
M.I.T. Laboratory for Computer Science

THE DESKTOP COMPUTER AS NETWORK HOST

Request for Comments No. 262

September 19, 1984

by J.H. Saltzer, D.D. Clark, J.L. Romkey, and W.L. Gramlich

Attached is a draft of a paper submitted to the IEEE Selected
Areas in Communications.

Working Paper: Please do not reproduce without the authors' permission
and do not cite in other publications.

Abstract

THE DESKTOP COMPUTER AS NETWORK HOST

1
by: Jerome H. Saltzer, David D. Clark, John.L;Romkey, and Wayne L. Gramlich

!)raft of September 14, 1984

A d('sktop personal computer can be greatly extended in usefulness ~Y att~ching it to a local
area network. and implementing a complete set of host network protocols. Such protocols are a set
of tools that al!ow the desktop computer not just to access data elsewhere, but to participate in the
computing milieu much more intensely. There arc two challenges to this proposal. First, a personal
computer may often be disconnected from the network, so it cannot track the network state :md it
must be able to discover and resynchronize with that state very quickly. Second, complete host
protocol implementations have often been large and slow, two attributes that could be fatal in a
small computer. This parer reports a network implementation for the 1 BM Personal Cornputer that
uses several performance-oriented design techniques with wide applicability: an upcall/downcall
oqwnization that simplilies structure; implemcntntion layers that do not always coincide with
protocol specification layers; copy minimization~ and tailoring of protocol implementations with
knowledge of the application that will use them. The size and scale of the resulting package of
programs, now in usc in our laboratory for over a year, is quite reasonable for a desktop computer
and the techniques developed are applicable to a wider range of network protocol designs.

1. M:t~:s:tclmscus ln~tilub.: of Technology, Department of Electrical Engineering and Computer
Science, ;md Laboratory for Computer Science. Address: M.I.T. Room N F43--5 U, 545
Tcchnnlngy Square, Cambridge, fVIa~sacilusctt.•.;, 02139.

PC/Ppaper Draft of September 14, 1984 Page2

Overview

This paper describes the issues encountered and lessons learned in the design,
implementation, and deployment of a full-scale network host implementation for a desktop
personal computer. The protocol family implemented was the United States Department of
Defense standard Transmission Control Protocol and Internet Protocol[TCP, lP]. The desktop
computer was the [13M Personal Computer attached to one of several local area networks: Ethernet,
proNET, Clusternet, and a serial line network. The collection ofprogra_ms is known as PCIP.

The project was undertaken in December, 1981, shortly after the IBM PC became available.
Initial implementations using a serial line network were in operation in the summer of 1982, ancl a
complete implementation for the Ethernet was placed in service at M.I.T. in January, 1983. Since
that time the implementation has been polished, drivers for other networks have been added, the
software has been used in many applications unrelated to network rescarch, and the programs have
been plnc:ed in service at several other ~ites. ~nough experience with 1 he in~plernentat!on he~s brcn
gained to provide a convincing demonstration that the techniques used were successful.

Introduction

Several years of experience in attaching networks to "large mainframe" computer operating
systems make u dear case for the value of such network attachments. The value includes such
abilities as: to move files from one machine's file system to another that ha'> better long-term
reliability; more space, or cheaper stor:1ge: to usc a unique printer that has better fonts or higher
speed on another computer: to log in as a user on another machine to get to a diffl~rcnt eLla base
manager or difTerent programming language; and to send and receive electronic mail within a large
community. Such abilities have all proven to be important cxtensions or the basic stmdalone
capability of a computer system. The desktop personal computer, whose main advanla!jc lies in il'>
administrative autonomy, potentially can be extended in value by network attachment even more
than the large shared mainframe. The reason is that by iL'>clf it is likely to have a smaller range of
facilities than docs a large, shared mainframe, and thus a mechanism that offers the ~1bility ll> make
occasional use or unique services found elsewhere is especially useful.

The same experience in adding networks to large m;linframe computers carries b:.td nt~ws

along with the good. lmp!cmcntations of network protocols llavc usu:dly tlllncd out to be ttrgc and
slow. Although size of software packages is ofsomewh:t! less concern than it once was (h.'\':w·;c the

PC/Ppaper Draft of September 14, /984 PageJ

cost of memory to hold those large packages seems to drop faster than the packages grow) long path
lengths through those packages can produce bottlenecks and limit data rates. For example,
although the hardware links in the ARPANET arc mostly of 56 Kbits/scc, few attached hosL-; can
sustain a data rate much above 15 Kbits/sec. When those same hosts arc attached to local area
networks that can accept data rates of 10 M bits/sec their software continues to be a bottleneck in the
15 Kbits/sec area.

Thus the question arises: can one put together a useful host implementation of a network
protocol family, one that fits into a desktop computer that docs not have a virtual memory to hide
bulky programs and that has a processor perhaps one-tenth the speed of a mainframe? Our
particular experiences in doing protocol implementations lor several different mainframes suggested
that the slow, bulky implementations are not intrinsic. Instead, they arc brought about by a
combination of several conquerablc effects:

1) Although protocols are described in terms of layers, the particular layer structure chose~
lor description is not necessarily suitable for direct implementation. A naive implementation that
places sollware modularity boundaries at the protocol layer boundaries can be extremely
inerlic;ient. The reason lor the inefficiency is that in moving data, software modularity boundaries
usually become the points where buffers and queues arc inserted[GC]. But the protocol layer
bnt~ndariP,s arc not ncccss<~rily the n1ost eff-:r:tivc points tt.1r buffcrin~ and CJL!cueing. A p:lrticubr
issue is that it is vital to minimize the number of times that data gets copied on the way from the
application out to the wire and vice-versa.

