
M.J. T. Laboratory for Computer Science 
Computer Systems Research Groups 

Dover printing with the IBM PC 

by J. H. Saltzer 

Request For Comments 255 

Aprill9, 1984 

This memo describes several methods and paths by which a user with an IBM Personal 
Computer can obtain output from one of the Xerox Dover laser printers located at 545 Technology 
Square. All of the techniques assume that the user has available the PCIP network package and 
hardware for the building Ethernet, the proNET ring, or a serial line operating at 1200 bits/second 
or higher that is connected to (or can be dialed up to) the PC serial line gateway. 

1) The basic path to the Dover. Text files on the IBM PC use the ASCIJ character set with 
standard interpretations of carriage motion characters. Therefore one can simply send a PC text file 
to any L.C.S. host computer that has an implementation ofTFfP and also the ability to send ASCII 
files to the Dover. One procedure is to log in to the other host using PC/telnet and use that host's 
TFTP command to transfer the file from the PC to the intermediate computer. Then, use that 
host's standard commands for formatting an ASCII file for the dover. This technique works on 
MIT -XX, MIT -Multics, and any L.C.S. VAX running UNIX, using commands named "press" or 
"pressify". The Dover formatting commands provide a limited number of options for controlling 
the appearance of the file on the Dover, primarily choice of font, margins, and interline spacing. 

2) Automating the path. It is quite easy to set up a demon process on a VAX running 
BSD4.2 UN IX, which process will every so often wake up and look to see if any files have appeared 
in its input directory. The demon can then automatically format the files for the Dover using press 
with some predetermined option settings, and send them on to the Dover. A C-shell script is 
attached that can do this job. (This C-shell script can be found on MIT-BORAX in the file 
/usr/dover/pcpress.) One starts this script going as a separate task by typing the. UNIX 
command: "pcpress start &" and then logging out. The task will continue to run as long as the 
VAX UNIX system stays up. Alternatively, it is possible to prime the system initialization 
procedures to kick off such a task automatically when the system is bootloaded, by including 
appropriate entries in the file/etc/rc. Once such a demon is started, a PC user sends, with PC/tftp, 
the file to be printed to the directory that the demon is watching on the VAX. Because UNIX has 
minimal facilities for waiting for events, this shell script uses an obscure mechanism to discover the 
existence of a file: One sends a file named "name.fixlO" to be printed, then sends a file named 
"name.ctl" to start the demon. This second file must be less than one tftp block (512 bytes) in 
length, but its contents are irrelevant-the demon is waiting for the appearance of any 
non-zero-length tile with secondary name ".ctl". The cover page appearing at the Dover will have 
the notation "For: name". As soon as it has processed the file "name.fixlO", the demon deletes 
both files. so that the name "name.fixlO" can be used for another file. Since UNJX/tftp will not 
allow sending a file whose name already exists, there is no danger that sending a second file will 
overwrite an earlier file b~fore it has been processed by the demon. 



RFC-255, page 2 Dover printing with the IBM PC 

3) Using Scribe. One can use an editor on the PC (such as Mince or the Final Word editor) 
to prepare a file containing text as well as standard Scribe fom1at control commands. The next step 
would be to Jog in to a Scribe-implementing host. such as MIT -XX or a VAX UNIX system. get the 
file from the PC using tftp, and then invoke Scribe just as if the file had been prepared using the 
host's editor. This approach uses the PC only for editing. If one is careful to restrict formatting 
commands t9 those that lie in the overlapping subset of Scribe and FinaiWord. then draft copies can 
be made on a printer directly attached to the PC using Fina!Word's FWF and FWP commands or 
the FinalWord editor's "advanced print" feature. After one is satisfied with the draft version, 
Dover copies can then be produced with Scribe. Moving files from Final Word to Scribe can be 
done easily by a person familiar with both control languages, which are in many respects identical. 
However, because Dover output generally looks quite different from a typical PC printer output, 
one almost always wants to adjust the style a bit when switching from FinaJWord to Scribe. 

