A systems approach to teaching
computer systems

Jerry Saltzer and Frans Kaashoek
{Saltzer, kaashoek}@mit.edu

Massachusetts Institute of Technology

Who is a professor’s customer?

Students?
Industry?
Universities?
Parents?

Student!

Student’'s career is ~40 years

|dentify long lasting ideas
Mechanics will change
Few students program 40 years

But many are involved in system design
— Even if they are not in the IT industry

A few students need to become experts

In systems we serve our students poorly

Too many system classes

Operating systems
Databases

Computer networks
Computer architecture
Computer security
Distributed systems
Fault tolerant systems
Concurrency

Students don’t have time to take all of them, so
they leave with gaps in basic systems concepts

Classes have the wrong focus

* Most classes require substantial programming

* Few students will need to implement
— An operating system
— A parallel computer
— A database
— A cryptographic protocol

* Many students need to understand systems

— Design a Web site
— Roll out a financial application
— Advise management on IT strategies

Poor identification of
long-lasting ideas

« Each class takes a semester (or more)
— No reason to pull out big ideas

 Pressure to focus on details
— Each class has a lab
— Must learn some artifact (NachOS, Minix)

— Details matter (e.g., how to disable interrupts
on the x86)

Lack broad appeal

» Students without “street” knowledge feel
at a disadvantage

* Programming creates macho culture

* Little interest from other majors

— Even though other majors rely more and
more on computer systems

Our approach: a different
systems curriculum

Freshman/
Sophomores
Juniors - . = with lab

* An intro class without programming but with long-lasting ideas
 Follow on classes can go in real depth, including labs
* In-depth often requires general system knowledge

Opportunity: identify
common ideas

System abstractions fall in one of three
categories:

— Interpreters, memory, and communication links
Atomicity
— atomic instructions, locks, rename, logs

Concurrency control
— semaphores, two-phase locking, two-phase commit

Virtualization
— virtual memory, RAID

Outline

Content overview
— Example: virtualization

Assignments
Quizzes
Results
Adopting

Computer system engineering
(6.033)

Started in late sixties
Principles capture long-lasting wisdom
Key ideas in depth using pseudocode

Design oriented, instead of programming
— Students “solve” a design problem and write a report

Hands-on assignments

— Reality exposure in lieu of a full-blown lab
Case studies of successful systems

— Papers from the research literature

Large staff for about 200 students per semester

The mechanics

2 large lectures a week: covers key ideas

2 small-group discussing meetings per week
— Discuss research papers w. successful design

4 one-pagers

— Answer question about one of the papers assigned

/ Hands-on assignments
— Poke at several systems from the outside

2 design projects per term
— One individual, one team

3 quizzes

“the EECS humanities class”

Content overview

Introduction: system complexity

Abstractions: interpreters, memory, and
communication links

Naming: glue to connect abstractions
Client/server: strong modularity

Operating systems: isolate client and servers
Performance: bottlenecks in a pipeline

Network systems: connect client and servers
Fault tolerance: modularity in the face of failures

Transactions: modularity in the face of concurrency
and failures

Security: modularity in the face of attackers

Content themes

* The pervasive importance of modularity

— Abstractions, Naming, Client/service,
Layering, etc.

 Robustness and resilience
— Stronger and stronger modularity

* Design principles

Principles

Adopt sweeping simplifications
Avoid excessive generality
Be explicit

Decouple modules with
indirection

Design for iteration
End-to-end argument
Keep digging principle
Law of diminishing returns
Open design principle
Principle of least surprise
Robustness principle
Unyielding foundation rule

Safety margin principle

Avoid rarely used components
Never modify the only copy!
One writer rule

The durability mantra
Minimize secrets

Complete mediation

Least privilege principle
Separation of privilege
Economy of mechanism
Minimize common mechanism

Example:virtualization

» Key problem: enforcing modularity
between applications on same
computer

* Key idea: virtualization
— Virtual memory: address spaces
— Virtual processors: threads
— Virtual communication link: pipe, IPC

* Artifact: operating system

5-12

Tease ideas apart

Enforcing modularity with virtualization

\ of messages.

