
M.I.T. Laboratory for Computer Science June 30, 1977

Computer Systems Research Division Request for Comments No. 145

ANNUAL REPORT: July, 1976 -- June, 1977

by D.D. Clark, J.H. Saltzer, and L. Svobodova

During this year, the Computer Systems Research Division completed one

major project, the information sharing kernel design project, and made

significant progress on two others, the study of distributed systems and

implementation of a local network. We also continued support of the ARPANET

and NSW on Multics. These activities are described in the following sections.

I. THE INFORMATION SHARING KERNEL DESIGN PROJECT

This year we completed a three year project to carry out engineering

studies whose goal was to demonstrate the feasibility of producing a full

function general purpose operating system whose central supervisor code is

simple enough that its correct operation can be certified by some form of

auditing. The term "security kernel" is often used to describe this body of

critical code, since the functions that must be included in this code are

precisely those that insure the correct operation of the system, and insure

the integrity of the information stored in the system. This engineering study

was part of a larger project, the Guardian project, to produce a prototype of

a certifiable operating system, based on the Multics system. The Guardian

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced

~, without the authors' permission, and it should not be cited in other
publications.

project included development of models to characterize security in a computer

system, development of formal specification techniques for operating systems,

and actual implementation of a system matching the models.

The general strategy of this engineering study involved identifying all

reasonable-sounding proposals for simplifying the Multics kernel, and

selecting for trial implementation those that could not be accepted as

obviously straightforward or rejected as obviously inappropriate. Three kinds

of redesign proposals emerged: 1) removing from the kernel those formerly

protected supervisor functions that did not really require that protection;

2) taking advantage whenever possible, of the natural separation afforded by

processes in distinct address spaces communicating at arms length to implement

protection functions; and 3) using more systematic program structuring

techniques for implementing the remaining kernel functions, so that the result

might be easier to verify.

Probably the most interesting and important result of this work is the

invention of a file system and processor multiplexing organization that

eliminates the complicating cycles of dependency normally found among the

modules of an operating system kernel. The organization is based on the

discipline of type extension, a strategy that has been used previously to

organize application programs, but has heretofore not been applied to the

structure of an operating system itself. Inside an operating system, careful

analysis is required to identify all intermodule dependencies. The

opportunity exists, for example, for an operating system module to produce

dependency loops by participating in the implementation of its own execution

environment. Such opportunities are less of a problem for application

programs, which typically depend on the operating system to provide their

2

execution environment. Our study suggests that in a properly structured

system, all dependencies that cannot be eliminated will fall into one of five

categories, as follows. A module M is dependent on some other module if and

only if:

• the other module manages some object that is a component of the object

defined by M,

• that module provides a map used to relate names used by M to lower

level objects,

• that module provides the containers for the algorithms and temporary

storage for M,

• that module defines the address space in which M executes,

• that module implements the interpreter (the real or virtual processor)

that executes the algorithms of M.

Using the rationale just described, and with the five kinds of dependencies in

mind, it was possible to design a loop-free structure of object managers that

implement the complete functionality required in the Multics kernel.

We summarize our experience in applying the type extension rationale to

structuring the Multics kernel as follows. Most systems appear to have a

loop-free dependency structure if viewed from far enough away. The obvious

component relationships and the obvious operations follow loop-free paths

among the modules. On close inspection, however, map, program, address space,

and interpreter dependencies will almost certainly generate loops in the

system designed without loop avoidance as a primary objective. The map,

program and address space loops usually are broken easily (at least during the

design stage) by introducing new object types to store the maps, programs, and

address space definitions. The interpreter dependency loops appear to be

3

eliminated in most systems by using a two level implementation of processes.

The most difficult and subtle structural problems are caused by exception

handling - especially when the exceptions are part of the mechanisms that

control resource usage. The difficulty is partly intrinsic -- such exceptions

tend to occur at low levels in the system but be related to high level objects

and partly methodological resource usage controls and the paths followed

to deal with exceptions tend to be added to a design last.

It was our expectation that the structural simplifications to the kernel

would be accompanied by a reduction in the size of the kernel, as measured in

lines of source code. The size of the Multics kernel at the start of the

project was 54,000 lines of source code, a bulk sufficiently staggering to

inhibit any serious thought of conclusive auditing. Our application of the

three design procedures mentioned above produced a version of the kernel

approximately half the size of the original. And we expect further size

reductions would be possible, were our proposals carried through to all areas

of the kernel to which they would apply. An unresolved question is whether

the kernel must enforce all security requirements, or only those related to

some external standard such as the military model of non-discretionary levels

and categories. Had our kernel enforced only the latter, it would have been

somewhat smaller, though considerable work seems necessary to decide exactly

how much smaller.

