
M.I.T. LABORATORY FOR COMPUTER SCIENCE

Computer Systems Research Division

THE MULTICS KERNEL DESIGN PROJECT

by

Michael D. Schroeder*
David D. Clark
Jerome H. Saltzer

Massachusetts Institute of Technology
Laboratory for Computer Science

Draft of March 31, 1977

Please address correspondence to:

J. H. Saltzer

March 31, 1977

Request for Comments No. 140

Massachusetts Institute of Technology
Room NE43-505
545 Technology Square
Cambridge, Mass. 02139

Telephone (617) 253-6016

This is a draft of a paper prepared for submission to the Sixth ACM Symposium
on Operating Systems Principles, to be held at Purdue University, W.
Lafayette, Indiana, November 16-18, 1977.

This research was performed in the Computer Systems Research Division of the
M.I.T. Laboratory for Computer Science. It was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA order No. 2641, which
was monitored by ISTAO under contract No. F19628-74-C-0193.

* Present affiliation of M. D. Schroeder: Xerox Palo Alto Research Center,
Palo Alto, California.

This note is an informal working paper of the
Science, Computer Systems Research Division.
without the author's permission and it should
publications.

M.I.T. Laboratory for Computer
It should not be reproduced
not be cited in other

saltzer
Text Box
© ACM, 1977. This is the authors' version of the work. It is posted by permission of ACM. The definitive version was published in ACM SIGOPS Operating Systems Review 11, 5 (November 1977)
http://doi.acm.org/10.1145/1067625.806546

Abstract

We describe a plan to create an auditable version of Multics. The

engineering experiments of that plan are now complete. Type extension as a

design discipline has been demonstrated feasible, even for the internal

workings of an operating system, where many subtle intermodule dependencies

were discovered and controlled. Insight was gained on several tradeoffs

between kernel complexity and user semantics. The performance and size

effects of this work are encouraging. We conclude that verifiable operating

system kernels may someday be feasible.

CR Categories: 2.12, 4.31, 4.32, 4.35, 6.21

Keywords and Phrases: Protection, Security, Security Kernel, Multics, Type
Extension, Operating Systems, Supervisors, Verifiable
Systems.

THE MULTICS KERNEL DESIGN PROJECT

Introduction

2

DRAFT
March 30, 1977

In 1974, a project was begun to apply the emerging ideas of security

kernel technology, information flow control, and verification of correctness

to a full function operating system, Multics. There were several aspects to

this project; this paper discusses in depth the results of one aspect that was

recently completed: some re-engineering experiments performed on the Multics

supervisor to discover ways of simplifying it. To see how this part fits into

the overall project, we first provide a project overview.

The plan for ~ secure Multics

The version of Multics available in 1974 contained a wide variety of

sophisticated security features, and it had been designed from the beginning

(in 1965) with the integrity of those features as a goal. However, there were

two problems from a security point of view. First, the set of programs that

constituted the central supervisor and that could in principle compromise

security contained some 54,000 lines of source code and had been touched by

perhaps a hundred or more programmers during the development of the system.

To do an integrity audit, one would have to examine and understand thoroughly

every line of code in each of these programs. Although the programs in

question were largely written in a higher-level language (PL/I) and were quite

modular by function, auditing was still an overwhelming task. Second, the

security mechanisms provided (access control lists with individual users,

projects, rings of protection, passwords, etc.,) while useful, were somewhat

3

ad hoc, and did not fit into any simple underlying model. This lack of a

simple model of security meant that even if an auditor were to undertake the

previously mentioned overwhelming task of understanding every line of code,

that auditor would lack a systematic specification of what to look for.

Yet, before one could entrust sensitive information to protection by an

operating system, some kind of integrity audit seems essential. Therefore, a

project was undertaken to make integrity auditing feasible, and to demonstrate

that security is achievable in a large scale, full function operating system.

As one might expect from the two problems mentioned, there were two key

aspects to the project: 1) to simplify the supervisor so as to make it

feasible for an integrity auditor to understand, and 2) to provide a set of

security functions that can be described by a simple, understandable formal

model. The overall plan was actually broken into several smaller components

in order to allow an orderly experimentation and to take maximum advantage of

already existing organizations. Figure 1 illustrates this plan.

The formal model used, because of its simplicity and apparent

applicability to real world problems of the Air Force sponsor, is the MITRE

model of sensitivity levels and compartments, which requires strict control of

information flow among the levels and compartments [Bell and LaPadula, 1973].

The first step in this project (the box numbered 2 in figure 1) was to take

the standard Multics system, and systematically add to it the particular set

of security controls required by the MITRE model, which involved labelling all

information with sensitivity level and compartment names, and adding security

checks at all points where information could cross level or compartment

boundaries. These changes resulted in a set of security features known as the

Access Isolation Mechanism (AIM) and a version of Multics known as Multics

)

MITRE
security

Install for
practical ex­
perience with
AIM functions

~

class and -----­
compartment
model

Add Access Iso- Multics
with
AIM

lation Mechanism 1 •
(AIM) to Multics

Multics

Kernel concept

Simplifying
ideas ---11• .. •

(!)

