to the type of network for which the prototype is targeted.

Since the prototyping environment was based around a shared disk, much of the server functionality,

as defined by the protocol, is placed in the mailbox. In this way, messages to and from the server are

simulated by accesses to shared tiles. Any operation performed on the server's tiles constitutes a

server operation in the protocol. This section, therefore, explains a specific implementation of the

protocol. The governing concepts, however, may be generalized to other forms of networks.

The operation of the mail system can be separated into the mailbox and the server components in the

same way that the mail system architecture is. The operation of each of these components is

independent of the other in the sense that the failure of one of the components will not cause a failure

of the other.

4.1 Mail System Operation: The Mailbox

The mailbox operation is characterized by a set of functions that execute as a result of being called by

a timer interrupt service routine and a set of functions that execute as a result of user interaction. In

general, the automatic functions (those that execute from the timer ISR) are responsible for moving

memos between the mailbox and the server. The user-initiated functions deal with the memos once

they have been placed in the mailbox.

4.1.1 Automatic Operation

Periodically a timer ISR is activated at the workstation which sets in motion the functions in the

mailbox designed to process incoming memos. The first step in processing is to make sure a

connection to the shared resource manager (SRM) has been established, as this is where the server

keeps its files. If a connection has been establish·ea, the mailbox attempts to access the server

out-queue belonging to its owner. If this is not possible, the mailbox assumes that the connection is

bad.

24

Once the correct server out-queue is accessed. the mailbox begins to examine each entry in the

directory looking for memos that have not already been placed in the mailbox. This is done by

checking the mailboxes field to obtain the value in the subfield corresponding to the number of the

mailbox. For example, mailbox 3 would check the subfield marked 3. If the value of the correct

subfield is one, the memo has already been placed in the mailbox so the next directory entry will be

searched.

When an entry is found with the correct subfield set to zero, the mailbox prepares to transfer that

message. The type of transfer that happens depends on the message type of the memo. Recall that

the four message types are: new, keep new, keep old, and delete.

If the message type is new, the memo has probably not been read by the user. It must, therefore, be

placed in the memo queue until the user has read it and decided its disposition. In order to prepare

to place the memo in the memo queue, the mailbox examines the memo queue directory, looking for

an entry that is not used. If no such entry is found, the memo is left just as it is in the server

out-queue.

If a free entry is found, the memo is transferred from the server out-queue into the free entry in the

memo queue. The correct sub field of the server directory entry is then set to one, indicating that the

memo has been transferred. Finally, the memo directory entry is updated to indicate the presence of

the transferred memo. This entry is updated last in case the connection is broken after the transfer

but before the server directory entry is updated.

If the message type is keep new, the memo has been read and kept at another mailbox so it must be

kept in the hold queue of this mailbox also. In order to minimize the number of files that are

accessed during the ISR's execution, this memo is kept in the memo queue for further processing.

The transfer from the server out-queue is handled exactly the same as if the memo were of the new

message type.

If the message type is keep old, a memo that has already been placed in the mailbox as new has been

kept by the user at another mailbox. All that this message type requires is that the existing memo (of

message type new) with the same message identifier as the keep old type memo be modified in such a

way that it will be stored in the ·bold queue without being shown to the user as new. This

modification can be accomplished by modifying the message type field of the memo directory entry

corresponding to the original memo, from new to keep new.

25

If the message type is delete. a memo that has already been placed in the mailbox has been deleted by

the user from another mailbox. The delete message must be handled differently from the other

messages. The reason for this is that the memo could have been deleted from the hold queue instead

of from the memo queue of the mailbox that originated that delete request. ')be mailbox must,

therefore, be able to handle three situations: the memo to be deleted appears as new in the memo

queue, it appears as keep new in the memo queue (in order to be in the hold queue at all, it must

have been kept at some point), or it appears in the hold queue.

The first two situations arc handled identically. Since the message to be deleted has not been

processed, the corresponding directory entry can merely be marked as unused, effectively deleting

the message. The third situation is just as easily handled. A given memo cannot appear both in the

memo queue and in the hold queue of a single mailbox. For this reason, if the memo is not in the

memo queue, it is probably (because the consistency is loose) in the hold queue. If it is in the hold

queue, it is deleted by marking the hold queue entry as unused. If, for some reason, the memo does

not appear in the hold queue, it must have already been deleted (loose consistency again) so the

mailbox does not care.

The delete type memo, like the other types, is removed for that us.er from the server out-queue when

it has been processed. For each type of message, this removal is accomplished by setting the correct

subfield of the mailboxes field of the server directory entry for that memo: In the process of

performing this removal, the mailbox also performs another function. After the field has been set.

the mailbox checks to sec if each of the sub fields are set for that server directory entry. If they are all

set. the mailbox then sets the full field. This field indicates that the corresponding memo has been

sent to all the user's mailboxes, making reclaiming the server directory entry easier. The primary

purpose for the full field is so that the server docs not have to examine each of the subfields when it is

looking for an empty directory slot. Since the mailboxes field is accessed anyway, it is easier to test

the subfields from the mailbox side.

In order not to place too large a processing burden on the ISR, only a small number of memos will be

processed per wakeup. In the prototype, this number was set at two, but was tunable. If there are no

memos to be processed or if there is· no server connection, the memo queue is examined for any

needed processing. Any memos that are of the keep new message type are automatically stored in the

hold queue. If any new memos arc encountered, a message to that effect is placed on the screen for

the user.

26

The final function perfonned by the ISR is transferring memos from the memo out-queue to the

server in-queue. Under nonnal operations, there will be no such memos. 'lbere will be some,

however, if the user created a number of memos while not connected to the server.