4) Using Final Word as a Dover formatter. The FinaiWord formatter (FWF) will arrange 
that the printer output driver write its output to a file if you give it (FWF) the options "-print -o 
filename". The resulting file can then be sent to the Dover, using either method 1) or 2) above. 
The trick is to convince FinaiWord that the printer has no special features whatever. This 
convincing is accomplished by telling FinalWord that the printer device is the one named "plain". 
That is, one adds the option "-dev plain" ahead of the "-print" option. The result will be output 
that is formatted for a ten-pitch (pica) typewriter. 

5) Defining a Fina/Word printer device. Much better results can be obtained if one uses the .....1 
FinaiWord "CONFIG" program to define a new printer device that is more closely suited to 
producing output for the press command and the Dover. One chooses a set of options for press 
that specifies fonts to be used, vertical spacing, and paper position, and then configures a Final Word 
printer device with parameters that correspond to these option choices. There is a file named 
/usr/dover/DCONFJG.DAT on MIT -BORAX that can be used as a "CONFIG.DAT" file for 
Final Word and that has a device named "DoverfixlO". This device has the proper character and 
line spacing for the Dover's GACHAIO fixed width font. The C-shell script "pcpress" contains the 
press command control options that correspond to this printer definition. 

6) Font switching. The press command can accept font-switch control characters. If an 
ASCII SO character (octal 016, obtained by typing controi-N on most systems) appears in the text 
stream, the next character is taken to be the identifier of the font to switch to. The press command 
allows the user to specify up to four fonts to be used in the preparation of any one file. It identifies 
these four fonts as "T", "K", "H", and "C", and those letters are the ones that may follow the ASCII 
SO character. This feature can be invoked from FinaiWord by including as part of a device 
specification the appropriate font-switch sequences. One trap is that the FinaiWord package 
assumes that bold italic output can be obtained by sending the printer's control sequence for bold 
followed bv the printer's control sequence for italic. Since the Dover's fonts are switched 
independently, one must treat bold italic as a separate feature rather than a combination of two 
features. The easiest way is to use the "Greek" controls ofFinalWord to output the bold italic font 
sequence. (The device "DoverfixlO" mentioned in 5) above is configured to send font change 
sequences when Fina!Word encounters bold, italic, and greek-for bold italic-control commands, 
and the press options are set accordingly in the pcpress C-shell script) N.B. The font-switch 



Dover printing with the IBM PC RFC-255, page 3 

feature is available only in the VAX version of press. 

7) Using proportional-spaced fonts. Using Final Word to take advantage of proportional
spaced fonts on the Dover is tricky, but feasible. The first step is to identify the font you want to 
usc, and to obtain a table of font widths for that font. The standard Dover font widths are 
expressed in micas, the same measure that Final Word requires. The next step is to modify one of 
the Final Word font width tables to contain these font widths. Then, configure a printer definition 
to use that font width table. Finally, at the host computer you usc to convert the ASCII file into 
Dover format, you must tell the press command to use the chosen font. This path works amazingly 
well, with two important restrictions. First. the only spacing facility that can be invoked by using 
the ASCII character set is the space character, so output ends up getting right-justified only to the 
nearest space. (In the TlMESROMAN fonts, a space is quite small, so one has to look carefully to 
notice spacing errors arising from this restriction.) Also, FinalWord cannot accomplish 
right-justification by smoothly stretching the line, so it just throws extra spaces in here and there. 
Second, FinalWord can cope with only one font width table at a time, so font-switching doesn't 
work as well as one might hope. It is essential to stay within one font size (as in using 
TIMESROMANll in plain, bold, italic, and bold italic forms) and even then there is a small 
variation in widths among the forms. The primary effect of the small variation is that the 
right-adjustment process comes out a little wrong on lines that contain characters with multiple 
fonts. (If you look for large right-adjustment errors in this RFC you will note that they are 
correlated with use of bold and italic fonts.) Titles and other things that are not right-adjusted look 
just fine. The file DCONFIG.DA 'f mentioned above also contains specification for a device 
named "DoverTRll" that contains font widths for the Dover's TIMESROMANll font, as well as 
font-switching sequences. for italic, bold, and greek (bold italic). The press command control 
options that correspond to this printer definition may be seen in the pcpress C-shell script. The 
C-shell script automatically chooses this set of options if it is asked to process a file with secondary 
name ".trll". · 

Hints and kinks. 

