
Properties of the Multics Environment* 

by J. H. Saltzer 

DRAFT II 

5/16/72 

The topic that I'd like to move to is some interesting properties 

of the Multics environment. One of the most useful aspects of Multics 

is that it provides a base on which one can construct or operate higher 

level subsystems. We shall call the base that is provided the Multics 

environment. 

The chief property that this environment has is that the subsystem 

writer finds that several of the problems he is normally faced with have 

already been solved in a way that he can depend on. In other words, he 

can devote his attention to working on his particular problem and he 

doesn't really have to worry about things such as input and output, 

storage management, device independent multiprogramming, and various issues 

of this type. This Multics environment is fairly general, and at the same 

time fairly efficient, which is what makes it valuable. The key here is 

that by providing an environment that solves some of these problems 

effectively, we hope that we can give the subsystem designer better support 

for his subsystem than he would have time or resources to provide for him-

self. The point is that when one is dealing with a subsystem that is trying 

to solve some fairly significant problem, he can't afford to spend much 

time providing the support machinery underneath the subsystem. Although in 

principle, he might be able to develop an underpinning, that was exactly 

right for his system, it may be actually very difficult for him to spend 

the time. In this case we can provide him with some machinery which, while 

* from a talk given in January, 1971, at an M.I.T. Symposium on the 
Multics System. 



Properties of the Multics Environment --2 Draft II 

maybe not exactly the same interface that~1he would have designed, it's 

probably better overall than what he would have wound up with. The kinds 

of subsystems that are of special interest from this point of view are 

those for which there is an online information base which may be looked 

at and updated by a variety of different people, possibly at the same time. 

Some examples are department administrative systems or library catalogue 

systems, simulation and modeling systems, management game systems, airline 

reservation systems, inventory and billing systems, airline equipment 

location systems and so on. All of these require an online remotely 

accessible, shared data base. Clearly, if one does not have sophisticated 

support, then one can still construct such systems. Most of these applica­

tions I have just aescribed do use computer today, but often with much less 

than optimal results, because of the difficulty of programming them with a 

primitive base. 

Let's look to see then what this environment of Multics consists of. 

There are a half a dozen key aspects which seem to make a difference when 

one is trying to develop a subsystem. The first key aspect is that the 

system, from the point of view of the subsystem constructor, is configura-

tion independent. He does not concern himself with how many central processors 

ha~pen to be attached; he doesn't really have to know how many thousands of 

words of core memory are attached to the system; the particular disk and 

drum configuration are of no concern; even I/O device types, if he wishes, 

can be masked off from his area of concern. The value of this independence 

is that one can construct a subsystem which simply does not have to change 

when one acquires a faster central processor, or more memory, or one dis­

covers that there is a cheaper typewriter console available from another 

manufacturer. 



Properties of the Multics Environment --3 Draft II 

In all of these cases~ it is necessary to make some changes in 

Multics~ but then all of the subsystems which are built on it can use 

the new facility or configuration. 

The second key aspect is that Input/Output operations are not 

necessarily for online storage. Instead~ one can write programs that 

directly address all of the online storage of the system as though it is 

located in the virtual memory)of the program. The details of the meaning 

of this will come out later~ but first we should notice the value to the 

programmer. Storage management is being automatically managed behind the 

scenes. The programmer simply does not perform storage management or 

address allocation while he constructs his subsystem thus he has more 

time to spend on his own problem. 

A typical example arises if you ask a team which is constructing 

a modern compiler~ for example for PL/I~ on a typical non-Multics machine. 

You will find that they have spent much time organizing ten or twelve 

overlays and making absolutely sure that the right piece of information is 

in the right place at the right time. Upon examining the overall effort~ 

one may conclude that the complexity of the compiler may have doubled 

because of the explicitly programmed overlays. A factor of two in complexity~ 

of.course~ may be the trigger for slipped schedules~ poor performance, and 

an unmaintainable piece of software. The key here is that if we can get 

that half which is storage management out of the way by using an efficient 

system-provided alternative then the speed with which the superstructure 

can be developed will increase, and more ambitious superstructures become 

feasible. 