Experiment with
alternative in­
ternal structures

®

))

Specifications Devise formal
specifications I •
for Multics
supervisor

for Kernel/Multics

@

Certify
compliance
with
specifications

®

Implemented
Kernel/Multics

Certified
Kernel/
Multics

Figure 1 -- Plan for developing a certifiable security kernel for Multics

.p.

5

with AIM. Multics with AIM then became the base system for all future

developments.

At this point, the work branched out in several directions. Multics with

AIM was installed (box 2 of the figure) on a machine in the Air Force Data

Services Center, and it was later made part of the standard product released

~o other Multics sites, so as to begin developing operational experience with

the features of AIM. A series of prototype implementations were undertaken to

discover ways of accomplishing the same functions with simpler and more

systematic operating system structures with the discipline of the security

kernel concept in mind (box 3 of the figure). And two groups of analysts

began to develop successively more detailed examples of formal specifications

of a kernel-based Multics with AIM, assuming the changes in structure proposed

for experimental implementation turned out to be feasible (box 4 of the

figure).

This description brings us to the stage of the Multics kernel design

project today. The plan from here forward involves two major steps to be

undertaken in parallel: first, the formal specifications of box 4 must be

completed and they must be verified as matching the requirements of the MITRE

security model. The second parallel step (box 5) is a reimplementation of the

central supervisor of Multics, with two differences with the present

implementation: those prototype simplifications that were successful will be

incorporated, and the form of the implementation will be as "verifiable" as

the state of the art will allow. This latter goal is to be aided by using

type extension as a systematic programming discipline, and by using EUCLID

[Lampson et al., 1976] as a programming language.

6

The result of these two efforts will be on the one hand, a new,

easier-to-review implementation of Multics with AIM, to be known as

Kernel/Multics, and on the other, a set of formal specifications traceable to

the MITRE security model. The final step, box 6 of the figure, is

unfortunately not as simple as its label suggests. A multipronged approach is

proposed:

1) Program verification should be used Wherever feasible. Although the

state of the art of both automatic and manually assisted program

verification technology for the foreseeable future is simply not yet

capable of dealing with specifications and programs of the size and

number involved in Kernel/Multics, formal verification may be applicable

to some components.

2) Two or more small, expert teams of programmers can be assigned to be

auditors of the code. With programs and specifications in hand, their

job will be to try to understand the function of every program statement

in Kernel/Multics, and to report anything that is not understandable or

potentially in error.

3) The system can be placed in operational use. If the redesign has been

successful, not only will security failures be prevented, but many other

operating system reliability failures should not occur. Operational

failures can be traced to see if they originate in the security kernel.

4) A tiger team can be assigned the task of breaking into the system.

Any one of these four approaches by itself cannot be expected to

establish a credible verification of the integrity of Kernel/Multics, but the

7

hope is that the combination of all four in parallel can provide a much higher

level of confidence in integrity than has ever before been achieved in a

full-function general-purpose operating system. A second hope is that the

tecnniques that are developed be applicable not just to Multics, but to other

general-purpose operating system designs, and also to specialized systems that

are dedicated to file storage and management.*

Engineering studies for the Multics Kernel

As suggested, one of the key parts of this project was a series of

prototype implementations of simplifying ideas for the kernel. An earlier

paper [Schroeder, 1975] described the plans and justifications for these

experiments, and reported results of some early restructuring that removed,

wholesale, certain functions from the kernel. Without attempting to repeat

that paper, the general strategy involved identifying all reasonable-sounding ~

proposals for simplifying the Multics kernel, and then selecting for trial

implementation those that could not be accepted as obviously straightforward

or rejected as obviously inappropriate. Three kinds of redesign proposals

emerged: 1) removing from the kernel those formerly protected supervisor

functions that did not really require that protection; 2) taking advantage,

whenever possible, of the natural protection afforded by independent processes

communicating at arms length to implement protected functions, and 3) using

more systematic program structuring techniques for implementing the remaining

* Several organizations have participated in this project. The overall plan
was organized by the Air Force Electronics Systems Division. The AIM was
implemented by Honeywell Information Systems Inc., with technical supervision
from the MITRE Corporation. The M.I.T. Laboratory for Computer Science
performed experiments with alternative structures. MITRE Corporation, and
later SRI, devised successively more precise formal specifications for the
Multics kernel. In October, 1976, with boxes 1, 2, and 3 of figure 1
completed, the Air Force suspended work on the project.

8

kernel function, so that the result might be easier to verify.

Probably the most interesting result of this work is the invention of a

file system and processor multiplexing organization that is based on the

discipline of type-extension, and that eliminates many complicating cycles of

dependency in the kernel. This work required developing more carefully than

usual analysis of the dependencies among supervisor modules, since the

machinery of the type-extension implementation is itself part of the kernel.

The following sections of this paper describe briefly this type-extension

system organization, several other structural results, and the estimated and

observed effects of all these ideas on the size of the kernel and the

performance of the overall operating system.