This section describes some more obscure possibilities and problems that may be 
encountered in using the Dover from an IBM PC. 

1). In the TIMESROMANll font, underlining does not work because the single width of 
the underscore and backspace characters can not match the many widths of the printing characters. 
For this reason, it may be more useful to translate the underscore character to some other graphic: 
available in the font Reassignment is accomplished by adding to the FinalWord printer definition 
a translation table, and then setting up the translation table to translate most characters into 
themselves. The underscore character (decimal 95) may be set to translate into, for example, th(: 
one-em dash (TlMESROMANll font value 19, typed as control-S.) The DoverTRll device 
configuration includes this translation as well as a translation of the ASCII minus sign to the~ 

TIMESROMANll one-en dash. In table values, decimal character 45 translates to 22, typed as 
control-V. (The TIMESROMANl.l representation of the ASCII minus sign is a bit narrow for 
some tastes.) Note that since the ASCII code values for these TIMESROMANll graphics are in 
the usual range of control characters, the press command will convert them to a graphi<; 



RFC-255, page 4 Dover printing with the IBM PC 

representation of the cbntrol character (such as tV or tS) unless it is given the parameter @NOCTL 
in the command line. ~ 

'·;··" .. 
I .· 

2) The press command performs fixed vertical spacing. When using more than one font, it 
determines the amount of vertical spacing by identifying the font with the greatest height above the 
base line and the font with the greatest descent below the base line. It adds the greatest height to 
the greatest descent, then adds the percentage indieated by its @LEADING control parameter (20% 
default.) This algorithm tends to lead to more interline spacing than one expects when using 
related fonts in a family, since one font may be defined as having high upward extents, while the 
next has long descenders. For the TJMESROMANll family including bold and italic, a leading of 
10% leads to about the same interline spacing as is obtained with leading of 20% for 
TJMESROMANll alone, 510 micas. 

3) FinalWord is not very defensively designed against the possibility that it has been given 
printer device definitions that are internally inconsistent. In particular, if the specification of 
smallest horizontal and smallest vertical movement parameters is not the same as the specification of 
the width of the space character and the vertical distance moved by a new-line character, FWP can 
go into a loop when it starts to try to produce file output Depending on details, this loop may or 
may not involve filling up the disk. One must be careful. 

4) There seems to be some kind of an obscure interface problem between the press 
command and the Dover, which causes the top half inch of press output to lie off the top of the 
paper. For this reason the @TOPMARGIN: parameter of press in the pcpress C-shell script is set 
to 1000 micas, an amount that (experimentally) makes the first line lie at the very top of the paper. 

5) It is helpful to put together a PC batch script that first invokes FWF with the proper 
parameters, then uses PC/tftp to send the text file and the control file. Two examples of such batch 
scripts can be found in the files /usr/dover/doverjix.bat and /usr/dover/dovertr.bat on 
MIT -BORAX. A copy of the latter batch script is attached. However, the PC batch facility is not 
quite as sophisticated as the UNIX C-shell, so the resulting batch script is not nearly as 
user-friendly or bullet-proof as it should be. 

6) The C-shell scripts that invoke press on UNIX could be replaced with C-language 
programs, to gain both a speedup in their operation and also allow some improvements in 
function. The primary improvement that might be gained would be to allow press parameters to be 
supplied in the control file. That feature would make the full flexibility of press directly available 
to the PC. 

7) The DoverfixlO device mentioned above is parameterized so as to closely match the 
DoveffRJ 1 device, so that it can be used for program examples that are to be pasted into text For 
general printing use, it would be appropriate to reduce its interline spacing by setting the Press 
@LEADING parameter to 20% and the DoverftxlO device vertical height and minimum vertical 
movement to 415 micas. 