Operating system I]] l l |

2" 2"

Editor File
service

RECEIVE

0 '/ é

SEND

UM

a bounded buffer

Figure 5-2: An operating system providing the editor and file service module each
their own virtual computer. Each virtual computer has a thread that virtualizes the
processor. Each virtual computer has a virtual address space that provides each
module with the illusion that it has its own memory. To allow communication between
virtual computers, the operating system provides SEND, RECEIVE, and a bounded buffer

~

/

* Assume unlimited processors and memory

}
o

}

procedure SEND (port, m) {

p < ports| port];

if state of p = FREE then return error; // If port is not in use, then return error
success < FALSE;

while not success do {

if (in of p) — (out of p) <N then { /I Is there room in the buffer?
buffer[(in of p) mod N] of p <~ m; // Put message in the buffer
imofpe«inofp+1,; // Increment in
success «<— TRUE;
}
}
procedure RECEIVE (port) {
p « ports{ port);
if state of p = FREE then return error; /' If port is not in use, then return error

success < FALSE;
while not success do {

if out of p <in of p then { /l Is there anything to receive?
m <« buffer(out of p mod N] of p; // Yes, copy item out of buffer
outof p < outof p + 1; // Increment out
success «<— TRUE;
}
}
return m; // Return message to receiver

Figure 5-4: An implementation of a virtual communication link

/

shared variable must be coordinated. This assumption exemplifies a principle
that coordination is simplest when all shared variables follow the rule:

One-writer rule

C

If each variable has only one writer, coordination becomes easier.

)

Reduce to the key problem

1 procedure FAULTY ACQUIRE (L) {

2 while L = LOCKED do { // spin until L is FREE

3 ; // empty iterator, keep retrying the while
4 }

5 L < LOCKED; // the while test failed, got the lock

6

7

}

We must guarantee that ACQUIRE itselfis isolated. Once ACQUIRE is an isolated operation,
we can isolate arbitrary sequences of operations. This reduction is an example of a technique
called bootstrapping, which resembles an inductive proof. Bootstrapping means that we look
for a systematic way to reduce a general problem (e.g., isolating updates to an arbitrary set of
shared variables) to some much-narrower particular version of the same problem (e.g.,
isolating updates to a single shared lock). We then solve the narrow problem using some
specialized method that might work for only that case, because it takes advantage of the
specific situation. The general solution then consists of two parts: a method for solving the
special case and a method for reducing the general problem to the special case. In the case of
ACQUIRE, the solution for the specific problem is either building a special hardware instruction
that is itself isolated, or by some extremely careful programming.

/procedure ACQUIRE (L) {

R1 « RSM (L) // read and set lock L
while R1 = LOCKED do { // was it already locked?
Rl < RSM (L) // yes, do it again, till we see it wasn’t
}
}

Remove assumptions: yield

1 procedure SEND (port, m) {

2 p < ports| port];

3 if state of p = FREE then return error; // If port is not in use, then return error
4 success <— FALSE;

5 while not success do {

6 ACQUIRE (buffer lock of p);

7 if (in of p) — (out of p) <N then { // Is there room in the buffer?
8 buffer|[(in of p) mod N] of p < m; // Put message in the buffer
9 inofp«inofp+1; // Increment in

10 success < TRUE;

11 }

12 RELEASE (buffer lock of p);

13 if not success then YIELD ();

14 }

15 }

* Number of threads may be larger than number of processors

Go deep: remove mysteries

/shared struct thread {

integer fopstack; // value of the stack pointer
integer state; // RUNNABLE or RUNNING
} threadtable[7];

1 procedure YIELD () {

2 ACQUIRE (threadtable lock),

3 state of threadtable[ID] <~ RUNNABLE;// switch state to RUNNABLE

4 topstack of threadtable[ID] < SP;// save state: store yielding’s thread Sp
5 do { //schedule a RUNNABLE thread

6 ID« (ID+ 1) mod 7,

7 }+ while state of threadtable[ID].state # RUNNABLE;// skip running threads
8 state of threadtable[ID] < RUNNING; // set state to RUNNING

9 SP «— topstack of threadtable[ID]; // dispatch: load SP of next thread;
10 RELEASE (threadtable lock);

11 return;

12 }

* Pseudocode removes thread switching mystery
» Designed on modern assumptions: multiple processors

Other usages of virtualization

* Virtual storage device: RAID
 Virtual display: window

* Virtual circuit: TCP connection
 Virtual computer: virtual machine

Papers discussed this spring

Worse is better
Therac 25

Unix time sharing
X windows
Eraser

Map reduce
Google

Hints for computer
design

Ethernet

End-to-end argument
NATs

LFS

ARIES

Reflections on trust
Beyond stack smashing
Witty worm

One-pager assignment

For background, please read sections 1 and 2 of the Eraser paper. Then read just
sections 1 and 4 of the RaceTrack paper.

For this week's assignment, you are the manager of several hundred programmers
building a large software product for your company. The examples on page 11 of the
RaceTrack paper cross your desk, and you are disturbed to learn that these
race-condition bugs slipped through several years of Microsoft's code reviews,
undetected. Despite this disappointing case study (or maybe because of it), you decide to
try to prevent your company's program from shipping with concurrency bugs.

In your role as manager, write a one-page memo to your employees outlining the rules or
steps you will put in place to try to prevent similar bugs from appearing in your
company's product. Since the programmers may not jump at your every command, you
will also need to persuade them that this is the right course of action. You only have one
page, so it's best to focus on the most important points and justifications.