4.1.2 User-Initiated Operation

User-initiated operation results from explicit interaction between the user and one of his/her

mailboxes. This interaction comes in the fonn of either creating a memo or reading a memo. The

creation of a memo directly involves the creation of a server memo structure (figure 3-5) to be

queued in the memo out-queue. Creation of a memo can occur in two different ways, either by

entering the message at the console or by forwarding a previously received memo.

Reading a memo indirectly involves the creation of a server memo structure, since reading a memo

implies that a memo concerning that memo's disposition must be sent to the server. Reading a

memo, therefore, implies the creation of a keep1 or a delete type memo.

These two forms of interaction have one essential difference. Creating a memo involves sending that

memo to other users while reading a memo causes the creation of a memo to be send to other

mailboxes of the same user. For this reason, the fields of the server memo structure take on varying

importance depending on the form of interaction.

The destination string field of the server memo structure is only important for the creation form of

interaction. This information is used to determine the users to whom the created memo will be sent

This information cannot safely be detennined from the source I destination string subfield of the

memo field due to the differences in length of the two strings (the destination string is of maximum

string length; the source I destination string may be truncated, resulting in a message header that

does not contain all the destination users).

The source name is only important to the form of interaction involving the reading of a memo (the

update form, henceforth). The source of a created message is also important to the creation form of

interaction, but this information is already stored in the source I destination string of the memo. The

source name field of the server memo structure is used by the server to determine which user's

lrbe notion of a keep new or keep old memo originating from the mailbox has no meaning. The mailbox uses a memo of
message type keep old to indicate a keep re-quest to the server. The expression keep mrnw will, therefore. be used for such a
memo in order to avoid confusion with memos that are specified a~ keep old by the server.

27

mailboxes to update. This information may (but J)eed not necessarily) appear in the source I

destination string. 'Inc source mailbox, also a field only used in the update form of interaction,

further specifics the source of the update.

The memo field is imponant almost solely to the creation form of interaction. This field contains the

memo that will be sent to each of the users in the destination string. The update fonn of interaction

· requires only the message id subfield. This subfield is used to indicate which memo has been

updated.

The message type field is new for a new or forwarding memo, keep for a keep update, and delete for

a delete update.

The creation form of interaction is very straight-forward in operation. The text of the message is

obtained, either from the keyboard or from another message and, along with the other information

obtained from the keyboard (subject, destination, etc.), entered into the correct fields of the server

memo structure. This structure is then placed in the memo out-queue for later transmission. The

operations of the keep and delete functions are more complex.

'The delete function is more complex because it can originate from two different places: the memo

queue and the hold queue. A mem_o can be explicitly deleted from the memo queue only as a result

of it being displayed to the user as new. When such a situation occurs, the actual deletion is

performed by setting the used field of the corresponding memo directory entry (figure 3-3) to false.

A similar operation is performed when the deletion is requested for a memo in the hold queue. Here,

the corresponding used field in the hold queue entry (figure 3-4) is set to false. In either case, the

update memo is created and queued in the memo out-queue.

The keep function can only be performed on a memo in the memo queue. When the keep function is

requested, the memo is appended to the hold queue and deleted from the memo queue by setting the

correct used field to false. The update message is then created and queued.

When the user is ready to exit the mail system environment, he/she executes a quit command.

Before the system is exited, however, the mailbox attempts to flush the memo out-queue to the

server. In order to perform the flush, the mailbox again attempts to establish a connection with the

server. If the connection is made, the memo out-queue is transferred to the server in-queue, then

purged. If no connection is made, nothing happens to the memo out-queue until the automatic

28

process discovers that a connection has been reestablished.

4.2 Mail System Operation: The Server

The primary responsibility of the mail server is to take the incoming memos from the in-queue and

direct them to their final destinations. The server also has the secondary responsibility of checking

the validity of each request and reflecting any errors to the creator of the errant memo. Once the

server starts processing memos from the in-queue, it continues to process t11em until t11ey have all

been processed. For the period of time that the memos in the in-queue are being processed, all

mailboxes arc barred from access to it. The mailboxes arc. therefore, required to wait before they can

transmit any memos. To ensure that the time that any mailbox is required to wait is small, the

in-queue is processed often.

Memos that are processed by the server come in two types: new memos and update memos (those

with a message type of keep or delete).

4.2.1 Processing New Memos

When a new type memo is found in the server in-queue, the server parses the destination list to

obtain the list of users to which the memo is to be sent The server then chccks.the existence of each

of the destination users. For each non-existent user, the server creates an error memo of the form

User <user name> not found. These memos are then treated as if they are new memos and are sent to

the user who originated the memo. For each of the valid destination users, a copy of the message is

made and the server attempts to place that copy in the correct server out-queue.

In order to place the memo in a user's out-queue, the server must find an unused entry in that user's

server directory. An unused entry is found by examining each entry until one is found that either has

the used field set to false, or has the full field set to true and has a message type that is not new. The

reason the message type cannot be new is that the server does not erase a memo before its disposition

has been decided. If a new type memo with the full field set to true is reclaimed, a subsequent keep

of this memo cannot be reflected in the server's copy of the user's hold queue.

Once an unused entry has been found, the new memo is then written into this unused entry in the

out-queue and the directory entry updated. The server then correctly sets the mailboxes field of the

directory entry. This involves setting the subficlds for each of the user's mailboxes to zero. Since the

29

mailboxes arc required to be numbered consecutively, the server only needs to know the number of

mailboxes the destination user has. This infonnation is obtained from the same source that validated

the existence of the user.