Experiments with components of the system that we rewrote indicate that

the structural modifications we proposed did not have a significant

performance impact on the system, and we conclude that a secure system need

have no performance penalty. The most serious impact on performance in our

work comes from the use of a high level language, and presumably this

4

difficulty could be minimized if a high level language were used that is

easier to compile efficiently than full PL/I.

The primary conclusion of this project is that the kernel of a general

purpose operating system can be made significantly simpler by imposing first

clear criteria as to what should be in it -- the kernel concept --, and second

a design discipline based on type extension. It is also apparent that minor

adjustments of the underlying hardware architecture can make a significant

difference in operating system complexity, and similarly that minor variations

in the semantics of the user interface can make major differences in the

complexity of implementation of the kernel.

II. RESEARCH PROBLEMS OF DECENTRALIZED SYSTEMS WITH LARGELY AUTONOMOUS NUDES

A currently popular systems research project is to explore the

possibilities and problems for computer system organization that arise from

the rapidly falling cost of computing hardware. Interconnecting fleets of

mini- or micro-computers and putting intelligence in terminals and

concentrators to produce so-called "distributed systems" has recently been a

booming development activity. While these efforts range from ingenious to

misguided, many seem to miss a most important aspect of the revolution in

hardware costs: that more than any other factor, the entry cost of acquiring

and operating a free-standing, complete computer system has dropped and

continues to drop rapidly. Where a decade ago the capital outlay required to

install a computer system ranged from $150,000 up into the millions, today the

low end of that range is below $15,000 and dropping.

The consequence of this particular observation for system structure comes

from the next level of analysis. In most organizations, decisions to make

5

capital acquisitions tend to be more centralized for larger capital amounts,

and less centralized for smaller capital amounts. On this basis we may

conjecture that lower entry costs for computer systems will lead naturally to

computer acquisition decisions being made at points lower in a management

hierarchy. Further, because a lower-level organization usually has a smaller

mission, those smaller-priced computers will tend to span a smaller range of

applications, and in the limit of the argument will be dedicated to a single

application. Finally, the organizational units that acquire these computers

will by nature tend to operate somewhat independently and autonomously from

one another, each following its own mission. From another viewpoint,

administrative autonomy is really the driving force that leads to acquisition

of a computer system that spans a smaller application range. According to

this view, the large multiuser computer center is really an artifact of high

entry cost, and does not represent the "natural" way for an organization to do

its computing.

A trouble with this somewhat oversimplified analysis is that these

conjectured autonomous, decentralized computer systems will need to

communicate with one another. For example: the production department's

output will be the inventory control department's input, and

computer-generated reports of both departments must be submitted to higher

management for computer analysis and exception display. Thus we can

anticipate that the autonomous computer systems must be at least loosely

coupled into a cooperating confederacy that represents the corporate

information system. This scenario describes the corporate computing

environment, but a similar scenario can be conjectured for the academic,

government, military, or any other computing environment. The conjecture

6

described here is being explored for validity in an undergraduate thesis by

Cecilia d'Oliveira.

The key consequence of this line of reasoning for computer system

structure, then, is a technical problem: to provide coherence in

communication among what will inevitably be administratively autonomous nodes

of a computer network. Technically, autonomy appears as a force producing

incoherence: one must assume that operating schedules, loading policy, level

of concern for security, availability, and reliability, update level of

hardware and software, and even choice of hardware and software systems will

tend to vary from node to node with a minimum of central control. Further,

individual nodes may for various reasons occasionally completely disconnect

themselves from the confederacy, and operate in isolation for a while before

reconnecting. Yet to the extent that agreement and cooperation are

beneficial, there will be need for communication of signals, exchange of data,

mutual assistance agreements, and a wide variety of other internode

interaction. We hypothesize that one-at-a-time ad hoc arrangements will be

inadequate, because of their potential large number and the programming cost

in dealing with each node on a different basis.

Coherence can be sought in many forms. At one extreme, one might set a

company-wide standard for the electrical levels used to drive point-to-point

communication lines that interconnect nodes or that attach any node to a local

communication network. At the opposite extreme, one might develop a data

management protocol that allows any user of any node to believe that there is

a central, unified database management system with no identifiable boundaries.

The first extreme might be described as a very low-level protocol, the second

7

extreme as a very high-level protocol, and there seem to be many levels in

between, not all strictly ordered.