~ extension as a rationale for coping with complexity

The initial projects of removing mechanisms from the Multics supervisor

helped us understand what mechanisms needed to be present in a security

kernel, but they did not help us understand how these pieces should be

organized. To simplify the security kernel, it was important to develop an

organizational rationale for modularizing the required functions and fitting

them into an understandable overall structure. The rationale adopted is an

application of the notion of type extension, and involves making all modules

be object managers, categorizing all the ways one module can depend on

another, and organizing the modules in a loop-free dependency structure. This

rationale was developed by Janson and is reported in detail in his Ph.D.

thasis [Janson, 1976]. l~re we describe briefly this organizational technique

nnd in the next section discuss its application to the Multics kernel.

9

Making each module be an object manager is a way of providing an

understandable semantics for modules. The interface to a module defines all

operations on the object type managed by that module, and thus defines the

object type. Object types are chosen to have intuitive significance. For

example, disk records, core blocks, core segments, page frames, active

segments, and known segments are some of the object types used in the Multics

kernel design. An object manager and the modules it depends on are solely

responsible for maintaining the integrity of the managed objects. Client

modules can manipulate the objects only through the interface provided by the

object manager. Knowledge of the way an object type is represented is

confined to the manager module. A representation is a set of lower level

component objects and the algorithms relating the operations of the object

type to those of its components.

When trying to develop an understanding of the way a collection of object

manager modules works, the important consideration is the way the modules

depend upon one another. One module depends upon another if establishing the

correct operation of the first requires assuming the correct operation of the

second. Requiring a loop-free dependency structure, i.e., requiring that the

structure generated by the "depends on" relation between modules be a lattice,

allows system correctness to be established iteratively, one module at a time.

Inside an operating system careful analysis is required to identify all

intermodule dependencies. The opportunity exists for an operating system

module to produce dependency loops by participating in the implementation of

its own execution environment. Such opportunities are less of a problem for

application programs, which typically depend on the operating system to

provide their execution environments. To develop the complete dependency

10

structure of a collection of object manager modules in an operating system,

five kinds of dependencies need to be considered for each module. For a

module M the possible kinds of dependencies on other modules are:

a. Component Dependencies

Module M depends on the modules that manage the objects that are the

components of the objects defined by M. For example, the manager of file

system directory objects in the Multics kernel has a component dependency

on the manager of segment objects, for each directory representation is

stored in a segment.

b. Map Dependencies

Module M must maintain a mapping between the names of the objects it

manages and the names of the components of each. Thus, M depends on the

managers that provide the objects in Which the map is stored.

c. Program Dependencies

The algorithms of M and their temporary storage are contained in objects,

whose ~anagers M thus depends on.

d. Address Space Dependencies

The address space in which M executes is an object, on whose manager M

thus depends.

e. Interpreter Dependencies

In order to execute, M requires an interpreter, i.e., a virtual

processor. Thus, M depends on the module that implements its interpeter.

11

This partition of dependencies into five categories is complete and

fairly intuitive for systems designed according to the rationale of type

extension. When applied to an existing design that was modularized and

structured by different principles (or no principles at all!) one can

encounter explicit dependencies due to procedure calls or due to interprocess

messages from Which replies are expected and implicit dependencies, due to

direct sharing of writable data among modules, that do not fit naturally into

this classification. The proper classification of such dependencies is of no

concern, however, since the goal is their elimination and evolution to a

design in which all dependencies fit naturally into this scheme.

Using the rationale just described, and with the five kinds of

dependencies in mind, it was possible to design a loop-free structure of

object managers that implement the complete functionality required in the

Multics kernel. Our experience in doing so is described in the next section.

Get the loops out

The file system, memory management, and processor management portions of

the supervisor of Multics (Which together constitute the bulk of the

supervisor) appear to be organized in the six large modules illustrated in

Figure 2. The obvious exception to a linear structure is the circular

dependency of the processor multiplexing facilities and the virtual memory

mechanism. (Page control depends upon process control to give the processor

to another process when the current process encounters a missing page

exception. Process control in turn depends upon segment control to provide

segments in Which to store the states of inactive processes. Thus, for

example, a missing page exception for process A causes page control to invoke

12

disk
volume
control

file-system
directory control

address space
control

segment
control

page
control

process
control

Figure 2 -- Superficial Dependency Structure
in Multics.

13

process control, which in turn invokes segment control to load the state of ~

process B into primary memory using page control.) This dependency loop is

common to many virtual memory time-sharing systems and is caused by the

virtual memory mechanism being part of its own interpreter. In addition to

this obvious dependency loop there are numerous examples of modules depending

upon higher modules to contain their programs and maps, and represent their

address spaces. For example, page control code is stored in segments and the

address space in which page control executes is provided by address space

control. Closer inspection reveals other loops in the dependency

structure--all related to handling exceptional conditions or controlling

resource usage. Simplified descriptions of several problems typical of these

more subtle loops follow:

a. Missing Pages

Because Multics has multiple real processors, two processes

simultaneously may cause page control to attempt to alter the state of

the same page. A global lock prevents such conflicts. Unfortunately,

the hardware imposes a short time window between a missing page exception

and the setting of the lock by page control and some other process may

alter the address translation tables between the exception and capturing

the lock. Page control interpretively retranslates the virtual address

that caused the exception once the lock is captured, to see if the

absolute address of the page descriptor that resulted from the hardware

translation causing the exception is still correct. This interpretive

retranslation requires page control to know the format of and depend upon

the correctness of the address translation tables maintained by segment

control and address space control.