Currently, a problem exists if an unused directory entry cannot be found. If such a situation arises,

the creator of the memo will receive a memo indication that the message was undeliverable. In a mail

system where each of a user's mailboxes arc activated somewhat regularly, this situation is not likely

to happen. A short-teJm solution to this problem, if it arises, is to increase the size of the out-queue.

A long-tenn solution would be to add a requeue buffer to the server's in-queue. The server would

then have to ensure .that requeued memos do not seriously slow down the process of directing

memos.

4.2.2 Processing Update Memos

Due to loose consistency, the server cannot be guaranteed that the memo for which an update (keep

or delete) request is made has not already been updated. For this reason, update situations will be

divided into two catagories: nonnal and race. Nonnal situations are those where the update request

operates on a new memo.

Figure 4-1 shows an example of a nonnal situation where a keep is requested. In this example, the

user has four mailboxes. Over some period of time, the new memo is placed in mailbox 2 then

mailbox 1. At some later point, the user accesses the mail system through mailbox 1 and decides to

keep the memo. The server must now modify the state of the out-queue to reflect the fact that

mailbox 2 should keep the memo already placed within it and the fact that the remaining two

mailboxes shOuld keep the memo as soon as it is placed within them.

In order to do this, the server requires a free slot in the out-queue directory. This slot is obtained in

the same way as it would for a new memo. The obtained slot is then modified to make a memo of the

keep old message type. This modification entails setting used to true, message id to the same message

id as the original memo, and message type to keep old. The mailboxes field is then modified by

setting each of the sub fields corresponding to valid mailboxes to the inverse (zeroes become ones etc.)

of that setting in the memo to be updated. The sub field of the updating mailbox is set to one. The

full field is then set if necessary. The server then changes the message type of the memo to be

updated to keep new. The final frame of figure 4-1 shows the update.

30

12145178 ~
10101 010111111111 New

1 2 3 4 5 I 7 8 T)7M!
10111010111111111 New

1 2 I 4 5 & 7 8 T)7M!
11111010111111111 New

1 2 3 4 5 I 7 8 ~
111tl0101tl11111 : K•ew I

New Message

Message put fn
Mailbox 2

Message put in
Mailbox 1

Message Seen
ke.rT in MB 1

12345178 Type

111011L!ITI11111i\<liPOill

Figure 4-l:Normal Keep Update

Figure 4-2 shows an example of the normal situation where a delete is requested. As before, the user

in this example has four mailboxes. Again, the memo is placed in mailbox 2, then mailbox 1. At

some later point. the user accesses the mail system through mailbox 1 and decides to delete the

memo. The server must now modify the state of the out-queue to reflect the fact that mailbox 2

should delete the memo from his/her in-queue.

To reflect this fact to mailbox 2, the server changes the message type of the memo to delete and

modifies the mailboxes field of the memo's directory entry to indicate that only mailbox 2 should

read the delete message (the memo is addressed to mailbox 2 only). In general, the updating of the

mailboxes field is done by inverting each subfield that corresponds to an actual mailbox. The

subficld corresponding to the updating mailbox is then set to one. In the example, subficlds 1 and 2

become zero and subficlds 3 and 4 become one. Subfield 1, the source mailbox, is then explicitly set,

resulting in what appears in the final frame of figure 4-2.

31

123451?8 T)'lle

123451?8 TYI!!
1011 [elelllll1111 New

123451?8 T~
nTif0I0lllllll11 New

123451?8 Tp nrnn 1111] 111111 De 1 ete

New Message

Message put in
Mailbox 2

Message put in
Mailbox 1

Message Seen
Deleted from MBl

Figure 4·2:Nonnal Delete Update

Race situations occur when a mailbox attempts to update a memo that has already been updated. For

example, suppose a user has two activated mailboxes into both of which a memo is placed. The user

now accesses the mail system through one of these mailboxes and keeps the message. He/she then

immediately accesses the mail system through the other mailbox and, for whatever reason, deletes the

same memo before the keep can be reflected to the deleting mailbox. Because it is much easier for

the server to delete after keeping than to keep after deleting, the server allows deleting to have

precedence over keeping. That is, if a memo is both kept and deleted, the deletion will prevail.

There are basically four different race situations. These are 1) keep after keep, 2) delete after delete,

3) delete after keep, and 4) keep after delete. The first two are the trivial cases and do not merit

discussion as their operations wi11 proceed as if only one update has been made. The second two are

more difficult

Figures 4· 3 and 4·4 show these two race situations. Figure 4· 3 displays the delete after keep race

situation. Its first three f!'ames show the nonnat operation of the keep type update. The memo is

32

123411?8 Tp

11111010111111111 """'

123411?8 ~
1111101011111111 ! · Kea.;New I

123456?8 ~
11111011111111111 k~ w I

123411?8 T)!!!
101111 l ~ 11111111 DIS 1 ete

Message tn
Mailbox 1, 2

Message Seen
J<e.p-b 1 n MB 1

123451?8 ~
1110111111111111n<~ 1 a 1

Message k«..pt
in Ma i 1 box 4

123451?8 T~
11101111111111111 '<« 1 a 1

Message Seen
Deleted in MB2
Before Update

Figure 4·3:Delete After Keep Race

placed as new in mailboxes 1 and 2, and, after the user decides to keep the memo from mailbox 1, as

keep new in mailbox 4. The user then decides, white accessing the mail system through mailbox 2,

that the memo should be deleted. The server is then faced with the responsibility of removing the

two keep memos and creating a delete memo to be sent to mailboxes 1 and 4. This created memo is

shown in the final frame of figure 4· 3.