By now, considerable experience has been gained in devising and using

relatively low-level protocols, up to the point that one has an uninterpreted

stream of bits flowing from one node of a network to another. The ARPANET and

IELENET are perhaps the best-developed examples of protocols at this level,

and local networks such as the ETHERNET and the Irvine King network provide a

similar level of protocol on a smaller scale geographically. In each of those

networks, standard protocols allow any two autonomous nodes (of possibly

different design) to set up a data stream from one to the other; each node

need implement only one protocol, no matter how many other differently

designed nodes are attached to the network. However, standardized coherence

stops there; generally each pair of communicating nodes must make some

(typically ad hoc) arrangement as to the interpretation of the stream of bits:

does it represent a stream of data, a set of instructions, a message to one

individual, etc. For several special cases, such as exchange of mail or

remotely submitting batch jobs, there have been developed higher-level

protocols; there tends to be a distinct ad hoc higher-level protocol invented

for each application. A Master's thesis by Paul Levine explored some of the

problems of protocols that interpret and translate data across machines of

different origin.

The image of a loose confederacy of cooperating autonomous nodes requires

at a minimum the level of coherence provided by these networks; it is not yet

clear how much more is appropriate, only that the opposite extreme in which

the physically separate nodes effectively lose their separate identity is

excluded by the earlier arguments for autonomy. Between lies a broad range of

possibilities that need to be explored.

Coherence and the object model

During the current year, members of the Computer Systems Research

Division held a graduate-level seminar that explored this area of coherence

among interconnected systems, and developed a framework for discussion that

allows one to pose much more specific questions. The first conclusion of this

work is that to put some structure on the range of possibilities, it is

appropriate to think first in terms of familiar semantic models of

computation, and then to inquire how the semantic model of the behavior of a

single node might be usefully extended to account for interaction with other,

autonomous nodes. To get a concrete starting point that is as developed as

possible, we gave initial consideration to the object model*. Under that

view, each node is a self-contained system with storage, a program interpreter

that is programmed in a high-level object-oriented language such as CLU or

Alphard, and an attachment to a data communication network of the kind

previously discussed.

We immediately observed that several interesting problems are posed by

the interaction between the object model and the hypothesis of autonomy.

There are two basic alternative premises that one can start with in thinking

about how to compute with an object that is represented at another node; send

instructions about what to do with the object to the place it is stored, or

* Two other obvious candidates for starting points are the data flow model
and the actor model, both of which already contain the notion of
communications; since neither is developed quite as far as the object model we
have left them for future examination. '

9

send a copy of the representation of the object to the place that wants to

compute with it. (In-between combinations are also possible, but conceptually

it is simpler to think about the extreme cases first.) An initial reaction

might be to begin by considering the number of bits that must be moved from

one node to another to carry out the two alternatives, but that approach

misses the most interesting issues: reliability, integrity, responsibility

for protection of the object, and naming problems. Suppose the object stays

in its original home. Semantics for requesting operations, and reporting

results and failures are needed. For some kinds of objects, there may be

operations that return references to other, related objects. Semantics to

properly interpret these references are required. Checking of authorization

to request operations is required. Some way must be found for the

(autonomous) node to gracefully defer, queue, or refuse requests, if it is

overloaded or not in operation at the moment.

Suppose on the other hand, that a copy of the object is moved to the node

that wants to do the computation. Privacy, protection of the contents,

integrity of the representation, and proper interpretation of names embedded

in the object representation all are problems. Yet, making copies of data

seems an essential part of achieving autonomy from nodes that contain needed

information but aren't always accessible. Considering these two premises as

alternatives seems to raise simultaneously so many issues of performance,

integrity of the object representation, privacy of its content, what name is

used for the object, and responsibility for the object, that the question is

probably not posed properly. However, it begins to illustrate the range of

considerations that should be thought about. We have identified the following

more specific, problems that require solutions:

10

1. To arrange systematically that an object have multiple representations at

one point in time but stored at different places. One would expect to

achieve reliability and response speed this way. An example of

non-systematic multiple representation occurs whenever one user of a

time-sharing system confronts another with the complaint, "I thought you

said you fixed that bug", and receives the response, "I did. You must

have gotten an old copy of the program. What you have to do is type ••• "

Semantics are needed to express the notion that for some purposes any of

several representations are equally good, but for other purposes they

aren't.

2. An object at one node needs to "contain" (for example, use as part of its

representation) objects from other nodes. This idea focuses on the

semantics of naming remote objects. It is not clear whether the names

involved should be relatively high-level (e.g., character-string file

names) or low-level (e.g., segment numbers).