2) There arc usually many ways to implement a protocol, all of which meet the specifications,
but that can have radically diftcrent performance; the way that produces best perlt>rmance for one
application may be quite different from the way that produces best performance for another
application. An implementation that tries to provide a general base for a wide variety of
applications can perform much worse than one that is designed with one ::1pplication in mind. This
application variability of performance shows up strongly in the choice of data buffering strategies
and in the choice of flow control strategies.

3) The current gcnemtion of operating systems is ill-equipped for integration of
high-performance network protocols. Good implementation of network protocols requires a very
agile, light-weight mechanism lor coordinatinn ofintrinisically parallel aclivitics--scnding packets,
receiving packets, sending packet~ at low levels as a result of receiving packets that require further
processing at high levels, dallying in packet cli~;patch in hope that further processing will allow the
piggybacking of responses at dil'fercnt levels into a single n::ponsc packet, and so on. The various
parallel activities of a network implementation are characterized by substantial sharing of both
prolocol state and packet data, so shared-variable communication is another essentiallcaturc.

One might summarize ~Ill three of these poi~lts by the single observation that current network
protocol implementations arc quite early on the learning curve or this software area. Most
c:-.pcricnce so l;u- is on large mainl'ramcs and with networks that operate :it telephone line speeds.
One would e.xpect that as experience is gained implementations will irnprove. One ol' the primary

J'('/P paper Draft of September 14, 1984 Page4

purposes of the PC network implementation was to take one or two steps higher on that learning
curve.

In the remainder of this paper, we first describe what was implemented. and then discuss the
organi1ing strategies that make the implementation interesting.

What was implemented

Figure one shows the various protocols and drivers used within the PCIP software packages.
PCIP divides naturally into three levels-the driver level, the transport leveL and the application
level. At the driver level are modules that manage four different local area network hardware
interf~tces: the JCOM EtherLink L::thernet interface, the Protean ProNet 10 megabit token ring
intert~tce, the IBM PC/Clusternet interl~tce, and the IBM RS232 serial line port. (The PC/ cluster
net driver has not been implemented yet.)

The tr;tnsport levt:l has three tw1jor components. The Internet Protocol (!P) provides for
packets originating on one network to be sent ~o a destination on another network. The User
Datagram Protocol (UDP) is a connection-less protocol intended for the transmission of a single,
uncontrolled packet. The Transmission Control Protocol (TCP) provides a reliable, full--duplex
byte stream connection between two hosts.

One application-level protocol, Remote Virtual Disk, is built directly on the IP layer. RVD is
implemented as a device driver that allows one to read and write individual disk blocks on a remote
machine as if they were on a local disk.

Several application-level protocols are built on UDP, each providing its own
application-specialized error control. For example, the ho~;t name protocol takes a character string
name for a host and consults a series ofnm11e servers to learn that host's 32-bit internet address,
using U DP. The Trivial File Transfer Protocol (TFIV) is a lock-step file transfer protocol built on
UDP. in \\'hich each data packet must be acknowledged before the next packet is sent. The Print
File program permits a user to print a text file using TFTP to transport the file to a printer server.
'1 he get time protocol obtains the time and date from a set of time and date servers.

The ~lpplication programs that usc TCP arc the remote login protocol, named TFLNET, and
several information lookup protocols. In addition, ~ome TCP-based mail fitcilitics arc currently
being implemented. The TFLN ET program uses a Heath lll9 terminal emulator in managing the
keyboard ;mel screen of the PC[Hl9]. Our experience suggests that the current applications and
protocol'> :trc a hase on which many future applications can be built.

PC/Ppaper Draft of September 14, 1984 PageS

You get more than remote terminal emulation

Although a remote login protocol is an important function, it is not by itself justification lor a
network implementation-if that were the only function obtained. one could usc one of the many
terminal emulator programs for the PC instead. The interest in a host--oriented protocol llnnily
implementation for a PC comes about when considering the range of services that become available
for the PC user, and the case of building new applications. Examples range from seemingly trivial
ones to major work-savers.

Among the apparently trivial features arc the PC command that sets the PC system clock
(date and time) by sending datagrams to several network servers[PCIP]. This command is included
in most of our PC users' automatic boatload batch files, where it eliminates the need for an extra
battery-powered clock card. Only after this command became available did the date and time
records kept in DOS floppy disk directories become reliable indicators of which version of a tile one
'"a~ ln,)king nt Another remarknhly useful commnnd i<:: one that obtains f•·orn any timcsbaring
system in the internet a list of currently logged in users and identification inform1:ion on any
particular named user of that system. A similar command obtains directory informal ion from the
ARPANET Network lnfornwtion Center. These tools, each not very important in itselt: become
part of an operation repertoire that makes the desktop computer much more useful than when it
st;,nds alone.

Probably the single most important tool is the file transfer protocol, TFTP. TFTP provides
the ability to move a file between the PC and any network-attached timesharing system or file
server. With TFrP. one can casually undertake quite complex operations. A typical use, such as the
preparation of this paper, involves several authors each using a favorite editor on the PC to prepare
individual contributions. Each moves contributions to a common directory on a central file server,
so the others can look them over and provide comments and suggestions. One author moves all the
paper fragments to a private PC, assembles them, runs them through a formatter and then sends
them. again using TFTP. to a sophisticated laser printer server locatecl elsewhere in the network.
Because the network is notjust local. but is scamlcssly interconnected by the ARPANET to many
other sites nation-- and world-wide, the authors and other f:ldlities can be assembled from a
geographically dispersed set.