14

b. Quota Enforcement

Arbitrary directories in the hierarchy of file system directories can be

designated dynamically as quota directories. Associated with a quota

directory is a limit on the total number of pages that may be occupied by

segments that are in the subtree below the quota directory but not also

below an inferior quota directory. Also associated with a quota

directory is a count of the total number of pages currently occupied by

segments in the controlled region. Whenever a segment is to be grown, it

is necessary to find the limit and count of the nearest superior quota

directory, check that the count does not use all the limit, and if quota

remains increment the count. The need to grow a segment is noticed in

page control as a missing page exception on a never-before-used page of a

segment. Before adding the page to the segment, page control must locate

and manipulate the limit and count associated with the nearest superior

quota directory, as described above. Thus, page control must identify

the page with a segment and the segment with its position in the

directory hierarchy. Page control does so by direct reference to the

segment control data base, the active segment table, that associates each

active segment with the descriptors for its component pages. The limit

and count of a quota directory are kept in the entry of the segment

representing that directory whenever that segment is active. Segment

control is careful never to deactivate a segment that is a directory if

inferior segments in the file system hierarchy are active. Further,

segment control links each active segment table entry to the (always

present) entry of its immediately superior directory. Thus, page control

can locate the appropriate limit and count by following the li~ks until

15

the entry of a quota directory is found. This implementation of quotas

and storage usage records makes page control depend on segment control,

and constrains segment control's management of the active segment table

to follow the shape of the directory hierarchy defined by directory

control.

c. Full Disk Packs

A file system directory entry in Multics names the corresponding segment

by the identifier of the containing disk pack and an index into that

pack's table of contents. For robustness and demountability, all pages

of a segment are kept on the same pack. Thus, growing a segment

occasionally causes a full pack exception, which results in the entire

segment being moved to an emptier pack and the directory entry being

updated to indicate the new location. The need to grow a segment is

noticed by page control when processing a missing page exception for a

never-before-used page of a segment. If a full disk pack exception is

detected, page control invokes segment control, which directs the

relocation effort. To accomplish relocation, segment control reads a

data base maintained by address space control to find the corresponding

directory entry, which segment control then directly updates.

Once the dependencies generated by these and similar causes are taken

into account, the simple, almost linear structure of the system illustrated in

Figure 2 becomes the much less simple structure illustrated in Figure 3.

The restructuring of the file system, memory management, and process

management portions of the Multics supervisor that eliminates all dependency

loops and provides an understandable object-based semantics for each module

16

disk
volume
control

file-system
directory control

address space
control

segment
control

page
control

process
control

Figure 3 -- Actual Dependency Structure
in Multics

17

was worked out by Janson and Reed and is described in detail in their theses

(Janson, 1976; Reed, 1976]. Here we indicate in general how the new design

eliminates the structural problems outlined above, and make some comments on

the causes and solutions of such problems in general. Figure 4, taken from

Janson's thesis, shows the modules of their design and indicates the

dependency relationships among the modules.

The loop between the processor multiplexing facilities and the virtual

memory mechanism is broken by dividing process control into two parts, the

user process manager and the virtual processor manager illustrated in Figure

4. The bottom part implements a fixed number of virtual processors whose

states are always in primary memory. Thus, this part does not need to use the

virtual memory. The top part implements an arbitrary number of user processes

and depends upon the virtual memory to store their states. A subset of the

virtual processors are multiplexed among the user processes as needed. The

remaining virtual processors are permanently bound to the interpretation of

various kernel modules, including the virtual memory modules and the user

process scheduler. Use of a two-level process implementation in a Multics

kernel is worked out in sufficient detail that we are confident this design

provides a practical, well-structured method for providing an arbitrary number

of processes in a system with virtual memory. The two-level design also

provides a general way to eliminate all loops created by interpreter

dependencies, for the bottom level provides an interpreter that depends on

only the primary memory and the hardware processors.

Loops due to map, program and address space dependencies are relatively

easy to break once their existence is recognized. The key to breaking these

loops in the new design is the explicit recognition of core segments as

)

I
I

...........

"-........_........._--map
.....................

.................. _

18

.........

------map

)

....................