3. Related to the previous problem are issues of object motion: suppose

object A, which contains as a component object B, is either copied or

moved from one node to another, either temporarily or permanently. Can

object B be left behind or be in yet another node? The answer may depend

on the exact combination of copy or new, temporary or permanent.

Autonomy is deeply involved here, since one cannot rely on availability

of the original node to resolve the name of B.

4. More generally, semantics are needed for gracefully coping with objects

that aren't there when they are requested. (Information stored in

autonomous nodes will often fall in this category.) This idea seems

11

closely related to the one of coping with objects that have multiple

versions and the most recent version is inaccessible*.

5. Algorithms are needed that allow atomic update of t\W (or more) objects

stored at different nodes, in the face of errors in communication and

failures of individual nodes**· There are several forms of atomic

update: there may be consistency constraints across two or more

different objects (e.g., the sum of all the balances in a bank should

always be zero) or there may be a requirement that several copies of an

object be kept identical. The semantic view that objects are immutable

may provide a more hos;:>itable base for. extension to interaction among

autonomous nodes than the view that objects ultimately are implemented by

cells that can contain different values at different times. (The oore

interesting algorithms for making coordir:ated changes in the face of

errors seem to implement something resembling immutable objects).

Constraining the range of errors that must be tolerated seems to be a

p rornising way to look at these last t.•IO problems" Not ali. failures are

equally likely, and more important, some kinds of failures can perhaps be

guarded against by specific remedies, rather than tolerated. For example, a

common protocol problem in a network i3 chat some node both crashes and

restores service again before anyone notices; outstanding connections through

* Semantics for dealing systematically with errors and other surprises have
not really been devjsed for mono.Lithic, centraJ..ized systems either.. However,
it appears that in the decentralized case, the problem cannot so easily be
avoided by the ad hoc tricks or finesse as it was in the past.

** Most published work on making atomic updates to several sites has
concentrated on algorithms that perform well despite communication delay or
that can be proven correct. Unfortunately, algorithms constructed without
consideration of reliability and failure are not easily extended to cope with
those additional considerations, so there deems to be no way to build on that
work.

12

the network sometimes continue without realizing that the node's state has

been reset. A change in the semantics of the host-net interface could locally

eliminate this kind of failure instead of leaving it as a problem for higher

level protocols.

The following oversimplified world view, to be taken by each node may

offer a systematic way to think about multiply represented objects and atomic

operations: there are two kinds of objects, mine and everyone else's. My

node acts as a cache memory for objects belonging to others that I use, and

everyone else acts as a backing store. These roles are simply reversed for my

own objects. (One can quickly invent situations where this view breaks down,

causing deadlocks or wrong answers, but the question is whether or not there

are real world problems for which this view is adequate.)

Finally, it is apparent that one can get carried away with ingenious

algorithms that handle all possible cases. An area requiring substantial

investigation is real world applications. It may turn out that only a few of

these issues arise often enough in practice to require systematic solutions.

It may be possible, in many cases, to cope with distant objects quite

successfully as special cases to be programmed one at a time.

Other problems in the semantics of coherence

Usual models of computation permit only "correct" results, with no

provision for tolerating "acceptably close" answers. Sometimes provision is

made to report that ~ result can be returned. In a loose confederacy of

autonomous nodes, exactly correct results may be unattainable, but no answer

at all is too restricting. For example, one might want a count of the current

number of employees, and each department has that number stored in its

computer. At the moment the question is asked, one department's computer is

13

down, and its count is inaccessible. But a copy of last month's count for

that department is available elsewhere. An "almost right" answer utilizing

last month's count for one department may well be close enough for the purpose

the question was asked, but we have no semantics available for requesting or

returning such answers. A more extreme example surrounds an attempt to

determine the sum of all checking account balances in the United States, by

interrogating every bank's computer. An exact result seems both unnecessary

and unrealistic to obtain. A general solution to this problem seems to

require a perspective from Artificial Intelligence, but particular solutions

may be programmable if there were available semantics for detecting that one

object is an out-of-date version of another, or that a requested but

unavailable object has an out-of-date copy. It is not clear at what level

these associations should be made.

Semantics are also needed to express constraints or partial contraints of

time sequence. (e.g., "reservations are to be made in the order they are

requested, except that two reservation requests arriving at different nodes

within one minute may be processed out of order.") Note that the possibility

of unreliable nodes or communications severely complicates this problem.

The semantics of autonomy are not clear. When can I disconnect my node

from the network without disrupting my (or other) operations? How do I refuse

to report information that I have in my node in a way that is not disruptive?