When added to this set of network tools, a remote login protocol becomes even more useful,
since it makes any missing functions easily available by allowing the PC user to attach to a
timesharing system anywhere in the network. The most prominent example ol'a function currently
mis~;ing in our rcpcrltlire is electronic mail handling. While waiting llx a mail handling package to
be implemented f(,r the PC, sending and receiving mail is accomplished by logging in to one of the
large timesharing hosts. Another !lscl'ul feature of remote login a~; a network p:1ckage is that TI·TP

PC/Ppaper Draft of September 14, 1984 Page6

is available ~1tthe same time. This feature allows one In usc any timesharing system commands to
locale, collect, or create files, and then send them immediately back to the PC.

Remote Virtual Disk

A good example of an extended service possibility is our implementation of the Remote
Virtual Disk protocol (RVD) for' the PC. This protocol. locally developed at M.I.T., permit~ a
machine to have access to disk storage which appears to be local, but which is in fact remotely
located at a server across the network[RVD]. To accomplish this appearance, a device driver is
written that, instead of reading and writing to a real disk, sends messages across the network to the
R VD server host which docs the actual reads and writes.

There are a number of uses for the function provided by R YD. Most important, the disk
made available through R VD can be shared, thus providing a mechanism for distribution of
software, especially making a large library of tools available to a community. fn this use. an R VD
clisk strongly resembles the virlualminidisk prnvirled by the VM/370 opcrntiP2 syc:t_em[VM]. (Note,
however, th~~t if sharing is the piimary goal, sharing at the physical disk write level is not as flexible
as sharing at the logical file level. Remote file sharing pmtocols have been the subject of much
research and development activity lately, <md some are becoming available for the PC[Novclla, lTC.
Vianetics].)

A simple but helpful use of the RVD disks is as an extension to the private disk storage of the
individual machine. The economics of large and small disks is currently such that one has only a
modest price advantage over the other. but the functional advantage of R VD is threefold. First, any
I~ VD disk can be available to every PC on the net, so in contnL<>t to the permanently attached
Winchester disk, the file stored on an R VD disk can still be reached if one's private PC is down, by
walking down the hall and finding another network-attached PC. Second, since all the R VD disks
arc actually partitions of centrally located large disks, one can arrange for a central operations staff
to 1mke h;Ickup copies of the in f(xmation stored on R V D disks. The need to make backup copies
or in f(mnation stored on priv<llc Winchester disks has proven to be one or the operational headaches
of those devices: with R VD the headaches can be subcontracted to someone else. Third, the
ellcctivc data rate of the R VI) disk is comparable to a local hard disk and substantially hdter th:m
that of a floppy disk. Larg~ block transfers using RVD take place across the Ethernet at abnut 2~JO
kilobits/sccond.

PCIP paper Draft of September 14, 1984 Page 7

The PC environment

Development of a network implementation for the PC required that a number of choices be
made, both in the development environment and in the programming environment. This section
describes those choices.

The development environment. while it entailed difficult choices, did not involve any new
ideas or brcukthroughs. Programming was done on a microcomputer development ~ystcm that runs
on a nearby UN IX time-sharing system. That approach was used rather than doing the
programming entirely on the PC because in 1981, when the choice was made, very little support
software (editors, choice of compilers, library managers) was yet available to run on the PC. The
programming was done in the C language, with the choice again based primarily on the
combination of compiler mHl assembler availability. It was apparent that some assembly ianguage
programming would be required, and the only assembler that we could locate for the PC at the Lime
w~s one that c~1me ~s p:trt of an integrated C' compiler/assembler/loader packpge.

The programming environment used was the IBM DOS operating system[DOS]. This choice
was easier than it might have appeared: all of the operating system alternatives provided very little
support for the kinds of operations needed to do a network host implementation, so all required that
support to be added. Thus the choice was made on predicted ubiquity, on which point DOS
appeared strongest. The primary run-time facility added was a tasking and timer management
package that permits as many parallel tasks as necessary to operate within a single address space.
For simplicity, the tasking package runs each task to completion (either "block," awaiting a wakeup,
or "yield," allowing other tasks to run) using a round robin schedule.

The combination of the development environment and programming environment required
one bootstrapping program to be constructed-a serial-line file-copying program lex the PC that
could take a file being pushed at it by UN IX and store it in the PC file system. The development
environment on UNIX produced loaded. ready-to-run command 111es; the booL'\lrap provided a
way of getting those command files into the PC for execution. The lirst real network program
developed was one that implemented a standard file transfer protocol, and as soon as that program
was operational the bootsli'ap was no longer nccdcd[K W].

PCIP paper /Jraft of September 14, 1984 PageS

PC/ P over serial lines

When the IBM PC was first announced there was no local area network interface available for
it. but several manufacturers seemed intent on supplying them within a year or so. Rather than
building a piece of special hardware that would be soon discarded, we opted to use the PC's serial
line port as a temporary substitute. To connect the serial line to an existing local area network, a
token ring, we configured a Digital LSI-11 to contain both a token ring network interface and a
small number of serial line ports. This LSI-11 cmne to be known as the PC-Gateway. The
PC-Gateway was programmed to treat the set of serial lines as a local network, and to act as a
packet-forwarding gateway bet\veen that local network and the token ring. When the PC was ready
to send a packet of data, it merely sent the packet as a sequence of8-bit bytes down the serial line.
This approach made the combination of the serial port driver, the serial port, the serial line, and the
PC-Gateway a unit that could later be replaced by a local network driver and a network hardware
intern1ce.