'maz
.........

are active segments
and programs are core segments

'-....
map

' I map

"' \

interpreter dependencies: every module, except the Core Segment Manager, depends on the Virtual Procesaor Manager
address space dependenciel: every module, except the Core Segment Manager, depends on the Core Segment Manager

)

19

objects. The core segment manager of Figure 4 is implemented by system

initialization code and by the processor hardware. The core segments are

allocated When the system is initialized and thereafter the only available

operations on them are the processor read and write operations. A core

segment can be used by any system module to contain maps or programs and their

temporary storage without fear of creating a dependency loop. Use must be

tempered, however, by the facts that the number of core segments is fixed, the

size of a core segment cannot change, and core segments are permanently

resident in primary memory. To eliminate address space dependency loops a

second address translation table base register is added to the processor. One

base register locates the address translation table, stored in a virtual

memory segment, that defines the address space in which user programs execute,

while the other locates a translation table, stored in a core segment, that

defines a per processor address space for system modules.* In use, all segment

descriptors in the latter translation table will be for permanently active

segments, i.e., segments Whose page descriptors are always in primary memory,

or core segments. All segment numbers below a certain value are translated

relative to the system module address space. Thus, system modules using these

segment numbers cannot be dependent on the machinery that supports the users'

virtual address spaces.

Correction of the dependency loop surrounding missing page exceptions

requires an addition to the processor architecture. Recall that to eliminate

potential conflicts over the offending page descriptor, page control must

reinterpret the virtual address that caused the exception after a global lock

* An implementation without extra hardware is also feasible, though a bit
clumsy and not so modular, by sharing the first page of all address
translation tables.

20

~ is set. A simple processor addition that corrects this problem is a mechanism

that sets a lock bit in the offending page descriptor whenever a descriptor is

encountered that indicates a missing page. Once the lock is set control is

transfered to the page frame manager of Figure 4. A processor encountering a

locked page descriptor will generate a locked page descriptor exception that

results in the page frame manager calling the wait primitive of the virtual

processor manager. Once the original missing page exception is serviced, the

page frame manager unlocks the descriptor and notifies all processes that have

been waiting for this event, causing them to start execution again at the

point just previous to encountering the locked page descriptor exception. In

addition to the descriptor lock mechanism, a wakeup waiting switch and a

register to record the absolute address of the locked page descriptor can be

added to each processor to aid in preventing a notification from being lost if

it occurs between a locked page descriptor exception and invocation of the

wait primitive.

The solution to the dependency loops associated with quotas and full disk

packs illustrate two alternative mechanisms for reporting exceptional

conditions without creating dependencies. A problem common to both situations

is that software in some module discovers after some processing that a

condition exists that needs to be handled at a higher level in the dependency

structure. As described earlier, the condition results either in the module

directly referencing the data bases at the higher level, or in the module

calling the higher level module. The two mechanisms that can break these

dependency loops are hardware that directly detects the exceptional condition

and invokes the higher level module in the first place, or software that

transfers control and arguments to a higher level module without leaving

21

behind any procedure activation records or other unfinished business in

expectation of a subsequent return of control. Both solutions are illustrated

below.

In the case of quota enforcement and recording disk usage, recall that

the need to grow a segment, and thus to check the associated quota, is noticed

in page control as a missing page exception on a never-before-used page. The

new design has the hardware distinguish such events and generate quota

exceptions instead. The exception is distinguished by an extra

exception-causing bit in page descriptors that is set by software when the

descriptor corresponds to an unallocated page in a segment. The quota

exception invokes the known segment manager of Figure 4, reporting the segment

number and page number from the address whose translation caused the problem.

The known segment manager translates the segment number into a segment unique

identifier and invokes the segment manager to find the appropriate quota

directory, check the limit, and then call the page frame manager to add the

page to the segment. In addition to the hardware quota exception, the new

design makes quota cells be explicit objects with their own manager, as

indicated in Figure 4. A quota cell is stored in the disk pack table of

contents entry for the associated directory and is cached in primary memory in

a table managed by the quota cell manager. The segment manager presents the

quota cell information to the quota cell manager whenever a directory is

activated and calls upon the quota cell manager to perform all operations on

quota cells. A slight change is made in the semantics of quota. The change

limits the dynamic designation of a directory as a quota directory and the

inverse operation to occur only if a directory has no children. Because of

this change, the relationship between each segment and its controlling quota

22

directory becomes static, and a dynamic upward search of the hierarchy to

locate the appropriate quota directory is no longer required each time a

segment is grown. Whenever the known segment manager asks the segment manager

to activate a segment, it provides the identity of the appropriate superior

quota directory and the segment manager simply associates the static name of

this directory's quota cell with the segment's identifier and presents this

name to the quota cell manager whenever quota must be checked. As a result,

the deactivation of segments by the active segment manager no longer is

constrained by the shape of the directory hierarchy.

The loop associated with full disk packs is broken by the use of the

software mechanism for upward signalling. A full disk pack occasionally is

encountered when processing a quota exception. If quota exceptions, which are

detected by the hardware as described above, all were signalled directly to

the directory manager, then a relatively simple mechanism for dealing with

full disk packs would result. The directory manager would initiate a chain of

calls down through the dependency structure that allowed the known segment,

segment, and page frame managers to play their parts in checking quota,

recording usage, and allocating a page. Further, if the page frame manager at

the end of this call chain noticed a full disk pack when attempting to add the

page to the segment, then this exception could be returned back up the call

chain, allowing the segment manager to disconnect all address spaces from the

segment and direct its movement to another pack, and allowing the resulting

new pack identifier and table of contents index to be returned to the

directory manager for inclusion in the corresponding directory entry.