If my node is overloaded, which requests coming from other nodes can be

deferred without causing deadlock?

Heterogeneous and Homogeneous Systems

A question that we have repeatedly encountered is whether or not one

should assume that the various autonomous nodes of a loosely coupled

14

confederacy of systems are identical either in hardware or in lower level

software support. The assumption of autonomy and observations of the way the

real world behaves both lead to a strong conclusion that one must be able to

interconnect heterogeneous (that is, different) systems. Yet, to be

systematic, some level of homogeneity is essential, and in addition the

clarity that homogeneity provides in allowing one to see a single research

problem at a time is very appealing.

We now believe that the proper approach to this issue lies in careful

definition of node boundaries. We insist that every node present to every

other node a common, homogeneous interface, whose definition we hope to

specify. That interface may be a native interface, directly implemented by

the node, or it may be simulated by interpretation, using the (presumably

different) native facilities of the node. This approach allows one to work on

the semantics of decentralized systems without the confusion of hetrogeneity,

yet it permits at least some non-conforming systems to participate in a

confederacy. There is, of course, no guarantee that an arbitrary previously

existing computer system will be able to simulate the required interface

easily or efficiently.

Conclusion

The various problems uncovered in the course of this work are by no means

independent of one another, although each seems to have a flavor of its own.

In addition, they probably do not span the complete range of issues that

should be explored in establishing an appropriate semantics for expressing

computations in a confederacy of loosely coupled, autonomous computer systems.

Further, some are recognizable as problems of semantics of centralized systems

15

that were never solved very well. But they do seem to represent a starting

point that we expect to lead to more carefully framed questions and eventually

some new conceptual insight.

Ill. A LOCAL NETWORK FOR LCS

During the year, development of the Local Network for the Laboratory for

Computer Science progressed to the point where the first three nodes on the

net are expected to be operational within the next two months. As discussed

in detail in the sections below, the critical decisions concerning the

hardware and protocols to be used on our network have been made during the

last twelve months, making it possible for a variety of projects related to

the network to proceed forward in parallel.

Hardware

As reported in the last annual report, our choices for the transmission

technology to be used in the network quickly narrowed to two architectures:

the ethernet developed by Boggs and Metcalfe at Xerox Palo Alto Research

Center, and the ring network developed by Farber at the University of

California, Irvine. The architecture and hardware of the ring network and the

ethernet are very different, and, at first glance, the functional capabilities

of the two seem quite different as well. However, discussions with Metcalfe

and Farber, and with others in our laboratory, led to the conclusion that

there are few inherent differences in the functional capabilities of the basic

ethernet and ring necwork communications schemes. This made the choice

between them a very difficult one. It appeared, in fact, that the important

differences between the two networks were operational differences such as

reliability, cost, and convenience, which could only be evaluated by comparing

a running version of each network in a similar environment.

16

A way out of this dilemma was suggested when we discovered that we could

design a network interface that, with minor modification, could operate either

a ringnet or an ethernet. Thus, without procuring two complete sets of

interface hardware, we can bring up both versions of the network and compare

them operationally. Given this observation, we determined that we would

construct the LCS Net in two subcomponents, one a ringnet and one an ethernet,

and perform an operational comparison of the two. We have done some

preliminary comparative analysis of the two.

The primary hardware component of our network is the Local Net Interface

(LNI), which provides the means of connecting the various hosts to the

network. The LNis that we intend to use for the network have been designed by

David Farber at the University of California, Irvine; they are a second

generation ring interface that Farber is developing under contract with ARPA,

based on the ring developed for the Irvine Distributed Computing System. We

have been assisting in the design of these interfaces, so that we will be able

to produce a version of this hardware that can drive an ethernet as well as a

ringnet.

The LNI, as delivered by Farber, includes an interface to the PDP/11

Unibus. One of the tasks yet to be completed is the fabrication of an

interface to connect the LNI to the PDP-lOs in the building. It is possible

tnat Farber will complete the design of a PDP-10 interface to the LNI; as an

interim interface it appears very easy to attach the LNI to the TIL bus that

is locally used for conenction to the PDP-lOs. Eventually, the LNI will

probably require a connection to the PDP-lOs that runs at a higher speed than

the TTL bus will permit.

17

A hardware project that was partially completed during the year is the

interconnection of a microprocessor to the LNI. A microprocessor directly

connectable to the network can be used in a variety of ways, for example as a

controller for a computer terminal or other remote input/output device. The

microprocessor selected for this first implementation was the Motorola M6~00.

