
M.I.T. Laboratory for Computer Science 

Computer Systems Groups 

HAZARDS OF FILE ENCRYPTION 

by J. H. Saltzer 

Abstract 

May 27, 1981 

Request for Comments No. 208 

Encryption of stored files is an attractive way of separating 

responsibility for storage management from that of privacy. However, 

blind application of encryption techniques designed for use in communica-

tion systems, where messages are evanescent, decryption occurs inunediately, 

and random access to data is never required, can lead to a storage system 

design that has less privacy, reliability, and function than intended. 

This paper discusses some of the special problems of file encryption that 

arise because the storage environment and the communications environment 

are different, and offers some suggestions for their solution. 

Introduction 

The application of cryptographic techniques to achieve privacy and 

authenticity of communication has a long history, including experiences 

both good and bad[l,2]. This long collection of experiences has produced a 

gradual sophistication in the understanding of the design considerations 

involved. Recently, with the addition of the techniques of public key 

encryption[3,4] and key distribution protocols[S], it appears that the 

basic ideas of cryptography can be extended to multipoint data communication 

networks. Less experience with these ideas has been obtained, so the 

WORKING PAPER-- Please do not reproduce without the author's permission 
and do not cite in other publications. This paper has 
been submitted to the 8th ACM Symposium on Operating 
Systems Principles. 



-2-

relevant design considerations are not yet so clear. Nevertheless, 

the multipoint communications application is similar enough to the 

point-to-point experience that one expects most of that experience to 

carry over. On the other hand, new applications of cryptography are 

being explored, including encryption of stored files[6,7,8]. Unfortunately, 

blind transfer of a successful technique to a domain for which it was not 

originally designed can yield surprises. There are several hazards in 

file encryption that are not present in the same form or with the same 

priority in communication systems; these hazards must be recognized by 

proposers or implementors of file encryption systems. This paper points 

out several of those hazards, and offers some suggestions for avoiding or 

coping with them. 

Before looking at the hazards, let us review what benefit one might 

hope to achieve by applying encryption to stored files. The chief benefit 

seems to arise from an extremely powerful system modularizing effect: if 

one encrypts the data, its privacy is secured without question of how the 

physical storage is later managed. All aspects of storage management are 

then relieved of the need to consider privacy in their actions. Management 

of detachable storage media may be especially simplified. Thus, for example, 

no-longer-needed backup tapes containing file copies can be recycled without 

special steps to erase them. A misbehaving disk drive can be turned over 

to a customer engineer for repair without worrying about whether its 

contents are sensitive. A disk pack can be sent to an outside service 

for cleaning. Inside the operating system, the size of the trusted "kernel," 

that is the collection of supervisor procedures that are in a position to 

compromise privacy, can be smaller, since the storage management programs 

do not need to be included. In the extreme, if encrypting and decrypting 



-3-

of files are done outside, rather than inside the computer system~ one 

can make a reasonable argument that privacy can be had in a multi-user 

computer system that provides no privacy-achieving mechanisms of its 

own. Of course this last approach also prevents the shared computer 

system from doing any processing of the data. However, there are sensible 

applications for such non-processing data storage system, such as shared 

storage repositories in a network of personal desktop computers. Data 

may be enciphered by the desktop computer in a private environment, before 

being sent to the shared storage repository where it is expected that 

storage costs are lower, and long-term reliability is higher. Exactly 

such strategies for privacy have been recently proposed for distributed 

storage systems[S]. 

With this appreciation of the possible benefit, what then are the new 

and unusual hazards of file encryption that might require a different set 

. of design considerations as compared with an encrypted communication system? 

They can be broadly categorized according to three ways that a stored file 

system differs from a communication system: 

1) The storage of a file system is intended to be persistent, while the 

presence of information in a communication system is evanescent. 

2) At the time decryption occurs in a file system, the original, 

unencrypted source text may not be available anywhere for comparison. 

In a communication system the originator usually holds the original 

message text until after the recipient has acknowledged that 

decryption was successful. 

3) In a file one often wants random access to interior parts of the 

file (e.g., records). In a communication system, data departs and 

arrives in a stream, allowing sequential encryption and decryption. 



-4-

These three differences between file storage and communication can 

strongly affect the details of design of the cryptographic system. Each 

of the three differences is the source of several hazards, as discussed 

in the following three sections. 

Persistence 

File storage is normally used for data that will be left in place for 

some length of time. This persistence produces three effects that are 

somewhat different from the corresponding situation in a communication 

system where data is encrypted, transmitted, and immediately decrypted. 