There were two useful results from the PC-Gateway. First, it permitted substantial progress
to be made in implementing and polishing the network code for the PC. When local network
hardware did become available for the PC, the only software effort was to replace the serial line
driver with a network interface driver. Second, it turned out to be surprising useful, and was not
discarded when network interfaces arrived. Instead, dial-up modems were attached to unused serial
porL~ of the PC-Gatcway to permit people who had PC's at home to connect to the network using
telephone lines. There was mixed success with this technique. On a 9.6 kilobit leased line, there was
no major problem in performing either file transfers or using remote login, even with
character-at-a-time remote echo. On a 1.2 kilobit telephone line, file transfers were reasonably
successful. (Sometimes the transmission time involved in sending a long packet over a l.2KB fine
would cause the remote host to time out and abort the tile transfer. Eventually, most other hosts
learned to be patient enough to tolerate telephone-line transfers.) For remote login to hosts that
work in character-at-a-time remote echo mode, each time the user typed a character, a packet in
excess or 25 bytes was transmilted over the serial line. It was thus very easy for a t~1st typist to
satmatc the connection to the PC-Gateway, and echoing fell far behind the typist.

This problem could have been overcome hy two techniques. l:,'irst, some sort or data
comprcs'iion algorithm could have been employed. An observation was made that many or the
hytes in each TCP packet arc likely to he identical to those of the previous packet. An algorithm
was discussed. but never implemented, to take advantage of this observation and transmit only the
difTercnccs between the current packet and the previously transmitted packet. Second, the TCP
used by the remote loein could be tailoi·ed so that it would transmit more th<111 one character per
pac~ct when it st:1rtcd to run behind. Neither of these techniques were implemented because the
arrival of high-speed local area network interE1ces reduced denwnd for rc111ole login over 1.2KB

PC/I' paper Draft of September 14, 1984 Page 9

lines. However, if the effort had been undertaken to increase performance on 1.2KH tekphone
lines we believe that it would have been technically feasible.

One of the lessons learned from implementing the PC-Gateway was that the ability for a PC
to directly send and receive packets via a dial-up modem was very useful for file transfer. When
only terminal access lines are available, files are usually transferred between mainframe computers
and PC's using some sort of embedded protocol such as KERMIT, developed at Columbia
University[KERMIT]. One of the problems with such embedded protocols is that not all
mainframes with dial up lines implement the embedded protocol. When that is the case~ some
staging process must be employed whereby the user first moves the file t'rom the original host to one
that implements the ad hoc protocol and then transfers the tile over the serial line. In contrast, the
PC-gateway allowed implementation of a standard network file transfer protocol for the PC (TFTP)
which was immediately usable with all the other network participanLo;;. Our advice to future
implementors of network terminal concentrators is to provide an escape mechanism so that a PC can
directly send and receive network packets carrying any protocol the PC finds useful. This escape
can give the PC the opportunity to make fuller use of the network possibilties.

I"· Tailoring the implementation to the environment

There are a few characteristics of desktop computer operation that are quite different from
mainframe operation, and these characteristics affect the way in which the network is integrated
with the system. The most important of these is that the desktop computer is often-perhaps
usually-not "on the network". When not in use, a desktop computer is often powered ofT, perhaps
to reduce the noise and heat in the oflice in which it is located. Even when powered on, one cannot
expect the network software to be always in operation. Some desktop computer application
software packages operate by taking over the entire machine, sometimes to prevent pirate copies of
the program from being made and sometimes simply because they require every scrap of memory in
order to pertcmn usably.

Thus the software in the personal computer cannot expect to maintain a continuous record of
the slate of the network; instead it must be organized so that itcan quickly discover whatever state it
needs when it is called into operation. To cope with the "normally-off-the-network" paradigm of
operation, the various PCIP programs do not attempt to retain any discovered network inl(mnation
at i!ll tor the use of the next program that may usc the network. Because one has no idea what other
application program may run between two network programs, the integrity of any state variable
stored in primary memory is questionable. and it is safer to rediscover the network inli.m11ation
rather than to depend on a stored value. Thus if one initiates a lile transfer with another host, !:iuch
fitcts as tile round trip lime to that host, its network address, and the Ethernet address ofan
intervening gateway arc ~!II discovered, used during the transfer. and I hen discarded. If the next
conmtand to be typed is anolher file translcr to the same host the lisled f(tcts arc all rediscovered

PC/Ppaper Draft of September 14, 1984 Page/0

again. This approach, while perhaps seeming wasteful. actually costs quite little and has a very large
payoff in improved reliability of the network software. In contrast with our experience with other
network implementations that maintain network state continuously, in PCIP one almost never
encounters the situation in which anomolous behavior (caused by recorded state getting out of step
with real state) leads to a need to reboot the system or explicitly rcinitialize the network code to get
it working again. (However. all is not roses. Hccause there is no protection between supervisor and
user in the PC. bugs in either the network code or in a user application can cause a system crash,
requiring a reboot to recover. During application programming such crashes arc t:tirly common,
providing another reason why one cannot depend on maintaining network state records.)

Another aspect of this expectation of frequent detachment from the network is that the PC
network implementation makes no attempt at all to maintain a table of (user oriented,
character-string) names of other host<; and their network addresses. Not only would such a table
take up a lot of storage if the network is very big, keeping it in step with the name tables in hosts
that arc always online (and which depend on that usual onlinencss in inforrning one another of
changes) would be a major challenge. So instead the PC depends on the availability of host name
translation services provided by many of the always-online network hosts.