The first applciation for the microprocessor will be as a terminal interface

for the local network.

One of the important functions of our local network will be to provide a

means of access to the ARPANET from the various machines at the laboratory.

The interconnection between the local net and the ARPANET will be made using a

PDP 11/35 that was provided for the project by ARPA. This machine will be

used to perform the various protocol translations that will be required as

part of the interconnection of the local network and the ARPA network. One

project being performed at the laboratory is the development of a hardware

interface to connect this PDP/11 to the ARPANET. The DEC interface is bulky,

expensive, and not rapidly obtainable. We hope our local version will perform

better on these counts.

Protocols

As part of the development of our local network, it was necessary for us

to develop or select a low level protocol for end-to-end communication over

the network. We chose as a starting point the Transmission Control Protocol,

or ICP, but we permitted ourselves the option of changing the protocol

slightly to better conform to our local needs as we saw them. The resulting

protocol is called Data Stream Protocol, or DSP. DSP provides functionality

equivalent to ICP, but is simpler, primarily due to the elimination of certain

control functions and synchronizing algorithms.

18

We are currently involved in an effort to bring DSP and TCP together

again, since TCP is the ARPANET standard for end-to-end communication in the

"internet" environment. We have attended several meetings of the TCP working

group, and have met with some success in. our attempt to include in TCP some of

the features in DSP.

DSP must be implemented on all the machines which we propose to connect

to the local network. Our initial effort has been devoted to an

implementation of DSP for the UNIX operating system on the PDP/11. One of the

first machines to be connected to our local network will be the UNIX system in

the Domain Specific Systems research group. In addition, the PDP/11 gateway

to the ARPANET will run the UNIX operating system. An implementation of DSP

(or perhaps TCP) is scheduled for the Multics system later in the calendar

year. Preliminary plans have been made for implementation of DSP on the ITS

machines, and we are considering how DSP might be implemented on the TENEX

operating system. As part of the microprocessor project mentioned above, we

have also implemented DSP for the M6800. The initial implementation on the

M6800 required 1300 bytes of program, and although this size will undoubtedly

increase as the implementation is polished, the size of the algorithm suggests

that we were somewhat successful in our ambition that DSP be a fairly simple

protocol.

Initially, the local net will use the same high level protocols that are

now used in the ARPANET. It appears that the ARPANET protocols for remote

login (TELNET), file transfer, and mail sending can be made to operate on top

of US~ without major modification. Therefore, for systems that currently have

software for conenction to the ARPANET, the only coding required as part of

the interconnection to the local net is the implementation of DSP, and minor

modification of existing higher level protocols. ARPANET software already

19

exists for all the machines currently scheduled for connection to the local

network.

We have begun the design of higher level protocols to provide new

services that seem appropriate in the local net. In particular, we have

proposed a rather flexible scheme for naming and initiating connections to

services in the local network. Examples of services that might be named using

this mechanism are the delivery of a message to a specified mailbox, the

updating of a file, or the remote login to a system. The mechanism uses

decentralized active agents to provide an environment that is robust in the

face of system failures. The names used are tree structured in order to deal

in the natural way with name conflicts and to allow the easy definition of new

services in a given context.

All of the network architectures that we have considered are completely

insecure, since all messages being sent appear on all portions of the network.

While our laboratory is a 11benign 11 environement in which the needs for

security of data communication are rather small, considerations of personal

privacy continue to be relevant in an environment such as ours, so our needs

for security, while minimal, are not zero. Also, we would like to design a

network whose applicability extends to situations with stronger protection

requirements than we have. For these reasons, we have studied the securing of

information flowing through our local network by means of data encryption.

Data encryption is becoming a viable possibility for a network even as simple

as the one we contemplate here, because data encryption algorithms can now be

obtained on a single chip. We have proposed a end-to-end encryption strategy

using the NBS data encryption standard integrated into a modified version of

DSP, which is essentially invisible to the higher level protocols. Its use in

the local network could be made automatic, invisible and inexpensive. We feel

20

that the integration of some security mechanism into our network will

considerably enhance the impact of our work in the outside world.

IV. ARPANET AND NSW SUPPORT

During the year, our group significantly reduced the level of effort

committed to maintaining the ARPANET connection to the Multics system.

Although Honeywell has not officially accepted support for the ARPANET

software, it has agreed that it will attempt to modify the ARPANET software

when necessary as a result of changes to other parts of the system.

Therefore, we are somewhat relieved of the continued effort which has been

required just to maintain the ARPANET in a stable condition. The only

modifications to the software that we are performing at this point are changes

required to support other research activities of our group.