The first effect we might name the "sitting duck" effect, thinking 

of the relative ease of shooting a duck sitting in a pond compared with 

one flying overhead. To attack a specific conversation in a communication 

system, one must first intercept the conversation, which requires being 

in the right place at the right time. The individual messages are evanescent, 

so an attacker must capture a copy as it flies by, accurately, perhaps 

without being certain of what he has captured. In contrast, an encrypted 

file may sit for days, weeks, or months in one place, allowing the attacker 

to choose his time and weapons, and try again if the first attempt produced 

a copy of the wrong file or had errors in it. Although evanescence of 

messages is not usually explicitly acknowledged as increasing the work 

factor in communication systems (it has been mentioned in connection with 

packet switching networks with dynamic routing[9]) it nevertheless is 

part of the accumulated experience with successful communication systems 

and protocols, and it is difficult to judge how much extra strength is 

needed elsewhere (for example in the cryptographic transformation itself) 



-· 
-5-

to compensate for persistence in the file storage system. Conservatively, 

though, one would expect that a stronger cryptographic transformation 

ought to be specified for file storage. 

A second effect, similarly difficult to evaluate, relates to the time 

value of the information being protected, A standard criterion for 

cryptographic systems used for communications is the length of time that 

the transmitted information needs to be protected as compared with the 

minimum time a well-equipped attacker needs to cryptanalyze it. For 

example, a message that needs to be private for only a day or so could be 

adequately protected by a cryptographic system that can be systematically 

penetrated with a week of effort. If one looks at the distribution of 

time values of a set of messages on the one hand and a set of files on the 

other hand, one might expect to find some important differences. Messages 

probably have predominently short time values, measured in days or weeks, 

while files may need to be kept private for relatively long times, perhaps 

months or years. These time values of messages should be assumed to have 

been factored in to the experience of communication cryptographic system 

designers. Thus, again, it may be necessary to insist that cryptographic 

transformations for use in file storage have higher work factors than 

transformations intended for use in communications. 

Neither of these effects, the "sitting duck" and the time value, are 

absolute, but rather are subtle differences of emphasis between file 

storage and communication, and their biggest impact must come in under

standing the meaning of a "certification" of a cryptographic system as 

adequate for a particular application. Since the average application user 

is unlikely to have the diligence or mathematical expertise to analyze a 

cryptographic system himself, he must rely on the experience of others, 

in the form of a certification. The point here is that that experience 



-6-

is extensive in the area of communications, where evanescence and short 

time values are part of the environment, and almost non-existent in 

storage, with persistence and long time values. So certification based 

on communication experience may be less significant than it appears on 

the surface. 

The third and last effect of persistent storage is that one normally 

assumes in the design of a cryptographic system that cryptographic keys 

will eventually be compromised, through human blunders and miscalculation. 

In a communications system, one plans to change keys whenever a compromise 

is suspected, as well as periodically with a frequency determined by 

experience. Put another way, key management, which involves human operations, 

must be sufficiently disciplined to match the time value of the information. 

For the case of long term file storage, it is difficult to imagine how to 

assure long term lack of compromise of keys. Unfortunately, the alternatives ~ 

are not very enticing either. If a key is accidentally compromised, (or 

compromise is suspected) re-encipherment of affected files seems to be 

n•quirL•d, pn•st~~nahly a (:osL ly opt•r<IL ion. 111 addiL lou, n'-L'IIciplll'riiH~IIL of 

a file gives a cryptanalyst two enciphered versions of the same plain 

text, which may lower the work factor. This area has apparently not yet 

been carefully explored, and some opportunities may exist for jngenuity. 

TJrne of d_~_c_ryj~t-~~ 

In a file storage system, the time scenarios are very different from 

those of a communications system, and these scenario differences lead to 

profound differences in the effects of various kinds of failures. A 

communication system is usually designed under the assumption that decryption 

happens shortly after encryption. That is, the recipient normally dec:ypts 

the message, establishes that the transmission went well, and acknowledges 

it, all while the originator maintains his copy of the message. Only after 



-7-

acknowledgement of successful transmission does the originator consider 

destroying his copy of the message. (Even then the unencrypted plain text 

may be logged.) If trouble is detected, the original text is available 

for retransmission, and recovery from errors is designed with this option 

in mind. 

