
IILessons learned at Project Athena ll

Notes for talk at Amsterdam SIGOPS Workshop, Sept. 8-10, 1986
J. H. Baltzer
Version of September 2, 1986

Background:

Project Athena is finishing the third yea~ of a five-year cooperative
project of M.I.T., IBM, and Digital Equipment Corporation, to explore
the potential impact on engineering education of using networked
workstations with good graphics. Its scale is large: 1500
workstations plus 50 network servers for 4000 undergraduates. The
project is structured in two major phases, with the first, now
installed, phase being an approximation of the future environmentu
The approximation consists of 50 Digital VAX 11/750 time-sharing
systems and 150 IBM PC/AT's linked with local area networksu
allowing development and initial use while waiting for MicroVAX II
and RT PC class machines and their successors to become available.
The project is now entering its second phase, a client-server model
based on so-called 3M (1 Mips, 1 Megapel, and 1--actually 2 or
3--Megabyte) workstations. At this time, about 150 3M workstations
are deployed, and the project is installing 3/day. This is therefore
an interim report.

Although not intended as a distributed systems research project, the
design, implementation, and deployment of the Athena
workstation-server model is bringing into sharp focus some
sometimes-fuzzy concepts current in the distributed systems research
community, and at an operating scale that forces a very candid
appraisal of both the real value and the state of readiness of each
proposed idea. As one might expect, some mundane but real problems
of large-scale distributed systems are showing up.

Some of these things will strike certain listeners as 1I0bvious,"
because those listeners have been (correctly) predicting themu The
interest in repeating them here is the confirmation from the field
that the lessons are for real.

I have three observations about networks, and five about systems.

~
\~"\

I. Network I essons. \()~~ ~
C~

1.1. Network firewalls are important. Products such as the DEC LAN
Bridge (which allow several Ethernets to be linked together and act
as one) can be a mistake because they allow a machine whose software
is running out of control to bring down a larger region of the
network. Things that link LAN's must not forward trouble.

'j'
~ ~,~ I.2u Broadcast protocols are like the plague; avoid them because 1? ,·y"irrors lead to floods of (response) packets when you least expect
_\if them. (Examples: the broadcast packet whose content appears to a

, ~ level in the recipient's software to require forwarding or a
rerouting suggestion; the damaged broadcast packet that triggers a
flood of maintenance responses or resend requests; etc.) [In
connection with 1.1, note that one way.to avoid forwarding trouble
to never forward broadcastsu]

low

is

l

1.3. Ethernet hardware quality is not uniformly high. We trip over
bugs and misfeatures in most hardware. (Examples: interfaces that
wedge under massive collisions~ repeaters that lock up on physical
disconnect and require pressing a reset button, multiple buffer
interfaces that lose track of packets then deliver them l!~,r~
i nterface~; that i nte'''''fere wi th other bus devi ces; transceivers that
can talk to one another but not to those of other vendors;
transceivers that demand much more electric power than the standard
sp ec :i ·f i es")

II. System design lessons

II.l. The biggest system design problem: human engineering. It is
time to place much more emphasis on the human interface to the .'
operati ng system, under the assumpti on that the anI y person who wi 11 I~
eve,'" interact wi th it is a non-e}·~per-t. Care and feedi ng of ..a- .---"
one-user operating systemSisn't polished yet. MSDOS and the
Macintosh come closest, but other OS designers haven't yet picked up
the ball. For example, UNIX with a MAC-like user interface would
still r'equire a wizard to recover from . that damage the __
file system. From the point of view of a first-year college student ~

ng '0 uncrate it, the personal computer together with its
operating system must be a low-technology item. A 3M workstation
linked in a distributed system to an array of interdependent services
does not currently have this essential property.

~s-r- ~~~
11.2. A Update isn't so hard, even when there are lots of copies
around. Update for most software is easier than usually assumed,
because changes happen slowly, and don't have to be propagated
instantly or atomically. The important thing is to include in the
design some kind of mechanics that make update inevitable. Then
r'el a}·~ and wai t.