Unfortunately, it is too inefficient to pass all quota exceptions to the

directory manager just to handle easily the full disk pack exceptions that

23

very occasionally accompany them.

Another solution that would generate a simple software structure is for

the hardware to separate quota exceptions that will involve full disk packs

from those that will not, signalling the former to the directory manager and

the latter to the known segment manager. But it is unreasonable to expect the

hardware to make the separation in this complex case.

Thus, we must make do with all quota exceptions being signalled to the

known segment manager, which initiates c chain of calls down through the de

pendency structure to handle them. A full disk pack exception is detected at

the bottom by the page frame manager, which exception is returned back up the

call chain as described earlier. Control finally returns to the known segment

manager with both the quota and the unsuspected full disk pack exceptions

taken care of, and with the pack identifier and table of contents index that

locate the moved segment. The problem now is for the known segment manager to

cause the directory manager to update the corresponding directory entry with

the new disk location for the segment. This problem is solved by using the

new signalling mechanism to transfer control and arguments to the directory

manager without leaving behind any procedure activation records. Thus,

modules below the directory manager in the dependency structure do not depend

on it finishing the job of updating the directory entry. When the directory

manager completes updating the appropriate directory entry, it restores the

user process to the state it had just before the original quota exception (a

description of this state is also passed to the directory manager with the

software signal), and the process then rereferences the segment. At this

point all processes rereferencing the segment will be reconnected via the

standard machinery for handling missing segment exceptions.

24

This completes the discussion of the structural problem found in Multics

and the methods used to deal with them. In several cases the mechanisms

described are somewhat simplified from those actually proposed for use in the

kernel of a secure Multics. The extra complexity of the mechanisms actually

proposed is the result of a desire to use an unmodified hardware base for the

real system, or of an attempt to achieve better performance with more complex

(but still well structured) mechanisms that short circuit several layers of

name mapping. The primary purpose of this discussion has been to communicate

the flavor of the problems encountered in a real system design, and illustrate

the types of solutions found to these real problems. Extensive analysis of

the kernel design will be found in the theses by Janson and Reed. Some

related ideas concerning the use of object property lists to break dependency

loops will be found in the thesis by Hunt [Hunt, 1976] •

We summarize our experience in applying the type extension rationale to

structuring the Multics kernel with the following observations. Most systems

appear to have a loop-free dependency structure if viewed from far enough

away. The obvious component relationships and the common operations follow

loop-free paths among the modules. On close inspection, however, map,

program, address space, and interpreter dependencies will almost certainly

generate loops in a system designed without loop avoidance as a primary

objective. The map, program and address space loops usually are broken easily

(at least during the design stage) by introducing new object types to store

the maps, programs, and address space definitions. The interpreter dependency

loops appear to be eliminated in most systems by using a two level

implementation of processes. The most difficult and subtle structural

problems are caused by exception handling--especially when the exceptions are

25

part of the mechanisms that control resource usage. The difficulty is partly

intrinsic--such exceptions tend to occur at low levels in the system but be

related to high level objects--and partly methodological--resource usage

controls and the paths followed to deal with exceptions tend to be added to a

design last. A general method for removing loops related to exception

handling and resource control is harder to see, but in many cases removal

involves improvement of hardware exception reporting mechanisms or addition of

software mechanisms for signalling upward in the dependency structure without

generating new dependencies.

From simple semantics do complex implementations grow

Much of the complexity of a system implementation can arise from only a

few of the features being implemented. When one realizes that a particular

feature causes complexity, it is time to review the importance of the feature

and to see if a slight variation in its semantics might lead to a simpler

implementation. In the course of reviewing the mechanisms of Multics to see

how they affected a kernel implementation, several examples of this phenomenon

were noted, and a fair amount of insight into the implications of certain

user-visible features was thereby acquired. One example, the dynamic

designation of directories as repositories for disk storage quota, which leads

to great complexity in managing active segments, has already been discussed.

In this case, a slight change of semantics seemed worthwhile.

A second example of complexity arising from apparently simple semantics

has to do with whether or not the number and identity of processes implemented

by the system should be fixed or dynamically variable. Brinch Hansen has

argued fairly convincingly that considerable simplification of implementation

26

follows a decision to implement a fixed number of processes [Brinch Hansen,

1975]. On the other hand, when one tries to open the dependency loop between

process implementation and virtual memory implementation as mentioned before,

every process state would have to be resident in the fastest, most expensive

memory medium. If the number of processes is fixed at the maximum that would

ever be needed, valuable primary memory space would be unused at other times.