We continue to improve the software implementing the higher level

protocols on Multics, especially the programs for sending and receiving

network mail. The Information Processing Center is currently providing

computer time on Multics in support of our project to produce an installable

program for reading and managing mail. We are also in the process of

transferring to IPC the cost of managing the system services related to

receiving and sending network mail.

A significant amount of effort has been invested in making Multics a

participating member of the National Software Works. At this point, Multics

is a legitimate tool-bearing host in the NSW. We are in the process of

transferring continued support of NSW on Multics to the Kome Air Development

Center.

21

PUllLIGATlUNS, TALKS, and THESES

Publications

Saltzer, J.H., "Technical Possibilities and Problems in Protecting Data
in Computer Systems," in R. Dierstein, H. Fielder, and A. Schulz,
Datenschutz und Datensicherung, J. P. Bachem Verlag, Cologne,
Germany, September, 1976, pp. 27-36.

Gifford, D., "Hardware Estimation of a Process's Primary Memory
Requirements," to be published in Comm. ACM in September, 1~j77.

Schroeder, M.D., Clark, D.D., and Saltzer, J.H., "The Multics Kernel
Design Project," to appear in the Sixth ACM Symposium on Operating
Systems Principles, November, 1977.

Reed, D.P., and Kanodia R.J., "Synchronization with Eventcounts and
Sequencers," to appear in the Sixth ACM Symposium on Operating
Systems Principles, November, 1977.

Svobodova, L., "Software Performance Monitors: Design Trade-Qffs,"
Seventh International Conf. of the Computer Measurement Group,
Atlanta, Georgia, November, 1977.

Kent, s., "Encryption-Based Protection for Interactive User-Computer
Communication," to be presented at the ACM Fifth Data Communications
Symposium, Snowbird, Utah, September, 1977.

Montgomery, W., "Measurements of Sharing in Multics," to appear in the
Sixth ACM Symposium on Operating Systems Principles, November, 1977.

Other Reports

Clark, D.D., editor, "Ancillary Reports: Kernel Design Project," June,
1977, Laboratory for Computer Science Technical Memo TM-87.

Schroeder, M.D., Clark, D.D., Saltzer, J.H., and Wells, D.M., "Final
Report of the Multics Kernel Design Project," June, 1977, submitted
to Honeywell Information Systems Inc.

Theses Completed

Wajda, J.P., "A Methodology to Study Computer Language Performance," B.S.
thesis, Department of Electrical Engineering and Computer Science,
M.I.T., August, 1976.

22

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesis, Department of Electrical Engineering and Computer
Science, M.I.T., September, 1976, also Laboratory for Computer
Science Technical Memo TR-167 •

.Benjamin, A., "Improving Information Storage Reliability Using a Data
Network," M.S. thesis, Department of Electrical Engineering and
Computer Science, M.I.T., October, 1976, also Laboratory fQr
Computer Science Technical Memo TM-78.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memroy
Subsystem," M.S. thesis, Department of Electrical Engineering and
Computer Science, M.I.T., December, 1976, also Laboratory for
Computer Science Technical Report TR-174.

Skalka, S.L., "Analysis of Simulation Models of a Multiprogrammed Demand
Paging System," .B.S. thesis, Department of Electrical Engineering
and Computer Science, M.I.T., December, 1976.

Frydman, U., "Minicomputer Systems in the Automated Factory," .B.S.
thesis, Department of Electrical Engineering and Computer Science,
M.I.T., January, 1977.

Goldberg, H.J., "A Robust Environment for Program Development," M.S.
thesis, Department of Electrical Engineering and Computer Science,
M.I.T., February, 1977, also Laboratory for Computer Science
Technical Report TR-175.

Karger, P., "Non-Discretionary Access Control for Decentralized Computing
Systems," M.S. thesis, Department of Electrical Engineering and
Computer Science, M.I.T., May, 1977, also Laboratory for Computer
Science Technical Report TR-179.

Luniewski, A., "A Simple and Flexible System Initialization Mechanism,"
M.S. thesis, Department of Electrical Engineering and Computer
Science, M.I.T., May, 1977, also Laboratory for Computer Science
Technical Report TR-180.

Mason, A., "A Layered Virtual Memory Manager," M.S. thesis, Department of
Electrical Engineering and Computer Science, M.I.T., May, 1977, also
Laboratory for Computer Science Technical Report TR-177.

