
A systems approach to teaching
computer systems

Jerry Saltzer and Frans Kaashoek
{Saltzer, kaashoek}@mit.edu

Massachusetts Institute of Technology

Who is a professor’s customer?

• Students?
• Industry?
• Universities?
• Parents?

Student!

Student’s career is ~40 years

• Identify long lasting ideas
• Mechanics will change
• Few students program 40 years
• But many are involved in system design

– Even if they are not in the IT industry
• A few students need to become experts

In systems we serve our students poorly

Too many system classes
• Operating systems
• Databases
• Computer networks
• Computer architecture
• Computer security
• Distributed systems
• Fault tolerant systems
• Concurrency

Students don’t have time to take all of them, so
they leave with gaps in basic systems concepts

Classes have the wrong focus

• Most classes require substantial programming
• Few students will need to implement

– An operating system
– A parallel computer
– A database
– A cryptographic protocol

• Many students need to understand systems
– Design a Web site
– Roll out a financial application
– Advise management on IT strategies

Poor identification of
long-lasting ideas

• Each class takes a semester (or more)
– No reason to pull out big ideas

• Pressure to focus on details
– Each class has a lab
– Must learn some artifact (NachOS, Minix)
– Details matter (e.g., how to disable interrupts

on the x86)

Lack broad appeal

• Students without “street” knowledge feel
at a disadvantage

• Programming creates macho culture
• Little interest from other majors

– Even though other majors rely more and
more on computer systems

Our approach: a different
systems curriculum

Computer
Organization Programming

Systems
Engineering

Operating
systems

Database
systems

Computer
Networks

Juniors

Seniors
•••

• An intro class without programming but with long-lasting ideas
• Follow on classes can go in real depth, including labs
• In-depth often requires general system knowledge

Freshman/
Sophomores

= with lab

Opportunity: identify
common ideas

• System abstractions fall in one of three
categories:
– interpreters, memory, and communication links

• Atomicity
– atomic instructions, locks, rename, logs

• Concurrency control
‒ semaphores, two-phase locking, two-phase commit

• Virtualization
– virtual memory, RAID

Outline

• Content overview
– Example: virtualization

• Assignments
• Quizzes
• Results
• Adopting

Computer system engineering
(6.033)

• Started in late sixties
• Principles capture long-lasting wisdom
• Key ideas in depth using pseudocode
• Design oriented, instead of programming

– Students “solve” a design problem and write a report
• Hands-on assignments

– Reality exposure in lieu of a full-blown lab
• Case studies of successful systems

– Papers from the research literature
• Large staff for about 200 students per semester

The mechanics
• 2 large lectures a week: covers key ideas
• 2 small-group discussing meetings per week

– Discuss research papers w. successful design
• 4 one-pagers

– Answer question about one of the papers assigned
• 7 Hands-on assignments

– Poke at several systems from the outside
• 2 design projects per term

– One individual, one team
• 3 quizzes

“the EECS humanities class”

Content overview
• Introduction: system complexity
• Abstractions: interpreters, memory, and

communication links
• Naming: glue to connect abstractions
• Client/server: strong modularity
• Operating systems: isolate client and servers
• Performance: bottlenecks in a pipeline
• Network systems: connect client and servers
• Fault tolerance: modularity in the face of failures
• Transactions: modularity in the face of concurrency

and failures
• Security: modularity in the face of attackers

Content themes

• The pervasive importance of modularity
– Abstractions, Naming, Client/service,

Layering, etc.
• Robustness and resilience

– Stronger and stronger modularity
• Design principles

Principles
• Adopt sweeping simplifications
• Avoid excessive generality
• Be explicit
• Decouple modules with

indirection
• Design for iteration
• End-to-end argument
• Keep digging principle
• Law of diminishing returns
• Open design principle
• Principle of least surprise
• Robustness principle
• Unyielding foundation rule

• Safety margin principle
• Avoid rarely used components
• Never modify the only copy!
• One writer rule
• The durability mantra
• Minimize secrets
• Complete mediation
• Least privilege principle
• Separation of privilege
• Economy of mechanism
• Minimize common mechanism

Example:virtualization

• Key problem: enforcing modularity
between applications on same
computer

• Key idea: virtualization
– Virtual memory: address spaces
– Virtual processors: threads
– Virtual communication link: pipe, IPC

• Artifact: operating system

Tease ideas apart

• Assume unlimited processors and memory

Reduce to the key problem

Remove assumptions: yield

• Number of threads may be larger than number of processors

Go deep: remove mysteries

• Pseudocode removes thread switching mystery
• Designed on modern assumptions: multiple processors

Other usages of virtualization

• Virtual storage device: RAID
• Virtual display: window
• Virtual circuit: TCP connection
• Virtual computer: virtual machine

Papers discussed this spring
• Worse is better
• Therac 25
• Unix time sharing
• X windows
• Eraser
• Map reduce
• Google
• Hints for computer

design

• Ethernet
• End-to-end argument
• NATs
• LFS
• ARIES
• Reflections on trust
• Beyond stack smashing
• Witty worm

One-pager assignment

Example one pager

Hands-on assignments

• Reality exposure in lieu of full-blown lab
– Mostly intended for students with no or little

experience with systems
• Unix shell, X windows, ping&trace,

DNS, LFS benchmarks, log-based
recovery, and X509 certificates

• Each require under an hour of work

Example report

Design project 1: single (2005)

Design project 2: team

Design project 2: requirements

Quiz 1

Does the approach work?
• Students think so:

– All MIT EECS students take it, even though it is
not required for EE majors

– Results from a survey 5 years after graduation:
• Most valuable EECS class

– Women and minority students enjoy the class
– A few students outside of EECS take the class

• Instructors think so:
– They love to teach it
– Instructors come from AI, Systems, and Theory

Student feedback (spring 2006)

0

8

15

23

30

1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f r
es

po
ns

es

score on a scale of 1 to 10

“You don’t need to
know anything about
systems before
hand”

“I was able to answer
every question the
Google interviewer
asked me!”

ACM/IEEE 2001 curriculum

• Curriculum has 2 layers:
1. Modules that constitute appropriate CS education
2. Suggested packaging

• 6.033: a different packaging of 226c:
• Operating systems and networks (compressed)
• Plus: naming, fault tolerance, and both system and

cryptographic security

Incremental adoption

• Use text several quarters/semesters
– Intro OS course and keep lab
– Intro networking course

• Use text as intro graduate course
– Combines well with research papers

Where do I get the material?

• All material for last 10 years is at:
http://web.mit.edu/6.033

• A polished version on MIT’s Open Course Ware
• Complete draft of text exists

– Includes extensive problems and solutions chapter
– Iterated for 30 years in 6.033
– 3 years experience with current version
– Externally reviewed
– Send us email

• Interested in being a test class?

http://web.mit.edu/6.033
http://web.mit.edu/6.033

Summary

• Too many systems classes, too little time, too few
principles, too much mechanics

• Alternative: broad intro class, followed by in-depth
classes

• Advantages:
– Broad appeal
– Focus on design principles and key ideas
– No programming required, but can be hands-on

• Disadvantage:
– Curriculum change, but introduction can be incremental