This combination of pressures led to the design for a two-level

implementation of processor multiplexing. Since in this design the number of

first-level virtual processors is fixed, all the simplifying advantages

suggested by Brinch Hansen occur. This strategy of a two-level process

implementation has been proposed elsewhere [Bredt and Saxena, 1975; Neumann et

al., 1975] but these other proposals have omitted a key complicating factor:

events discovered by low-level virtual processors must be signalled to user

level processes, and communicating such signals requires access to the state

of the user-level receiving process, which state by design is not guaranteed

to be in the real memory accessible to the low-level virtual processor. As

part of the Multics kernel design, Reed developed a method for this upward

communication that makes the two-level process implementation feasible. The

design involves placing a special, real memory message queue between the

lower-level and higher-level processor multiplexers [Reed, 1976]. It also

involves using a new synchronizing protocol, based on eventcounts, that

controls information flow between processes and does not require that the

discoverer of an event have knowledge of the identity of the processes

awaiting that event [Reed and Kanodia, 1977].

For another example of complicating semantics, a combination of access

control and naming semantics in Multics conspires to force some remarkable

27

maneuvering inside the supervisor. The directories of the Multics storage

system are arranged in a naming hierarchy, and every file and directory has

its own access control list, which specifies who may use the file or

directory. Directories have access control lists on the basis that the names

of files (and other directories) often contain information, so access to those

names should be controlled, too. Finally, to make the semantics of access

control as simple as possible, the rule is made that access to a file is

determined entirely by the access control list for that file. This rule means

that if one user wishes to grant another user access to a file, the first user

places the other user's name on the access control list of the file, and the

transaction is complete, without need to revise or check access control lists

of directories higher in the naming hierarchy.

Now, suppose a user presents the storage system with the tree name of

some file deep in the hierarchy, and the tree name traverses one or more

directories to which the user does not have access. The simplifying rule

requires that the file system follow the name through those inaccessible

directories in order to get to the access control list of the file. If access

to the file is indeed permitted, that user will, by virtue of not getting an

error message, confirm the existence and names of the intervening directory

structure. On the other hand, if access to the file is not permitted, the

file system must be very careful in its response so as not to confirm the file

name, or the names of the intervening directories.

The non-kernel version of Multics handled this set of constraints by

burying the entire directory search operation inside the supervisor, and

reporting one of two responses: "file found", or "no access". (This last

response offers no clue as to whether or not the file and the directories

28

~ corresponding to the presented name exist.) In attempting to reduce the size

of the machinery that must be in the Multics kernel, it was apparent that the

general operation of following path names did not need to be a protected

mechanism. If the supervisor kernel provides a primitive to search a single,

designated directory for a presented name, and it returns the identifier of

any matching entry, the program that knows about how to expand tree names need

not be in the supervisor. Except, of course, that the particular protection

semantics in use require that the kernel not return the identifier of a

matching entry unless either the directory is accessible to the user or the

file ultimately to be addressed is accessible. The first case is easy, but

the second one produces a problem.

An elegant, if unsatisfying, gimmick was invented by Bratt [Bratt, 1975]

to finesse the problem. The directory searching primitive, if asked to search

an inaccessible directory, always returns a matching identifier for the

presented name, whether or not the name exists. It will even return an

identifier if asked to search a non-existent directory. This returned

identifier, if then presented as a directory identifier to the directory

searching primitive, is always accepted. In the case that the path of

directories eventually leads to a file to which the user has access, each of

the intervening directory identifiers is real, as is the ultimately returned

file identifier. If, however, the user does not have access to the object at

the other end, his attempt to use this ultimate identifier will result in a

"no access" response from the file system, and he will be unable to decide

whether or not the identifier (and all those of inaccessible traversed

directories) is real or mythical.

29

From a broader perspective, this interaction between protection and

naming sematics seems to leave three choices: a bizarre interface, as just

described, or implementing the entire function in the kernel (the earlier

design) , or varying the user-visible semantics of protection or naming. But

the particular semantics in use were already the result of several years of

experiments with different kinds of semantics, and the particular rules

described have turned out to minimize errors and simplify user comprehension

[Saltzer, CACM, 1974]. Getting all these considerations adjusted just right

is an open problem. It seems likely that a more explicit separation of

user-level semantics for naming and from those of protection, such as found in

UNIX [Ritchie, 1974] would help.

An interesting final case study of tradeoff between implementation

complexity and user interface semantics arises in the Multics treatment of

secondary (disk) memory storage charges. The user interface calls for a

charge for just the storage required to implement a file. Since page-sized

blocks of zeros happen to be implemented by flags in the file map rather than

by allocating and storing whole pages full of zeros, a file of size of say,

100,000 words (100 pages) but non-zero in only the first and last words will

accumulate a charge for only two storage pages. Users have taken advantage of

this feature to simplify many file-manipulating programs. They create from

the beginning a file of the maximum size that might ever be needed, but for

much of its life the file contains little data, so it costs little to store.

This policy has three effects on the complexity of the kernel of the

operating system. First, any time the user writes data into a file, the

number of pages required to implement the file may change, and thus the

appropriate quota directory may need to be updated. Care is required to

30

implement this update without creating a dependency loop. Second, the page

removal algorithm finds that part of its specification includes searching the

contents of pages about to be removed, to see if all words are now zeros.