Example one pager

From: Widagdo Setiawan
Sam Madden 11AM 6.033 recitation

Date: March 2, 2006
Subject: Plans for reducing race condition bugs in multithreaded modules

Problems

Multithreaded modules have been used intensively in our software products. Until now, we
never had any well-defined rules regarding multithreaded algorithms. However, after reading the
RaceTrack paper [1] from Microsoft Research, it is evident that even after years of extensive
code review, subtle race condition bugs still reside in both their Visual Studio Library and
Common Language Runtime modules. Therefore, to avoid or reduce similar problems in our
software products, I have decided to enforce the following rules whenever a thread safe module
is constructed.

Rules

1. Use standard lock techniques
It is apparent that all three bugs described in the RaceTrack paper arose because the
developers did not use any standard locking mechanisms to prevent race conditions.

However, the standard locking mechanisms in the .NET Framework are known to be very

Hands-on assignments

» Reality exposure in lieu of full-blown lab

— Mostly intended for students with no or little
experience with systems

* Unix shell, X windows, ping&trace,
DNS, LFS benchmarks, log-based
recovery, and X509 certificates

« Each require under an hour of work

This hands-on assignment will give you some experience using a Write Ahead Log
(WAL) system. This system corresponds to the WAL scheme described in Chapter 9.C
of the course notes. You should carefully read that section before attempting this

begin 1

create_account 1 studentA 1000
commit 1

end 1

begin 2

create account 2 studentB 2000
begin 3

create account 3 studentC 3000
credit_account 3 studentC 100
debit_ account 3 studentA 100
commit 3

show _state

crash

Use a text editor to examine the "DB" and "LOG" files and answer the following
questions (do not run wal-sys again until you have answered these questions):

1) Wal-sys displays the current state of the database contents after you type
show_state. Why doesn't the database show studentB?

2) When the database recovers, which accounts should be active, and what
values should they contain?

3) Can you explain why the "DB" file does not contain a record for studentC and
contains the pre-debit balance for studentA?

6.033 Design Project 1: A Fast but
Potentially Unreliable File System

I. Assignment

There are two deliverables for Design Project 1:

1. Two copies of a design proposal not exceeding 800 words, due on Tuesday, March
7,2006.

2. Two copies of a design report not exceeding 2,500 words, due on Thursday, March
23, 2006.

Your goal is to build a fast file system for a machine that will be used to store files for
clients temporarily. One could use such a machine, for example, to cache requested web
pages at the edges of the Internet, or to hold files containing data collected from sensors.
Clients can use a web server running on the machine to upload, download, and delete
files. You can anticipate a range of file sizes from small (e.g., a file with temperature
readings) to large (e.g., a file containing a video clip). The web server is the only
application running on the machine and the only application your design will need to
support.

- Example report

Many file systems are designed to be fast, while maintaining reliability in the face of crashes. This paper
presents an alternate design, MEMFiS: A Fast Memory-Backed File System, which optimizes only for
speed and not for reliability. To maximize efficiency and simplicity, MEMFiS employs three unusual

design decisions:
1. The File Table is stored in memory, which sacrifices a high maximum number of files for a

reduced number of disk seeks per system call.
2. The disk is segmented into pre-sized blocks, which sacrifices optimal disk utilization for a non-

fragmented disk with performance that degrades minimally over time.
3. The read-ahead caching scheme, which sacrifices throughput for an initial read() request for data

availability in the cache for future requests.

MEMFiS is optimized for a file distribution similar to that of a typical desktop computer, as presented in
Table 1.

f (I::::bs;tzees) % of Total Files Stored % of Total Disk Space Used \
0-1 25% 1%
1-10 45% 2%
10-100 25% 7%
100-1000 3% 20%
>1000 2% 70%
Table 1: The table demonstrates the file distribution of my laptop. For example, 25% of
files in a typical file distribution are 0-1 kilobyte in size. However, these files only

Qnsume 1% of the total disk space. According to this data, the average file size is 200
kilobytes. J

Design project 1: single (2005)

In 6.004, you designed a microprocessor, the brain of a modern computer. But just as
your brain would be useless without its nervous system, the Beta would be useless
without a way to connect to external devices. Processors need to communicate with the
outside world -- through video displays, network cards, and keyboards. It's these devices
and others that turn a processor into a useful computer system.

In this project, you will design a bus: a way to attach lots of external devices to the Beta
at the same time. We call these devices "Beta External Devices," or BEDs. They can be
keyboards, hard drives, iPods, video cards, DDR pads, digital cameras, Ethernet cards,
mice -- you name it.