In the file storage system, a whole different scenario is usually 

envisioned. The data is encrypted and stored, and then the original is 

destroyed. During the term of storage, the unenciphered data does not 

exist. Later, perhaps much later, decryption must be accomplished without 

the possibility of going back to the original for help. If errors never 

happen, this difference in scenario would be of little concern. Unfor

tunately, errors do happen. Some possible e·rrors include: 

the enciphering engine may have a hardware error, 

the storage system may drop some bits during storage, 

the key may not have been correctly recorded, 

the human user may have made some mistake, such as 

encrypting the file twice or using the wrong key. 

If the corresponding error occurs in a communication system, recovery can 

be quick and easy, because the original data is available for retransmission 

as soon as the problem is discovered and repaired. In the file system no 

such appeal to the original data is available. In recovery terms, 

"backward" error recovery, in which one goes back to an earlier state and 

tries again, is not feasible, so one must invent a whole new collection of 

"forward" error recovery techniques, in which the original encryption of 

data and key management are done so carefully that there is little chance 

of a problem occurring at decryption time. 



-8-

Such forward error recovery techniques can certainly be invented. 

For example, one might encrypt using two parallel encryption devices, 

comparing their output. After writing the data on the disk one might 

read it back and decrypt it to verify its correctness, before destroying 

the original. In doing so, one should be certain to obtain the decryption 

key from the exact physical place it will be obtained in the future, 

rather than from some cache that might not properly be written into 

backup storage. Keys might be stored redundantly (with some concern as to 

whether or not this redundant storage represents excessive exposure.) 

The human factors of the system must in any case be designed to tolerate 

all imagineable (and unimagineable) blunders and missteps on the part of 

the user. All these things are possible, perhaps even straightforward. 

But they represent differences with the communication system design, and 

experience must be gained to learn how to provide forward error recovery 

that is effective at the same time that it is inexpensive and unobtrusive. 

Random access 

The third major way in which a communication system and a file 

storage system differ is that data in a communication system is almost 

always received in a sequential stream, so the encryption system is designed 

assuming that property. In contrast, in a file system there is often a 

requirement for rapid access to randomly chosen records in the middle of 

the file. This random access requirement leads to a need to redesign the 

basic encryption protocol. (This consideration therefore takes us temporarily 

into some of the more technical aspects of encryption.) 



-9-

The reason for incompatibility between sequential encryption and 

random access becomes apparent in considering what happens if one applies 

sequential encryption to a file. In sequential encryption of a stream of 

data, the transformation applied to the next part of the stream depends not 

only on the key in use, but also on the preceding data in the stream. 

(This interdependence of one part of the s.tream with the next increases 

privacy substantially in the common case that data values repeat; if 

done carefully, interdependence can destroy any opportunity for attack by 

frequency analysis.) But the corresponding decryption must also be done 

sequentially, starting with the first bit of the stream. If one encrypted 

a file as though it were a stream of data, access to a record in the 

middle would require reading and decrypting the file from the beginning; 

a change to the file would require re-encrypting and rewriting the file 

from the point of change all the way to the end. 

One could instead use a block-encryption scheme for files, for 

example applying the U.S. Data Encryption Standard[lO] (which transforms a 

64-bit block into another 64-bit block) to each block of the file independ

ently. With this approach, one could read any random block of the file and 

decrypt it directly, and change, reencrypt, and rewrite random blocks. 

But this approach makes frequency analysis a possibly productive activity 

for an attacker, and comparison of a block-encrypted file before and after 

update almost perfectly exhibits the pattern of changes made by the update. 

An intermediate approach might be to divide the file into regions that are 

each to be enciphered sequentially but ~ndependently of one another. 

The region would be large enough not to be repetitive but small enough 

that it is not too painful to read an entire region to obtain access to 

an item stored therein. The trouble with this approach is that the choice 



-10-

of the best region size tradeoff between privacy and accessibility 

probably depends on the application, yet the application designer may not 

be technically equipped to judge the privacy impact. 

Nore sophisticated techniques might be proposed to salvage the 

random access capability that comes with enciphering small blocks. For 

example, one might perform an "exclusive or" of the data in a block with 

its own address before enciphering it. Later, after decipherment, the 

"exclusive or" can be easily undone to recover the data, and enciphered 

repeated data stored in different locations will not look repetitive. 

But one should analyze that kind of technique in light of the particular 

encipherment algorithm to be used (and with some suspicion) because some 

other common data pattern may suddenly look repetitive, or the sequential 

nature of the addresses may still be apparent even after encryption, and in 

any case an attacker can still easily discover the pattern of changes made 

in updating a file. Random access is still a subject for research[ll]. 