A related problem is that the network software must be able to discover quickly environment
!Y1r:1mctcrs (<>uch as network :1ddrcsscs nfnPnrby eateways and other ~crvers r}r thf' nttn1hPt' of the
network to which it is attached) rather than expecting that the user types them in each time when a
network program is used. To provide such environment parameters, the PCIP implct~lentation uses
a trick: A piece of code is installed as a DOS device driver, but this piece of code docs not actually
control a real device. Instead, calls to read from this device cause the code to send hack a stream of
environment information, in a standard format. Every PCIP program knows how to interpret this
stream, and thereby has a quick way of discovering the facts about the environment it needs. A
customization progrm11 allows the application user to set up this pseudo device driver. Using a
pst!udo device driver provides this information much more rapidly than reading a file, and it is ntr
easier to change as compared with the alternative of assembling the inf(xmation in as constants of
the programs. (The DOS 2.0 environment variable feature in principle provides an equally Good
way to do this job, but unfortunately the space allocated by DOS for environment variables was
insufficient.)

Tailoring the implementation to the application

Perhaps the most interesting strategy used by the PCIP software to obtain good performance
in a small mach inc is the tai Iori ng of the network i mplcmcntation to match the <1ppl ication that will
usc it. There arc several examples of this tailoring that illustrate the idea.

PCffJpaper Draft of .September 14, 1984 Page II

The primary examples are in the implementation of the end-to-end transport protocol, TCP.
This implementation was designed to work optimally with only one application protocol, the "User
Telnet" remote login protocoi[LK]. The idea of tailori •• e is that the knowledge that the only
application is remote login should guide implementation decisions in the transport protocol.

Some of the decisions simply relate to how much standard TCP function to implement. The
PC TCP can only originate connections: no provision was made for other hosts to make connections
to the PC. because that feature is not needed by User Tel net. Similarly, PC TCP can maintain only
one connection at a time, because User Tel net requires only one connection. A substantial amount
of table management code is thus unneeded.

TCP includes a sliding window. for flow control. The PC TCP simply ignores the window
values sent to it by the remote host, because when it is used for remote login, the only d~\ta sent to
the remote host is that typed by a person at a keyboard, and that data rate is almost certain to be
lower than the rate that the other host can accept data. (If once in a great while the remote host falls
behind so far that the typist gets ahead of the ol'fered window, no loss of data occurs-the remote
host simply stops acknowledging the data, and the PC TCP has for error control a timeout-rcsend
strategy that retries until the remote host catches up.) The simplicity that results from ignoring
windows makes the code both smaller and faster.

To minimize copying of data and space occupied by packet buffers, the TCP send function is
tailored in another way with the knowledge that data comes from a typist. Only one packet buffer is
provided for output data, and this packet buffer is set up with certain fields, such as the source and
destination addresses, precalculated, since they never change. When the user types a character,
Telnet calls the TCP send function with the character as the argument, and send merely drops the
character into the precalculated packet buffer, adjusts any remaining fields, and calls the local
network driver with a pointer to the packet buffer. Because the output is to a high-speed local area
netw·ork the network driver will complete the dispatch of the packet before returning to TCP. It is
thus safe for TCP to assume that it now has control of, and can change the contents of the output
buffc1. If the user types another character before the remote host acknowledges the earlier one,
Tel net calls TCP as usual, but TCP's send function simply slips this new character into the same
packet buftcr following the earlier character, and dispatches this packet containing, now, two
characters. If the earlier packet is lost in transit (and thus no acknowledgement of it ever comes
back lhlm the remote host) this new two-character packet will act as the resend.

This technique of adding characters to the output packet buffer as they are typed has a limit,
of course; if the typist fills the packet buffer (500 characters, which allows at least 30 seconds of
frantic typing) before the remote host acknowledges the first character typed the typist must be
asked to stop; the TCP send function simply returns an error condition to Tel net when the single
packet hufTer is full, and Telnet notifies the typist to desist. This situation occurs very rarely in
practice. Normally, the remote host receives a packet and sends back an acknowledgement nf the
oldest typed characters. The PC TCP, upor\ seeing that acknowlcd~~ement, adjusts the characters in
the output packet bufl'er by sliding them back so that the first unacknowledged character is first in
the output buffer. Fvcn this copying of the data happens only if the remote host f~tlls behind in its

PC/Ppaper Draft of September 14, 1984 Page/2

acknowledgements.

This whole collection of techniques of output butTer management reduces path length, buffer
space, and packet copying. but all of them depend on the knowledge that the send li.lllction will be
used in a particular way. If one tried to use this tailored TCP to send a file consisting of many large
blocks of data, its performance would be very poor. It might overrun the remote host, because it
ignores that host's flow control windows, leading to many unnecessary retransmissions of each
packet. It could accept only one packet or data to be sent at a time, because it has only one packet
buffer, and it cannot reuse that buffer until acknowledgement comes from the other end that the
receiver has accepted the data. There would be much time spent copying the large blocks of data
from one end of the packet buffer" to the other as acknowledgements came back. And, finally, the
implementor of the file transfer progrmn would find that the TCP send interface accepts only one
byte on each call, so sending a block of data would require an inefficient repeated call loop.