11.3. System designers have very different requirements from
students. So they don't design the right systems. (Example: we
rarely ask students to work together, but many education applications
can benefit from 2-D, 3-D, and image graphics. System designers
usually implement by working in teams, but hardly ever use graphics
above the level of multiple windows for text. So the system
designers spend all their time developing tools for working together,
and don't notice the rough edges in the display packages.)

11.4. Easy licensability of a software package is more important
than better features or higher quality. We have had to discontinue
consideration of several good third-party packages because of
unacceptable licensing conditions. (E.g., Physical copy protection;
legal copyright liability; non-disclosure clauses; inability to
license to more than one CPU type; per-copy identification
requirements; inability to cope with network distribution.>

j 11.5. Coherence works. We have had excellent results by defining a
programming interface that consists of the C~ Fortran~ and LISP
languages plus the 4.2 UNIX (a trademark of ATT Bell Labs) operating
system calls plus the X window package. Applications written for the
VAX usually run on the RT just by recompiling. Modest size systems
o·f ten move just by copyi n~~ the sources and t yp i ng II make II • Bi \~ger
ones have minor problems the first time; modest tinkering usually
leaves them workable in both environments. (Example: gnuemacs.) The
same programs then run on the Sun~ not an intentional target. [But
VAX/VMS programs are a major project to move to VAX/UNIX~ RT/AIX
programs require substantial work to get into the RT/UNIX
environment~ and 68000/MAC programs are hopeless despite using the
same engine as the SUN. (Because of the dramatically different
display interface.) Lesson: what matters are standard OS and display
interfaces~ not a standard instruction set.]

11.6. The most useful client-server example we have so far
encountered is a division of a windowing display manager into a
device driver service and an application client library separated by

__ ___ a ~~fl~t~~~g!:" !L-S C?-'~n~f~Jj._On ~ ___ Thi§ __ §.r:~ hit (~f:tLJI'" e:·L-.f.~Jto_w~Qn~_ t 0_ ~1~.Rgp .':::\12-_ ~
window i:\CI"'OSS the net~ II a surpr'isingly useful ability!' not just -f:or
remote login to old-fashioned systems!, but for cooperation among
workstation users.

11.7. Naming? Despite all the discussion about naming in the
operating systems literature over the last few years!' it still isn't
apparent just how much (or how little) function is really appropriate
to glue a particular community of users and services together. One
reason seems to be that the boundary between naming and service
management isn't clear. The naming system we have specified seems to
be nothing more than a specialized inquiry interface on the side of
our central service management system, which is the real holder of
fundamental knowledge about configuration information.

II.Sn Storage models: what files should be on a workstation and what
should be on a central file store? The right compromise is very hard
to ·find.

1. There isn't room on a student-affordable disk for the complete
library of goodies (we have 150 Megabytes how and it is
growing). And placing things on a central file store allows much
easier update.

2. If the student owns the workstation~ he or she wants to be
able to take it home over the summer, and to move to an off-campus
apartment, where connection to a central file store is slow or
non-e}-~ i stent.

3. CD ROM's are big enough to hold the library but have awful
p er- f OIl"" man c e •

4. The student's own files need to be available for use not only
from a workstation in the dormitory or fraternity, but also at
the library or in a laboratory.

5. Most candidates for distributed file systems don't perform
well enough to make deployment with 1500 clients economically
'feasi bl e ..

6. The most effective way for a student to participate in the
economic decision about how many personal files to retain is for
the student to own the storage medium"

These considerations seem to add up to two different ~onfigurations:

- <short term) A public workstation, with all local disk storage
used as a cache, importing all its software libraries from a
central server and importing the personal files of its users
either on removable media or via the net from central lockers.

- (longer term) A privately owned workstation, with a range of
disk size options; software that allows export of the private
file system via the network to public workstations. Libraries
may be imported via the net or copied via the net to the
workstation, at the student's choiceR