Your design will need to specify how the bus works at four levels:

 (A) Physical Connection. We specify the one possible wiring configuration
between the BEDs and the Beta, but you will need to design the protocol that the
Beta uses to exchange data with BEDs and its memory.

o (B) Identification. How does the Beta know what BEDs are connected? How does
the Beta speak to an individual BED?

o (C) Initialization. What does the Beta do when BEDs are added or removed?

(D) Application Interface. How does the operating system (OS) allow software
applications to interact with BEDs?

Design project 2: team

Design Project 2: Delay-Tolerant Wireless
Networking with Cheap Laptops (v2)

(Note: this is version 2 of the design project. If vou printed out a version that does not
have this note, please print the current version.)

0. Assignment

You will do design project 2 in teams of three students from your recitation section.
There are four deliverables for Design Project 2:

1. A list of team members emailed to your recitation instructor by April 11, 2006.

R

One copy of a design proposal not exceeding 800 words, due on Thursday, April
27,2006.

3. One copy of a design report not exceeding 5,000 words, due on Thursday, May 11,
2006.

4. An in-class presentation on May 16, 2006. Details of the presentations will be posted
closer to the due date.

6.033 design reports are different from quizzes and problem sets. These projects, like those
in real life, are under-specified, and it is your job to complete the specification sensibly,
given the project requirements. As with real-world designs, those requirements often need
some adjustment as you flesh out your design. We strongly recommend that you start
early so that you can iterate your design. A good design will likely take more than a few
davs.

Design project 2: requirements

Your protocol should provide the following API:

result send msg(msg, len, dest, app port);

result register handler(app port, handler function);

Applications call send msg to deliver a message, msg, of
arbitrary length, len, to a remote laptop, dest. Note that the
laptop cannot necessarily communicate directly with dest when
the application calls send_msg. However, your network protocol
should provide the following best-effort delivery guarantee: it
will eventually deliver msg to the laptop named dest unless a
failure occurs during that transmission. (Note that the two
applications we have asked you to design have specific
reliability requirements; you will need to decide to what extent
those requirements are satisfied by your network protocol versus
separately by each application.)

Quiz 1

Alyssa claims that semaphores can also be used to make operations atomic. She proposes the following
modification to a port_info structure and RECEIVE_MESSAGE to allow threads to concurrently invoke RE-
CEIVE_MESSAGE on the same port without race conditions (only the commented lines changed):

structure port_info {

semaphore n « 0;

semaphore mutex «7777; // see question below
message buffer NMSG];

long integer in « 0;

long integer out « 0;

} port_infosNPORT];

procedure RECEIVE _MESSAGE(dest_port)
structure port infod;
d « port_infos|dest _port);
DOWN(d.mutex); // enter atomic section
DOWN(d.n);
m «— d.buffer|d.out mod NMSG];
d.out «— d.out + 1;
UP(d.mutex); // leave atomic section
return m;

12. [8 points]: To what value can mutex be initialized to avoid race conditions and deadlocks when
multiple threads call RECEIVE_MESSAGE on the same port?

(Circle True or False for each choice.)

Does the approach work?

e Students think so:

— All MIT EECS students take it, even though it is
not required for EE majors

— Results from a survey 5 years after graduation:
» Most valuable EECS class

— Women and minority students enjoy the class
— A few students outside of EECS take the class

 |nstructors think so:
— They love to teach it
— Instructors come from Al, Systems, and Theory

Student feedback (spring 20006)

“You don’t need to
know anything about
systems before
hand”

“l was able to answer
every question the
Caa a0l Google /m;?rwewer
1 2 3 456 7 8 9 10 asked me!

score on a scale of 1 to 10

W
o

23

(o]

"
@
)
c
o
Q
"
o
« 15
o
S
@
o
€
S
c

o

ACM/IEEE 2001 curriculum

« Curriculum has 2 layers:
1. Modules that constitute appropriate CS education

2. Suggested packaging

e 6.033: a different packaging of 226c:

e Operating systems and networks (compressed)

 Plus: naming, fault tolerance, and both system and
cryptographic security

Incremental adoption

» Use text several quarters/semesters
— Intro OS course and keep lab
— Intro networking course

* Use text as intro graduate course
— Combines well with research papers

Where do | get the material?

All material for last 10 years is at:
http.//web.mit.edu/6.033

A polished version on MIT’s Open Course Ware
Complete draft of text exists

— Includes extensive problems and solutions chapter
— lterated for 30 years in 6.033

— 3 years experience with current version

— Externally reviewed

— Send us email

Interested in being a test class?

http://web.mit.edu/6.033
http://web.mit.edu/6.033

Summary

Too many systems classes, too little time, too few
principles, too much mechanics

Alternative: broad intro class, followed by in-depth
classes
Advantages:

— Broad appeal
— Focus on design principles and key ideas

— No programming required, but can be hands-on

Disadvantage:
— Curriculum change, but introduction can be incremental