Rodriguez, H., "Measuring User Characteristics on the Multics System,"
.B.S. thesis, Department of Electrical Engineering and Computer
Science, M.I.T., May, 1977.

Harriman, E.S., "A Microprocessor Based Implementation of a Data Stream
Protocol Processor," .B.S. Thesis, Department of Electrical
Engineering and Computer Science, M.I.T., June, 1977.

23

Theses in Progress

Krizan, B., "A Minicomputer Network Simulation System," M.S. thesis,
Department of Electrical Engineering and Computer Science, M.I.T.,
expected date of completion, July, 1977.

Ciccarelli, E., "Multiplexed Communication for Secure Operating Systems,"
M.S. thesis, Department of Electrical Engineering and Computer
Science, M.I.l., expected date of completion, August, 1977.

d'Oliveira, C., "A Conjecture About Computer Decentralization," B.S.
thesis, Department of Electrical Engineering and Computer Science,
M.I.T., expected date of completion, August, 1977.

Talks and Presentations

Saltzer, J.H.,
given at:

given at:

Svobodova, L.,
given at:

given at:

Clark, D.D.,
given at:

Wells, D.,
given at:

Reed, D.'
given at:

Forsdick, H.,
given at:

"Pragmatic Approaches to Obtaining Correct Operating Systems"
IBM Research Laboratory, Zurich, Switzerland, September, 1976
Cambridge Univeristy, England, September, 1976
Rutgers University, New Jersey, November, 1976
lndustrieanlagen-Betriebsgesellschaft mbH, Munich, Germany,
January, 1977
Central Computer Agency, London, England, January, 1977

"Decentralized Systems with Largely Autonomous Nodes"
University of Waterloo, Toronto, Canada, June, 1977

"Distribution and Coherence in Computer Systems"
McGill Univeristy, Montreal, Canada, June, 1977

"Computer Performance Measurement: Methods and Tools"
Digital Equipment Corporation, Maynard, Mass., May, 1977

"A High-Speed Local Computer Network"
IEEE Boston Chapter Communications Group, May, 1977

"The Multics Implementation of the National Software Works"
RADC, Griffiss Air Force Base, New York, June, 1977

"Service Addressing Protocols for Local Networks"
Bolt Beranek and Newman, Cambridge, Mass., March, 1977

"The Design of a Distributed Data Base Management System"
Sperry Research Center, Sudbury, Mass., November, 1976

24

..

.. '

Kent, S. T.,
given at:

"End-to-End Communication Security Measures"
System Development Corporation, Santa Monica, Calif., July,
1976
Information Sciences Institute, Univ. of Southern California,
July, 1976
Xerox Palo Alto Research Center, California, August, 1976
National Bureau of Standards workshop, Gaithersburg, Maryland,
Sept., 1976
Federal Telecommunications Standards Committee, Gaithersburg,
Maryland, February, 1977
Sperry Univac, Roseville, Minnesota, March, 1977
GTE Sylvania, Neeham, Mass., May, 1977

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subystem"

given at: Stanford Research Insitute, Menlo Park, Calif., December, 1976
Honeywell Systems and Research Center, Roseville, Minnesota,
January, 19 77 •

Pogran, K., "The Evolution of the Multics System"
given at: University of California, Irvine, California, January, 1977

Committee Memberships

Saltzer, J.H., ARPA IPTO Security Working Group

Wells, D., ARPA IPTO NSW working group

Reed, b., ARPA IPTO TCP Working Group

Clark, D.D. ARPA IPTU TCP Working Group

25

PERSONNEL, July, 1976 -- June, 1977

Professional Staff

Nancy c. Federman
Rajendra K. Kanodia
Robert F. t1abee
Kenneth T. Pogran
Douglas M. Wells

Support Staff

Virginia M. Newcomb
Muriel Webber

Undergraduate Students

Charles R. Davis
Cecilia R. d'Uliveira
Edward s. Harriman
Roy P. Planalp
Humberto Rodriguez, Jr.
Steven A. Swernofsky

Faculty and Research Associates

David D. Clark
Fernando J. Corbat6
David D. Redell
Jerome H. Saltzer (Division Head)
Michael D. Schroeder
Liba Svobodova

26

Graduate Students

Arthur J. Benjamin
Eugene C. Ciccarelli
Harry C. Forsdick
Robert M. Frankston
Harold J. Goldberg
Andrew R. Huber
Douglas H. Hunt
Philippe A. Janson
Paul A. Karger
Stephen T. Kent
Allen W. Luniewski
Andrew H. Mason
Warren A. Montgomery
David P. Reed
Karen R. Sollins

. ...