Figure 4-4 displays the keep after delete race situation. The first two frames show the normal delete

operation. The memo is placed in mailboxes 1 and 2, and then deleted through mailbox 2. The user

then decides to keep the memo through mailbox 1. Since the memo has already been deleted, the

33

l 2 3 4 5 8 ? I T)IM!
11111010111111111 New

I 2 3 4 5 8 ? I 1)7Mt
1121111111111111111 Delete

I 2 3 4 5 8 ? I T)IMI
1@1111 11 11lllli11Di1ete

Message in
Ma i 1 box 1, 2

Message Seen
Deleted in MB2

Message Seen
Kept 1n MB 1

Bef'ore Update

Figure 4·4:Keep After Delete Race

server disallows this request The delete memo stands, as shown in the final frame of figure 4-4.

In order to work in the above manner, the server uses specific criteria to tell when a given update is

aUowed and how a given update is to. be reflected in the out-queue directory entry. The operation of

the keep update is designed to reduce to the normal (nonrace) situation. When a keep is requested.

the server checks to see if the memo to be kept has a message type of new. If this is the case, the

update is allowed to continue as described above. If the message type is not new or the entry not

found. the update is disallowed. Note that this strategy also takes care of the keep after keep race

situation.

What is gained in terms of simplicity of operation for the keep update is paid for with the complexity

of the delete update. The delete update is further complicated by the fact that a delete request can

originate from the user's hold queue. For this reason, when the server is looking for a memo whose

message id is the same as the delete memo, it might find no memos, one memo, or two memos.

No memos would be found if the memo had already been deleted or if it had already been kept in the

34

hold queue. Because the outcome of the memo is not known. the server must assume that the

message has already been kept in the user's hold queue. It, therefore. creates a delete message that is

addressed to all mailboxes except the one making the delete request. If a mailbox receiving this

memo cannot find the specified memo in its in-queue or in its copy of the hold queue, it simply

ignores the delete request

One memo would be found if either the memo has message type new, the memo has message type

delete, or the memo has been kept and one of the keep memos has been reclaimed. The case of the

new type memo is simply the case described above as the normal operation. In the case of the delete

type memo. the update is ignored, taking care of the second trivial case. The case for a kept message

is more complex.

If the message type is keep old, the server knows that the accompanying keep new type memo has

been reclaimed and, by extension, that all the user's mailboxes must have received the memo. The

server must, therefore, convert the keep old memo into a delete memo that is addressed to all the

user's mailboxes except for the originator of the delete request. . In other words, the sub fields of the

mailboxes field corresponding to actual mailboxes wi!l be set to zero. The subfield corresponding to

the originator of the delete request ·wm be set to one.

If the message type is keep new, the server knows that each mailbox for which tjle keep new memo is

destined (addressed) has not received a copy of the memo in any form. The server then converts the

keep new memo into a delete memo that is addressed to all mailboxes except the mailbox that

originated the delete request and those mailboxes that never received the keep new memo. In other

words, each sub field of the mailboxes field is inverted. The sub field corresponding to the originator

of the request is then set to one.

If the server finds two memos with the same message id as the delete request, they had better be of

message types keep new and keep old. One of these memos is removed from the out-queue and the

other is converted into a delete memo. This memo is then addressed to any mailbox that has had the

original new memo or the later keep new memo placed within it This can be determined by

examining the keep new memo in the. same fashion as described above. The subfields that are set to

one in the keep new memo's mailboxes field correspond to those mailboxes that have had the memo

placed in them in some form. These mailboxes are, therefore, the ones to which the delete memo

should be addressed. In order to do this, the server inverts the values of the subfields of the keep new

35

memo and uses them for the delete memo. The subfield corresponding to the mailbox that

originated the delete request is then set to one. In frame 3 of figure 4-3, sub fields 1. 2. and 4 become

zero and subfield 3 becomes one. After, subfield 2 is set to one, as mailbox 2 originated the delete

request.

4.3 Reniote Operation

The mail system has a built-in facility for communicating with other similar mail systems. This

inter-mail net communications facility uses an existing mainframe mail system, HPMAIL. to transport

the memo from one mail system to another. 'The facility brings up the concept of message formats, to

be signified by personal computer message (PCM) and mainframe message (MFM).

<

c::J
- ~ HOIEJ1 ttOIID1

~
-

~

RS232

D -C.' _j -

?J
~-'AIL SERVER

PC t£T 1

PH:H: Lit£

<

Figure 4·S:Remote Operation

36

CJ
r--- ~
- ~

RS232

D -c.. _j looo

?J

r-AIL SERVER

PC t£T 2

The goal of the server's remote operation is to take a PCM and convert it into a MFM. This MFM is

shipped off via the mainframe mail system to a place where the destination server can retrieve it and

convert it back into a PCM. In the mail system. this process is accomplished by establishing an

RS232 link between the mail server and the HP 3000. which is the host mainframe. The server then

logs into HPMAIL like any user would. lbe PCM is converted to the MFM by HPMAIL since the

server sill)ulates an HPMAIL user typing in a message from the keyboard. 'The MFM is then routed

over phone lines to the destination host. where the message is retrieved by simulating a user reading

the message. The overall layout is shown in figure 4-5.

In order for the destioation server to receive the message correctly. the MFM must have a specific

format. The first line of the MFM must be the source of the message as specified by the creator's

mail system user name. The second line must be the destination within the receiving mail system,

again a local mail system user name. The rest of the message contains the text of the original memo

and can be read as such if sent to a normal HPMAIL user. In other words, the interface can also be

used to send messages to regular HPMAIL users and HPMAIL users can return messages to the mail

system by following the format expected by the server (specifying the first two lines correctly) .