For data flowing from the remote host to the PC, a completely different set of considerations
holds. In this direction, the PC TCP implements flow control windows because it can be overrun by
an active, high-powered time-sharing system. However, there are still opportunities for tailoring
the implementation.·

The most serious prohlem with inromirg d~t~1 is not just that it arrives too t~lst, but that some
hosts sometimes transmit a separate packet for each byte of data they send. Since the TCP window
contrnls the numher of outstnnding bytes rather than the number of outstanding p:,cket~. the
window does not prevent a flood of packets if the data is being sent in this very inefficient way. The
problem shows up if the PC cannot keep up with the rate of arriving packets: fairly soon a packet
gets missed and thus not acknowledged. The sending host eventually times out and resencls starting
with the missed packet. The time-out shows up as a noticeable pause in the flow of data to the
user's screen. The PC TCP required a special buffering scheme to deal with a large number of
arriving small packets. Since running a complete terminal emulator is actually more
time-consuming than processing incoming packets, the PC emulator is permitted to handle only a
few bytes at a time before returning to the TCP level to see if more packets have come in. This
strategy permits as much processor time as possible to be allocated to packet handling. (As
described in the next section. the PC terminal emulator is invoked by an "upcall" from TCP, so
limiting it is actually quite casy-TCP simply calls with an argument cnnsisting of the number of
characters fiJr the emulator to handle.)

This implicit flow control mechanism between the emulator and TCP replaces the more
general explicit flow control system that would have to he implemented if TCP had been designed
to cope with arbitrary client protocols including, tor example, lile transfer.

At least one more, minor opportunity for tailoring exists in this direction. Since the customer
application is remote login, it is a good bet that the largest quantity of data that will ever arrive in a
sin~~lc burst over a connection from t.he remote host is one screen full, a predictably finite amount of
d~1ta. lllus I l'l 1 input butkrs and window size need be pruvidcdjust f()r this amount and no more.
If an ambitious host aspires to send more than one screcnf'ul or data in a burst. the window

PC/Ppaper Draft of September 14, 1984 PageB

mechanism acts as a throttle. In the most common case everything proceeds smr ;:;.:; :1r r !

and the window is not a limit In an unusual case performance may suffer but tu uat.:; · L.' . ·

Upcal/s

The combination of the tasking package and the C h.mguage features of static storage nnd
procedure variables are used extensively throughout the network implementation in a style of
programming known locally as "upcall/downcall". (In some of the more recently developed
window management systems, and the Pilot file system, the same style of programming is sometimes
known as "callback"[Pilot].) Jn this style of programming, some tasks are waiting for events at
"high" levels, for example in application programs. When an event occurs they proceed to operate
by calling "down" to lower level network implementation programs. This is the usual style of
programming of operating systems. However, other tasks wait for signals at low levels, inside
network driver programs, tor example. When a signal starts them, perhaps because a packet has
arrived, they operate by handling the packet operations at their level, and then calling "up" to
higher levels of network protocol and eventually "up" to the application.

The denotation "up" and "down" can be misleading, because a call "up" can lead to a call
"down" as part of its implementation. For example, the arrival of a packet may result in an upcall
to dispose of the packet, and during that upcall one or more downcalls to send acknowledgements,
tlow control messages, or an application-level response.

Figure two illustrates in a simplified example the use of this organization in the
implementation of the Tel net remote login protocol. In that figure, in the left column, the top level
application program creates a parallel task (in the right column) to handle arriving packets using
upcalls. The top level program proceeds to initialize static procedure variables in anticipation of
upcalls at the several network protocol levels. The main task then concentrates on sending typed
characters to the remote host. Meanwhile, in the right column, all packets coming from the remote
host arc noticed at a low level by the network driver, which calls upward, using the previously
initialized tables of procedure variables, eventually reaching the screen display procedure of the
terminal emulator. Although the actual programs arc complicated by error conditions, the basic
flow of control illustrated in this figure is complete and, relative to other implementations we have
seen, quite simplc[JR].

The upcall/downcall programming style, together with a tasking package that allows several
tasks to operate within a single address space is the primary set of tools used to gain leverage against
the third performance--draining effect mentioned earlier-that the current generation of operating
systems doesn't provide agile, lightweight support f()r the parallel operations that arc required to run
a network implementation. An upcall also provides a natural way l()r a network irnplcmcntation
layer to receive data from below anli pass ilup higher without having to copy it just to insure that it

PC/Ppaper Draft of September 14, 1984 Page14

doesn't get deallocated by the lower level. Thus some leverage is also obtained against the first
performance-draining effect-too much buffering at protocol layer boundaries. Another example
of th~ simplifying effect ofupcalls was mentioned in tk ll*cvious section, which described their use
to provide implicit flow control between TCP and TelneL..:

Gelling around DOS

The implementation of the Remote Virtual Disk protocol for the PC was an interesting
exercise. The current version of the operating system we use, PC DOS 2.0, has a provision for
user-installed disk drivers, so there was an obvious place to integrate the RVD interface. However,
the R VD driver is rather different from most drivers; since it implements a network protocol inside,
it contains all the support tools we implemented for the other protocol packages, including our
tasking scheduler and our timer manager. Since PC DOS is not designed to be re-entrant, the
driver cannot call on DOS for any services, so it must re-create any DOS functions it needs. The
resulting exercise causes the implementer of RVD to stand on his head to get some things done, and
prodlwt'<; a device driver tor DOS with considerably more sophisticated operating system features
than DOS itself.