This set of considerations leads one into reconsideration of the 

basic encryption strategy itself, unfortunately opening up a world of 

esoteric mathematics and related cryptology. That reconsideration may 

turn out to be productive, but one must realize in doing it he has departed 

from the well-tested, high-confidence world of communication cryptography, 

and regaining of confidence will require new, long experience. So, once 

again we have identified an area in which the file storage application 

and the communication application differ enough that one cannot automatically 

assume that the communication cryptography techniques can be directly applied. 

.. 



-11-

We should also note, however, that there are storage applications, 

such as the remote, low-cost storage of files in a distributed system 

with a high-speed communications network, where reading and rewriting 

the entire file may be quite an acceptable operation; when random access 

is not a requirement this third hazard seems to vanish from the scene. 

Conclusion 

We have identified several ways in which the mechanics of file 

encryption differ significantly from the mechanics of communication stream 

encryption. In particular: 

files tend to last longer than messages, so one must be sure 

the encryption system adequately takes into account their 

long-term vulnerability, their long time value, and the need to 

change compromised keys. 

files are deciphered at a time when the original copy no longer 

is available, so all failure recovery must be planned in advance. 

files sometimes require random access, which calls for 

encryption techniques that do not depend on sequential coding 

for security. 

One might try to draw from these observations a conclusion that it is a 

mistake to apply encryption to files. Such a conclusion does not seem to 

be warranted. In light of the potential benefits of file encryption in 

separating privacy from storage management, especially in distributed 

systems, it seems appropriate to pursue the idea. However, this pursuit 

ought to be with the caution that the environment is different enough 

from that of the communications world that careful re-evaluation is needed 

at every step until a body of field experience has been acquired. One 



-12-

cannot assume that simple adaptation of the standard communication 

encryption techniques will provide the intended level of privacy, 

reliability, or function. 

Acknowledgements 

Although the design considerations described here apparently never 

have been collected in one place before, few of them are new. They seem 

most often to have been communicated as oral folklore rather than in 

published papers. I am indebted to many people who over a period of 15 

years have each been willing to impart their share of the folklore to me. 

The names I recall are Dennis Branstad, Daniel Edwards, Edward Glaser, 

Martin Hellman, Steven Kent, Joel Oseas, Brian Randell, Ronald Rivest, 

Nathaniel Rochester, Michael Schroeder, Walter Tuchman, and Gerald Walter. 

References 

[1] Kahn, D., The Codebreakers, MacMillan, New York, 1967. 

[2] Johnson, B., The Secret War, British Broadcasting Corporation, 
London, 1978, Chapter 6. 

[3] Diffie, W., and Hellman, M.E., "New Directions in Cryptography," 
IEEE Trans. on Info. Theory IT-22, 6 (November, 1976) pp. 644-654. 

[4] Rivest, R.L., Shamir, A., and Adleman, L., "A Method of Obtaining 
Digital Signatures and Public-Key Cryptosystems," Comm. ACM 21, 
2 (February, 1978) pp. 120-126. ---- -----

[5] Needham, R.M., and Schroeder, M.D., "Using Encryption for Authenti
cation in Large Networks of Computers," Comm. ACM 21, 12 (December, 
1978) pp. 993-999. 

[6] Denning, D.E., and Denning, P.J., "Data Security," Computing 
Surveys 11, 3 (September, 1979) pp. 227-249. 

[7] Ehrsam, W.F., et al., "A Cryptographic Key Management Scheme for 
Implementing the Data Encryption Standard," IBM Sys. Journal lZ_, 
2, 1978. 

[8] Reed, D.P., "Implementing Atomic Actions on Decentralized Data," 
presented at ACM 7th Symposium on Operating Systems Principles, 
December, 1979. To be published in the Comm. ACM. 



-13-

(9] Baran, P., "Security, Secrecy, and Tamper-free Considerations," 
On Distributed Communications, 9, Rand Corp. Tech. Rep. RM-3765-PR, 
1964. 

[10) "Data Encryption Standard," Federal Information Processing Standards 
Publi.cation 46, National Bureau of Standards, January 1977. 

[11] Kent, S.T., "Protecting Externally Supplied Software in Small 
Computers," Ph.D. thesis, M.I.T. Dep't of Electrical Engineering 
and Computer Science, September, 1980. Also Laboratory for Computer 
:;,·i•·n•·•· 'l't•l'llllil'ill H••porl, '1'){-'}')ri, Svpt<•tulu·r, 19HO. 