HPMAIL User Name HPMAIL Sublocation

COMER

"" HPMAIL Location ~

~~I~
@ PCNET / HP2400 / 42

~c
I I ~

t£r User Name '-. PC NET Name

Figure 4-6:Remote Name Breakdown

A memo destined for another network begins as any other memo within the mail system. The only

difference is that when the destination is specified, it must be of the form <user name> @ <mail

network name>. The mail network name will be used by HPMAIL in routing the memo to the

correct mail network. Figure 4-6 shows the breakdown of how HPMAIL uses this name.

37

Once the memo has been created and transmitted to. the server, the server places it in the remote

memo queue for transmission to HPMAIL. Note that if the remote mail network specified is the

same as the local one, the destination is modified and the memo becomes local, and is then treated as

such. After some period of time, the server will begin to process all the messages in the remote memo

queue. In order to do this, the server first attempts to log into HPMA JL. If this. fails. the operation

witt be aborted and retried later.

If the server succeeds in logging into HPMAIL. it attempts to send the first memo. This involves

answering questions from the HPMA IL user interface. The server sp~cifies the remote mail network

name, a valid HPMAIL address itself, as destination. If the destination name is invalid, i.e. the

location specification is incorrect, the server sends a cannot send error message to the originator of the

memo.

In any case, the server continues with the transmission of all the memos in the remote memo queue

until all have been sent It then checks for any messages that might have come in from remote

networks. If there are any, they are put into the server in-queue for later processing. The server

obtains the return path by taking the source user name and concatenating it with the source mail

network's name.

38

Chapter Five

The User Interface

5.1 The Prototype System

The user interface of the mail system is divided among three separate programs: makeuser, mail, and

mailserver. Makeuser is the program whose purpose it is to create new user names for the mail

system. Makeuser first asks the new user for his/her desired user name. A user name is the name by

which the user is identified in all correspondence. Once the name has been entered by the new user,

it is checked against all known user names to ensure that it is unique. If the name is not unique, the

user must try again with another name.

When the new user has entered an acceptable name, the program then prompts for the user's

password. This password will be encrypted using a one-way function. The encrypted version of the

password will then be used to protect the server out-queue and the server's copy of the user hold

queue. The reason the password is encrypted is to ensure that the user can have access to his/her

server out-queue o~ly through the server.

The final piece of information required by the program is the number of mailboxes that the user has.

The number of mailboxes along with the user name and the password are combined and kept in a file

called the user file. This user file, therefore, contains information on all the users of the local mail

system. When a prospective user name (for a new user) is to be validated, the user file is searched for

a match. If no match is found, the name must be unique.

In addition to the creation capability, the makeuser program also has the ability to update

information about a given user. Updating can involve changing the user's password, changing the

number of mailboxes the user has, or deleting the user. At the present, any change in the user's status

results in his/her corresponding server out-queue being reinitialized. This reinitialization can cause

inconsistencies and loss of memos, so it should only be done shortly after all the user's mailboxes

have accessed the out-queue.

Mail provides the actual user interface to the mail system. When the program is first executed, it asks

39

..

the user for the physical disk drive on which the mailbox can be found. The program then checks

this disk to sec if it can determine the startup information about the user. 'l11is will be discussed later.

If it cannot, as would be the case the first time a particular mailbox is used to access the mail system.

it asks the user to enter the information.

'lbe first piece of infonnation requested is the user name. This name will be used by the ISR mail

· routine, in order to access the proper server out-queue. and by the mail program when specifying the

source of a created message or of an update request. lbe mail program then requests the user's

password to further validate the user. lbe user is required to enter his/her password twice to ensure

correct entry. If the two do not agree, the user must start over. The password is then encrypted to

derive the fonn used by the server. The password is not checked here since nothing is guaranteed to

be present to check it against. Instead, the password will be implicitly checked when the server

out-queue for the user is accessed.

The mailbox number is required next. This information is used by the program to specify the source

of an update and to determine if a memo in the server out-queue has been placed in this mailbox.

The final data required is the frequency of the timer wakeup, in minutes. The ISR mail routine will

wake up on the interval specified and access the server out-queue.

Once all this information has been entered, the program creates a configuration file that resides in the

mailbox. Since the operating system does not allow password protection for local disks, the mail

system password is stored doubly-encrypted in the configuration file. Henceforth, whenever the user

accesses the mail system through this mailbox, the mail program will only ask for the disk the

mailbox is on and the user's password. The password is validated this time by doubly encrypting it

and checking this against the one in the configuration file. The singly encrypted version of the

password is kept by the program to facilitate access to the proper server out-queue.

The user now has access to the mail system. He/she can now perform the expected functions such as

creating memos and reading new memos. Memos that arc read must be either kept or deleted but

they can be forwarded before their disposition is decided. The user also has functions which access

the hold queue. He/she can move from memo to memo within the hold queue, examining the

headers of the memos. When a desired memo is found, it can be examined (and/or forwarded) or

deleted. Since deleting a memo leaves an unusable spot in the hold queue, the user is also provided

with the ability to crunch the hold queue to remove these dead spaces.

40

The user has a limited ability to list the names of all the users in the mail system. This facility works

by attempting to make a connection to the user file. which is stored in the same place as the server

files. If this connection is made. the names arc listed to the user. The password and the number of

mailboxes for each user do not. of course. appear in the listing. If no connection can be made, the

user is informed of this condition.

Finally. the user has the ability to modify the wake up parameter specified when the mail program

was loaded. The user also has the ability to enable or disable an alarm bell that sounds when new

mai1 is present

lbe server program completes the user interface of the mail system. The server console (i.e. the

console of the workstation executing the server program) is designed to allow supervisory access to

the mail system. It is assumed that the server workstation is physically secure.