There was one limitation of the RVD implementation that we were hard-pressed to
circurnvent. Since the network package for RVD was hidden inside what DOS thought was a disk
driver, that network package was not available for use by other applications. Since that package had
control of the physical network interface, the fact that it was not available outside RVD meant that
no other network application could be executed at the same time that R VD service was in usc. This
limitation meant that, for example, one could not use the file tnmsfer protocol to move a file to or
from an RVD disk. Such transfers currently require a two-stage operation, moving the file via a
disk physically at the local PC and copying it from there to or from the RVD disk.

Our experience with R VD clearly showed that the PC had enough power to support this kind
of protocol, and that such a feature could be very helpful. Even with its limitations, R VD is in wide
usc in our laboratory. However, the limitations of DOS 2.0 increased the dirliculty of this project,
and reduced somewhat the value of the final service. Fortunately, this sort of limitation seems to be
going away as the creators of operating systems cxp::md their vision of the capabilities of a PC class
machine.

PC/Ppaper Draft of September 14, 1984 Page 15

On size and scale

While the CPU of the PC can access 1 Megabyte of memory, all of the PCIP packages can
operate in a 128 Kilobyte configuration. (This small size was fortunate, because it happened that
the available C compiler used a "small memory model", limiting one loaded program to 64
Kilobytes of code and 64 Kilobytes of data.) The individual packages are relatively small;
combined they easily meet this constraint. Consider the decomposition of the code space ofTFI'P:

tftp user/server
UDP
IP
ethemet driver
network common library
timer and tasking package

. terminal emulator
C mn time support
total

7468 bytes
2914
4605
5988
2720
2310
41?0
3932
34680 bytes

The largest, most complex package is Tel net. It uses TCP and UDP (for name resolution) and
contains a TFTP server. Tel net consists of the modules above, plus:

tel net
tcp
total

6256 bytes
6606

47542 bytes

The size of telnet includes the size of the screen manager as well as the protocol
implementation. Notice that telnet and tcp are individually the most complex modules
implemented.

An interesting observation about the scale ofa network package for a personal computer
cornes from examination of a typical package, the one that docs tile transfer. The implementation or
TFTP user and server is done in three C language programs and one C language "include" tile, of
common data structure definitions. That set of programs implements just the box labeled "Trivial
File Transfer" in ligurc one. These C progmn1s together tow I about 1020 lines of code (excluding
comments,) of which about450 lines implement the main slrc:un of the protocol, 50S lines handle
error conuitions, and 65 were provided as aids f(.)r debugging. The 50% ligure for handling error
cnnditions in our experience is typical fbr network code that is intended to be reasonably robust. A
similar fraction was noted by Clark in his implementation or the TFTP protocol in PI /I for the
Multics system. Probably much more than half the intellectual effort or design and debugging went

PC/Ppaper Draft of September /4, 1984 Page 16

into that part of the code, since it tends to involve untangling of things that didn't go right. rather
than straightforwardly moving on to the next step of the protocol. The lOOQ-Iinc 11gure for TFTP as
a whole indicates that the overall size of network packages is well within the capability of a desktop
computer.

The lesson to be drawn from all these numbers is that with proper system support, good
organization, and attention to the client being supported, a network protocol package need not be a
large module.

When we examine the performance of the programs, we find that the bottlenecks arc not in
the protocol implementations themselves, but in resources the applications utilize. The code wasn't
written with great concern f(x performance because it was expected that the bottlenecks would be
found outside of the protocol implementations. The low cost of context switching and few data
copies allow fast transfer of data through the protocol layers. For instance, TFfP writing to a floppy
disk frequently achieves an end-to-end useful data rate of 13 kilobits/second, about the writing
speed of the floppy disk. With a Winchester disk, TFTP can transfer data over the network at a rate
of about 55 kilo bits/second, again about the writing speed (for small blocks) of the disk drive itself.
When test') are done in which TFTP discards data as soon as it is received, network transfers run as
fast as 110 kilobits/second. Thus the bottlenecks in file transfer seem to be the disk systems, and
irnprovcments th8t we might make to the protocol implementation would not sub::t:!ntia!ly a!tcr the
transfer rates achieved.

A second example is Telnet. Monitoring shows that it spends 50% of its processing time in
the Heath Hl9 tet"11inal emulator. Another 30% is spent idle, waiting for something to do. For a
real performance breakthrough in telnct, the terminal emulator should be improved, rather than the
IP or TCP implementation. While some speed could be gained by small changes to the TCP
implementation, the terminal emulator is the real bottleneck.

Conclusions

In the beginning of this paper, we identified three problems that can beset the implementor
or network protocols:

1) The architC'cted layer structure of the protocol can prove unsuitable as a structuring
technique ror the implementation.

2) An implementation that attempts to serve several clients will either be very complex or
provide poor performance to some or all clients.

I'CIP paper Draft of September 14, 1984 Page 17

3) The operating system chosen may provide poor support for the needed program !)lnH;ture.

The impact of these problems is that a full implementation of a protocol suite tends to be
sufficiently bulky and slow that a realization inside a personal computer seems impractical. We
have shown to our satisfaction that this need not be so. We produced a running and useful
implementation that is consistent with the speed and size of an IBM PC, by identifying and using
techniques that directly combat the problems identified above.

To avoid the excessive interfacing code that results from classical layering, we used an
interface technique, upcalls, that put the asynchronous boundaries in the implementation only
where they arc needed. Subroutine calls, always more efficient than process switches, arc used
wherever possible.

To combat the high cost of generality, we abandoned it wherever abandonment really seemed
to pay off. Instead ofproducin·g a virtual circuit protocol that attempted good performance for all
clients, we tailored the implementation to remote login. Compared to other implementations of
more generality that we have examined, this code was substantially smaller and simpler to produce.