Dover printing with the IBM PC RFC-255, page 5 

8) It would be plausible to automate the invocation ~f SCRIBE ~n a VAX UNIX using a 
shell script similar in spirit to pcpress. 



RFC-266, page 8 Dover pr1nt1ng w1th the IBM PC 

C-S~ell file for UNIX press+dover demon 
.. . .. ... 
:::; ·' 

#I /bin/qh 
# 

# Trivial press+dover demon for PC output to dover. 3/11/84. 
# 

if ($1 == "start" ) then 
cd /usr/spool/dover 
echo -n "Starting trivial press+dover demon: ">>spool.log 
date >>spool. log 
set nonomatch = 1 
while (1(-e stop}} 

foreach i (*.ctl} 
if ( -e $ i) then 

# A file named "stop" will stop this demon. 

if (1(-z ${i})} then 
echo -n "found control file ${i}: ">>spool.log 
date >>spool.log 
if (-e $i:r.tr11} then 

/bin/press $i:r.tr11 @noctl @nohdr @nolit \ 
@top:1000 @bottom:O @left:O \ 
@shift @leading:lO \ 
@tfont:timesroman11 \ 
@cfont:timesromanllb \ 
@kfont:timesromanlli \ 
@hfont:timesromanllbi \ 

l/bin/dover -user: $i:r >>spool. log 
rm -f $i:r.tr11 >>&spool.log 

else if (-e $i:r.fix10} then 

else 

/bin/press $i:r.fix10 @noctl @nohdr @nolit \ 
@top:lOOO @bottom:O @left:O \ 
@shift @leading:48 \ 
@tfont:gachalO \ 
@cfont:gachalOb \ 
@kfont:gachalOi \ 
@hfont:gachalObi \ 

llbin/dover -user: $i:r >>spool. log 
rm -f $i: r. fixlO »&spool. log 

echo "but no •.trll or •.fixlO file to print for $i:r "\ 
»&spool. log 

endif # (-e $i:r.fix10) 
rm -f $i >>&spool.log 



.. 
Dover pr1nt1ng wtth the IBM PC RFC-266, page 7 

echo "Control file $i processed." >>spool.log 
continue # Skip wait, repeat while from the start. 

else 
sleep 30 
if (-z ${i}) then 

echo -n "Discarding 
date >>spool. log 
rm $i >>&spool.log 

endif # (-z ${i}) 
continue 

endif # (1(-z ${i})) 
endif # (-e $i) 

end# foreach i (•.ctl) 
sleep 100 >>&spool.log 

end# while (1(-e stop)) 

# Wait for the rest of this file to arrive. 
# Not arriving, get rid of it. 
zero-length file ${i}: " >>sp6ol.log 

echo -n "Stopping trivial press+dover demon: ">>spool.log 
date >>spool.log 
rm stop 
exit 

else if {$1 == "stop" ) then 
c·p pcpress stop 
exit 

else 
echo "Trivial press+dover demon. Usage:" 
echo " pcpress start &" 
echo "or" 
echo " pcpress stop" 
exit 

endif # ($1 = start ) 



RFC-266, page 8 Dover pr1nt1ng w1th the IBM PC 

PC Batch file to send output to a mythical UNIX named MIT-SOAPSUDS 

echo off 
echo ••••• Preparing FinalWord output for Dover TimesRoman 11 
if exist dover.fwo'erase dover.fwo 
fwf %1 -dev Dovertr11 -print -o dover.fwo -q 
if not exist dover.fwo goto else1 

tftp put dover.fwo MIT-SOAPSUDS /usr/spool/dover/Smith.tr11 
tftp put %0.bat MIT-SOAPSUDS /usr/spool/dover/Smith.ctl 

**** 

if not errorlevel 1 echo ***** File transmitted For: Smith ***** 
goto endl 

:elsel 
echo ***** 

:endl 
FinalWord format error, nothing sent to Dover •••• 