The primary access that the server console allows is access to the directory of the server out-queue

and the server's copy of the hold queue for a particular user. This access is provided to allow a

supervisor to monitor loose consistency. Access to the hold queues is provided to ensure that loose

consistency is being maintained even within the hold queue.

The server console .also provides the ability to reinitialize a user's out-queue and optionally delete the

server's copy of that user's hold queue. This ability is provided to allow the supervisor to clean up the

server tiles in the event of a catastrophic server error.

In addition to supervision of1oose consistency, the server console provides facilities for overall system

supervision. It allows the supervisor to monitor all error memos created by the server. By examining

these, he/she can determine possible problem areas in the mail system. He/she can even specify that

all output be logged to a print tile for later examination.

Finally, the server console provides some commands to ensure its own smooth operation. It provides

a crunch command that will remove the dead space from the server's copy of every hold queue in the

mail system. This command is used to reclaim wasted disk space. Due to the potentially long

execution time, this command should not be executed often.

The console also provides a command to flush the remote memo buffer to HPMAIL. This command

would be used to prevent a large backup of remote memos from accumulating in the remote memo

41

queue. as might occur if H PM A II. were going down for a long period of time.

ll1c rest of the server program is dedicated to the direction of memos between users. 'Inc writing of a

memo into a server out-queue of a particular user requires the knowledge of that user's password.

The updating of a user's memo requires the knowledge of the number of mailboxes owned by that

user. The validation of a user in a destination list requires the knowledge of all the users in the mail

system. All of these requirements arc fulfilled by providing the server with access to the user file:

5.2 Impro\'ements

There are several improvements to the user interface that would make the mail system more powerful

and more convenient to usc. Some of these improvements would concern only fine points of the user

interface, such as allowing the usc of distribution lists in the destination list This type of

improvement will not be discussed in this paper. The type that will be discussed concerns those that

require changes in the fundamental mail system architecture.

An example of such an improvement is the creation of a facility whereby the user can examine the

headers of the new memos before reading them. The implications of this are that the user does not

have to decide the disposition of each memo when he/she accesses a mailbox containing that memo.

These memos must, therefore, remain in the memo queue until the user decides to read them. This

situation results in two new problems.

The first problem is the limited size of the memo queue. If there are many memos that the user does

not read, the memo queue will become tied up, making the transport of memos from the server

inefficient, at first, and impossible, later. A solution to this problem is to warn the user of impending

inefficiency when the memo queue becomes full to a certain point with deferred memos. This

problem requires a change in the programs but does not require a change in the architecture.

The second problem requires the change in the architecture. . The user certainly does not want a

deferred memo to keep generating a new mail message on the workstation console. In order to

prohibit this, a deferred state must be created. Now, when a message's header is read, a memo must

be sent to the server indicating that the memo has been deferred. The server then has the

responsibility ofrcflccting this fact to each of the user's other mailboxes. A deferred memo would be

treated as a new memo by everything except the facility that determines if there is any new mail. This

42

facility was not implemented since it did not appear in the- mail system on which the prototype

system was built

i\ second improvement involving a change to the mail system architecture is to allow the user to

dynamically reconfigure the number of mailboxes he/she has. This would allow the user to remotely

delete a mailbox that is no longer needed. This would also allow the user to create a new mailbox

and optionally load a copy of his/her existing hold queue.

This additional facility requires a number of different changes in the mail system architecture. The

server must be responsible for tetting the mailbox what its number is. In addition, the server must be

able to send the mailbox a memo indicating that the mailbox should renumber itself. This is

necessary since the user's mailboxes must be numbered consecutively. If renumbering were not

possible, a deleted mailbox might leave a hole in the order of mailboxes. This ability to renumber

requires the creation of a new memo type.

There must also be two new types of memos requesting the server to create and to delete a mailbox.

In both cases, the user's password must be included in the memo for validation purposes. If the

request is to delete, the user must obtain the mailbox number from the mailbox to be deleted. This

number must appear in the delete mailbox request. Once the delete request is validated, the server

renumbers (at most) one mailbox to fill in the order. Each directory entry in that user's server

out-queue is modified to reflect the renumbering.

If the request is to create, the server will return the mailbox's number or an indication that no more

space remains for mailboxes. If the mailbox is created, the server will then modify each entry whose

message type is new or deferred to indicate that "the new mailbox should read in these memos. The

keep memos are not modified since the user would have the ability to read in a copy of the hold

queue. The delete memos are not modified since the mailbox contains nothing to be deleted.

This function was not included in the prototype design because of the complexity it would add to the

server program. Since the goal of this project is to investigate loose consistency, attempts to create

this facility were dropped.

43

Chapter Six

Extensions

6.1 The Protocol

The protocol described can be used on any type of network to implement a network obeying loose

consistency. In patticular. the protocol can be used to maintain loose consistency across

heterogeneous machines. as long a common message format exists among them. For example, a user

could have an account on a VAX and a personal computer, both on some network, but have a single

mail identity across both machines. The next step is to allow a user to have a single mail identity

across t.'le internetwork.

In order to facilitate this global naming strategy, it is necessary to develop a powerful, distributed

mail server. The XEROX Grapevine system [BIRRELL82) is an example of a server that strives

toward this goal. In addition, Grapevine attempts to maintain the mail facility even when one or

more servers go down.

In order to do this, Grapevine introduces the concept of the inbox. An inbox is-a place where a mail

user can receive mail. Any given user can have as many inboxes (each on a different serving

machine) as he/she wants. The internet addresses of these mailboxes arc placed in a list and ordered

by preference. Thus. if a user receives a message, it is stored in the first in box on the list, if that server

is available. If that server is not available, the next one is checked, etc.