To solve the problem of an unsuitable operating system, we provided our own, as part of the
Petwnrk code. This kind of replacement is not always possible, but in this cas~? it both proved the
benefit of proper system support for protocols, and demonstrated the flexibility of the programming
environment of the PC.

We feel very strongly that it is a good approach to produce implementations that arc tailored
to specific clients, as opposed to more general implementations. The only drawback of this
technique is that if several clients are to be supported, it is necessary to produce several different
implementations of the support program. In oth.er projects we have done this sort of multiple
implementation, and do not feel that the effort is substantial. Many parts of the implementation,
such as the protocol state machine, can be reused. As a result of this effort we are now exploring
different modularity techniques in which the protocol state machine for a layer is implctnented as a
general module, while the data flow paths are supplied by each client using a standard interface.

Acknowledgements

The implementation of the programs described here was supported by the IBM Corporation
in a general grant for computer science research at M.J.T. 1\'lany of the ideas were borrowed, and
sume of the code was ported, from projects supported at M.I.T. by the Defense AdvanccJ Research
Projects Agency. The first implementatior1 ofTFrP was accomplished hy Karl Wright. and the
initial implementation of Tclnet was done by Louis Konopclski. David Bridgham wrote the
terminal emulator used in tehlel. Chris Terman kindly supplied the C>language development

PC/Ppaper Draft of September 14,1984 Page 18

system. Several early users, including especially Fernando Corbato and Robert Iannucci, acted as
uncomplaining guinea pigs while the network code was being debugged.

References (abbreviated in this draft)

(TCP] Internet Protocol Transition Workbook

[IP] Internet Protocol Implementation Guide

[KW] Wiight thesis

[LK] Konopelski thesis

(JR] Programmer's reference

[PCIP] User's guide to PCIP

[DOS] DOS 2.0 reference

(R VD] R VD spec by Greenwald

[GC] Cooper soft layering thesis

(H 19] H 19 reference manual

[VM] VM370 minidisks (locate paper)

[Pilot] 9SOSP paper by Loretta Reid

[Novella] C/W Clark for reference

[lTC] CM U lTC file system plan

[Vianetics] C/W Clark for reference

[Kermit] Columbia spec

r _____ ----···

. . '

\ J.,6). D.r-r. \·.~ .
\' ''{\

! \ q lc. 'o /l-e (.
~~,.l·..t ,,1\·-(

.. --~----~- . ·- -.~Ju.-o (l cr:- .l
'\)C\ f ~~~'~

\--\-6--~ \ ~
' .. - '\-e. t'M I~ ~

_ 'e-w.u t~ -h.n

r,,\< I
----..---\

w~~~
us,

U..-.t.J
e."'t-c..

,_rr Pc.. ""\""' 'f"W..S + ~ .. ---· -1- -·· ":¥\,

C.l.•ct'

~c.JlM
ET 1-li:tl.l..t,vl'-

L'~\Q)

Uf-!.'<"
\) .. -t-~~M
~._...~c..o I

'J: k,lT£: flN~·"T

t"'?n" "t "e D L.

I 0 ~ b/JL c.

·e:-~kt ~c.-t

• ,j

..-retANr ,.._' r ''-"I-I
. ·~ ·--~. _, .. " . c.;;, :rf\.D L-·----

I

'
~rc) ~tC) I

! ~C/Ct~,~,t~ \
I JIE""' I
.t- - -- .. ,..,

''

I.

-... - ~ . .
~(~01.6

a

,C./1"EC..Ne\ U?c.A '-'--
"'\ e \ \\e..-T :

--f2 e -r k (e.~t'-"("C: v)
~ <t.ty-o ('e.~ (-r e hte.T-"C"'C:. v-)

~ o.(fl.,r~ 't s
da.'t4. ::. ~ (l<ey ~~r<A)

+c.~-St~ d. ... ~)

e. 'A.~

~c." -0 ?e"' (c. ~Y' 0 c.)

. e.-t\Q.r _.oqe\A C"tc.~-ftv)'k~-{~e)
_,-c. f? _ c.. u-~'1' ow..u"'+- C. f "l"O C:.

("~~""'

e~\,_.Q.(" -0 ~Q"\ (ef'"OC.) +'tfe.)
c u ~;t e IA4-~:r (-\-tf e)=- & y-o c.

-(' tt -h,-y "'

-tel\tc.1' -Y'C:." (c:.\4o..~)

dis(il''t c:..~o..Y"" 0'11\ sc:~e.Yl
'~("c.. 1v'r' V\

~e.~· ~ G..C:.{<.c, + ~
~y eG--CL. C. ~4.t'CLC 1'c:.-(. l~ f ""f

c...!JJ '"\'" C..(i - c. (.)' ;r-OI'l~ c fu. r')
(" e.:t tJ '('" V\

Q -t"'--4t.1"- '('C." ~
S1'6o.rS t".-\ '\·1-o...\. '<'t:.C &\ V4!.. -i­

t!D o.l,...,.~ -I s -- ~

\, \~c:. ~ +~t \ ~k-i o.~~-"'-."'-'=..:
~ME'C.~ • I -f.."T'

,_ Y"Y" \ V ~ IJ4 i <~> ~. ;.c,;

·· · ~, .. u~To ~- (tJ ~ ·• · ·'~--;· -- '- ~ V.\-' .• ~!r·l,:!·.;;.\ i·f:.,