In order to read his/her mail, the user invokes the local mail system program which determines the

list of possible inboxes. Each of these inboxes, in tum, is polled for new mail. Any new mail is

transferred to the local mail system and disposed of there. This localization of control is a key concept

in Grapevine. No messages are sent to the user without his/her first asking for them.

The importance of localization of control is that it does not require the user to be tied to any one

machine. The user has a single mail name across the entire network so he/she should be able to

receive mail anywhere within that network. Someone sending a user a message does not necessarily

know at which machine that user is currently accepting mail, but, with Grapevine, it does not matter.

44

The user is. therefore, free to move from machine to machine.

This concept is particularly important when it comes to personal computers. Because the mailbox is

so portable, a single network address can have many different users in a space of several minutes.

The server, by itself. has very little chance of determining where a given user is at a given instant,

short of imposing some kind of artificial restraint such as requiring the user to be registered with the

server while his/her mailbox is activated. Localization of control is, therefore, key to the design of

the system.

Because both systems rely on locali7.ation of control, they arc conceptua11y easy to merge. If we have

Grapevine, however. what is the need for the prototype mail system? Obviously, a new message read

from one machine will never be read as new on another. The prototype mail system, however, offers

something in addition to the localization of control. It offers a (loosely) consistent mail environment

independent of the state of the server or, more specifically, the state of the connection to the server.

For a mainframe computer, the chance of having a bad connection to the distributed server is very

small. For a personal computer, however, it is much greater, particularly in light of portable personal

computers. The personal computer may be connected quite infrequently but it should still have

copies of stored messages and should be able to queue messages locally even if the connection is not

present Presence of personal computers on the network, therefore, requires the loose consistency

protocol.

Modifying Grapevine to incorporate this protocol primarily involves the addition of the update

message types. The server must assume the responsibility of orchestrating the updates by

maintaining a mechanism similar to the mailboxes field of the directory structure. The total system

would have be to modified to allow the mailbox to obtain the internet address of the server so that

the disposition of a message can be returned to the server (as a member of the distributed server) that

contains the infonnation about the original message.

The operation of the personal computers would be essentially the same. A process would

periodically awaken and poll for new mail. The operation of any mainframe in the system would be

like the personal computer except that automatically polling for messages for a user and queueing

them locally until that user can sec them is probably not necessary.

In the absence of an internet-wide mail server, a local server can be used to coordinate mail between

45

its mail network and the rest of the network. whether it is organized as individual machines or as mail

networks. The server would, in any case. act in an analogous manner to the server described in the

prototype system. employing localization of control.

6.2 The Algorithm

· The algorithm fi.>r maintaining loose consistency is essentially a means by which a number of copies

of some entity (the memo in the case of the mail system) arc kept consistent. The candidates for this

entity, however. are quite constrained due to the limited nature of the algorithm. A more general

solution is implemented by David Gifford in the Violetcalendar system [G1FFORD79a].

Violet is a system tha~ provides access to a distributed database. This database allows multiple copies

of information to be stored throughout the network in order to improve reliability and performance.

Tbe database records are the entities to be kept consistent Because of the multitude of different

states that a typical database record can enter, the version number abstraction is used to simplify the

state change diagram. Every time the database entry is changed, the version number of that entry is

incremented. The state change diagram is, therefore, just a series of increasing version numbers.

Consistency among copies of a particular entry is maintained by a weighted voting scheme

[GIFFORD79b]. It this scheme, each copy of an entry is assigned a certain number of votes. The

entry, itself, contains two numbers: the number of votes required for a read access and the number

required for a write access. These two numbers arc known as the read and write quorum, and are

constrained such that their sum is greater than the total number of votes assigned to the copic~ of the

entry. A quorum is said to be reached when the sum of the votes of all the copies that have been

examined in an operation exceeds the quorum for that operation.

When a read operation is requested, copies are examined until the read quorum has been reached.

Once the quorum has been reached, the copy with the largest version number is assumed to be the

current version of the entry. When a write operation is requested, copies are again examined until a

read quorum has been reached, in order to obtain the current version number. lllc copies are then

examined until a write quorum has been reached. If no write quorum is ever reached, all copies are

updated to the current version, but no write operation is allowed. If the write quorum is reached, the

copies are updated to the new version and the current version number is incremented.

46

The algorithm guarantees that a read quorum will always contain a current version. l.et w be the

write quorum and r be the read quorum. Every write operation updates at least w votes to the current

version. Every read examines at least r votes. In order for this set of r votes not to account for any

current versions. the two sets of votes would have to be disjoint. This is impossible since it would

require r+ w to be less than or equal to the total number of votes. which violates a previous constraint

on r+w.

Gifford funher refines the algorithm with the definition of a weak copy. A weak copy is a one that

has no votes. The reason fhr its existence is to allow local. temporary copies to be made. These local

copies may improve the performance of the lookup operation. Weak copies have the advantage of

not requiring the sophisticated underlying memory system required by the non-weak c_opies.

In some ways, the loose consistency algorithm can be thought of as a special case of this weighted

voting algorithm. In the context of a voting system, the copy of a memo that is resident on the server

can be said to have all the votes. The local mailboxes can, therefore, be said to have only weak

copies. Because the state change diagram of a memo is so simple and constrained, the use of the

version number abstraction is not necessary.

The mail server as the ultimate authority on the state of any memo is key to the loose consistency

algorithm. Because there is no doubt as to the official state of any memo, there is no contention, and

therefore, no need for the specific voting algorithms. In addition, the simplicity and structure of the

state change diagram of a memo make it possible for the mail system to allow access to the local

copies (in the mailboxes} without access to the mail server. Damage will not result because the final

state is independent of the order of the updates. For example, a keep foUowed by a delete results in a

delete; a delete followed by a keep also results in a delete.

The loose consistency algorithm is applicable in situations where there is a central authority on the

state of each entity, and the state change diagram is such that the resultant state of any set of updates

is independent of the order of the updates. Note that with such a state change diagram, it is easy to

add other states in the same way that the deferred state was added in section 5. As long as the new

state adds no cycles to the diagram, the. order-invariant propeny will remain.

47

Acth·ated

Addressed

Crunching

Hold Queue

In box

ISR

Glossary

A mailbox is said to be activated when it has been placed in a machine on the
network and is ready to accept or transmit mail.

A memo is addressed to a panicular mailbox if the sub field of the mailboxes field
of that memo that has the same number as the mailbox. is set to zero. A memo
that is addressed to a mailbox will eventually be placed in that mailbox.

The process by which unusable space is consolidated and reclaimed for reuse. In
this paper. cnmching is applied to an hold queue in order to reclaim the dead
space left when a memo is deleted from that hold queue.

The hold queue is the place where kept messages are placed. There is one hold
queue in each mailbox and logically one kept by the server for each user. The
consistency of these hold queues is maintained by the loose consistency protocol.

An inbox is a term used in the Grapevine mail system to indicate a serving
machine which the user will poll for new messages.

ISR stands for interrupt service routine. An ISR is a routine that executes as a
background process as a result of an external event For instance, a routine that
refreshes a clock display on the screen seemingly without interrupting normal
operation of the machine, is a timer ISR.

Locali1.ation of Control

Mailbox

Localization of control is a concept that arises from the idea that a mail user should
be an entity on a network rather than an entity on a machine. The serving
machine, therefore, need not know where a user is at any time. Localization of
control means that all transactions between user and server originate with the user.

The mailbox is the local center of functionality in the mail system. It contains the
memo queue, the memo out-queue, and the hold queue, as well as the access
routines necessary to administer these structures.

Mailboxes Field The mailboxes field contains information concerning which of a user's mailboxes
have received a particular memo. This field exists in the directory structure of the
server out-queue for the user.

Memo A memo is the unit of information exchange in the mail system. It contains the
message as well as other bookkeeping information.

Memo Out-Queue The memo out-queue is the place where memos originating with the mailbox are
queued until a connection can be made to the server to transmit them.

48

Memo Queue

Message

Message Type

The memo queue is the place in tbe mailbox where incoming memos arc kept
until they can be processed by the mailbox or by the user.

A message is the textual portion of the memo. It contains the human readable
information.

The message type specifics the variety of a particular memo. 'Inc possibilities arc:
new, keep new. keep old. and delete. New specifics that the memo has probably
not been read. Keep new indicates that the text of the memo should be kept in the
mailbox's hold queue. Keep old indicates that the text of a memo already in the
memo queue should be kept. Delete indicates that the specified memo should be
deleted from the memo queue or from the hold queue.

One-way Function A one-way function is a function which is computationally easy to compute but
whose inverse is difficult to compute. One-way functions arc used to provide
sec~rity in the password scheme.

Reclamation Reclamation is the process whereby directory entries in the mailbox and the server
out-queue that contain information that is no longer useful are discovered and
made available for new information. The used field plays an important part in this
process for both the mailbox and the server. The fult field plays a particularly
important part in this process on the server side.

Remote Memo Queue
· The remote memo queue is the place where memos destined for mail users on

other mail networks are kept until the remote connection is made and the memos
transferred.

Server In-Queue The server in-queue is the place in the server where incoming memos are kept
until they can be processed by the mail server. There is logically one of these for
the mail network. ·

Server Memo The server memo is an expanded structure which contains a memo as well as other
information required specifically by the server.

Server Out-Queue The server out-queue is the place in the server where memos to a particular user
are kept until that user asks for them. There is logically one server out-queue for
each user.

SRM SRM stands for shared resource manager. It describes the file server of a network
based around peripherals that are shared among the users of the network.

Update Memo An update memo is a memo sent to the server indicating that the status of a
specified memo should be changed. An update memo can specify that the target
memo is kept or deleted. 'The server uses this information to update the memo
status so that loose consistency can be maintained.

49

References

[BIRRELL82] Andrew D. Birrell. Roy Levin. Roger M. Needham. and Michael D. Schroeder;
Grape1•inc: An Fxercise in Distributed Computing. Communications of the ACM
Apri11982. Volume 25. Number 4; p. 260. ·

[CLARK82] David D. Clark: Names. Addresses. Ports. and Routes. Arpanct RFC 814. SRI
International, Menlo Park, CA. July 1982. .

[CROCKER82) David H. Crocker; Standard fur the Fonnat of ARPA Internet Text Messages.
Arpanet RFC 822, SRI International, Menlo Park. CA. August 13,1982.

[GIFFORD79a] D~vid K. Gifford; Violet, an Experimental Dece/llralized System, Computer
Networks Journal, December 1981, Volume 5, Number 6; p. 423.

[GIFFORD79b] David K. Gifford; Weighted Voting for Replicated Data, Proceedings of the
Seventh Symposium on Operating System Principles, December 1979, Pacific
Grove, California; p. 150.

[POSTEL82]

[REDELL83)

Jon Postel; Simple Mail Transfer Protocol, Arpanct RFC 821, SRI International,
Menlo Park, CA. August 1982.

David D. RedcJI and James E. White; Interconnecting Electronic .Mail Systems,
Computer Magaiine, September 1983, Volume 16, Number 9; p. 55.

so

'-.·

.., .. ,
)!

' . j ,,, :
· ~ ' I

!

'I

I
. '
. I