Thus this algorithm must be given (otherwise unnecessary) access to the data

in every page of every file stored by the system. Finally, since files are

read by mapping them into blocks of core memory, if a user tries to read from

a page containing all zeros, a zero containing page must be allocated, at

least temporarily, and the accounting measures must be updated. Thus a read

implicitly causes information to be written, perhaps on the other side of a

protection boundary, in violation of the confinement goal [Lampson, 1973].

Naming-related storage quotas, variable numbers of processes,

naming-related access control, and accounting for physical representation

costs are typical examples of conflicts between desired semantics and

implementation complexity that were encountered in the Multics kernel

simplification effort. It is interesting to conjecture whether or not these

conflicts would also arise in a computer system dedicated to just file storage

and management. In such a system, one might successfully fix the number of

processes (although we doubt it), but the other conflicts certainly remain.

Impact ~ engineering studies on the size ~ the Multics kernel

There are a variety of measures that can be used to assess the size of

the Multics kernel. One can count the number of lines of source code, but

this count is confused by the fact that while most of the code is written in

PL/I, some is in assembly language. This distinction could be eliminated by

counting the number of machine instructions in the kernel, but this number

seems some~1at irrelevant, since no auditing procedure is likely to involve an

31

examination of the machine instruction themselves. The most useful and

consistent measure of the kernel size seems to be the number of source lines

that would exist had the system been coded uniformly in PL/I, and this is the

measure we will use.

The largest component of the kernel is those programs that are within the

innermost protection boundary of the supervisor, known locally as ring zero

programs. At the beginning of this project there were the equivalent of

36,000 lines of PL/I within ring zero. As some measure of the modularity of

this code, there existed approximately 1,200 distinct entry points in the

supervisor, of which 157 were callable by the user. In addition to the ring

zero programs, there are a number of other programs that ought to be included

as part of the Multics kernel: there were programs in other supervisor rings,

and there were also programs that ran in trusted processes. One study was

made of the largest of of these non-ring zero programs: the Answering Service,

the programs that regulate attempts to log in to the system, including

authenticating passwords, and manage system accounting. These programs were

the equivalent of 10,000 lines of PL/I code. It is clear that the non-ring

zero programs contribute significant bulk to the kernel of the system.

It is interesting to observe the effects which have occurred in the

standard system between the time of that first census, in September of 1973,

and the present time. During that time, the size of both ring zero and the

next outer ring, both of which need to be considered part of the kernel, have

almost doubled in size. There are a variety of effects that have contributed

to this growth, primarily more sophisticated detection of coping with errors,

and also some new functions.

32

As mentioned above, some of the kernel, approximately 10%, is coded in

assembly language rather than PL/I. Because of this, the number of source

lines in ring zero is actually not 36,000 but 44,000. Thus, there would be a

substantial size benefit in recoding all assembly language procedures in PL/I.

It must be noted that such a recoding has both a benefit and a cost:

experiments suggest that while the number of source lines typically shrinks by

slightly more than a factor of two, the number of generated machine

instructions seems to increase by somewhat more than a factor of two, thus

having some negative effect on the performance of the system [Huber, 1976].

The size impact of our studies is easiest to assess for four projects

that were carried through to a trial implementation. Three of these had as

their goal the outright removal from the kernel of the system of a certain

body of code whose function we consider to be noncritical. Clearly, the

impact of these modifications on the kernel size is the most dramatic and

demonstrable. The extraction of the dynamic linker from the kernel [Janson,

1974] had the effect of removing 5% of the object code. More interestingly,

it only removed 2 1/2% of the entry points inside the kernel, implying that

most of the modules were fairly large; but it eliminated 11% of the entry

points from the user domain into the kernel. In other words, removing this

code from ring zero had a very strong effect in reducing the complexity of the

interface that the user sees to the kernel. This should not be surprising,

since we claim that the code did not belong in the kernel at all, and was in

fact performing a user function. The project to remove some of the name

management mechanism from the kernel [Bratt, 1975] did not have quite such a

dramatic effect: it reduced the size of the kernel only by 2 1/2%. The

latter project was dramatic chiefly in the reduction by a factor of four in

33

the total size of the code that implemented the algorithm once the algorithm

was removed from the kernel. This was a case in which the complexity of the

algorithm itself was due largely to the fact that it was inadvertently placed

inside the kernel. Another project that had dramatic impact on the size of

the kernel was an investigation of the Answering Service [Montgomery, 1976],

the programs mentioned above that manage logins and accounting. Of the 10,000

lines of source code, it was shown that fewer than 1,000 of them need be

included in the kernel.

The fourth study actually implemented, the redesign of the memory

management algorithm [Huber, 1976], did not have as its goal the extraction of

code from the kernel, but rather the restructuring of code in the kernel using

parallel process, for the sake of clarity. The main size impact of this

project came from recoding certain assembly language modules in PL/1, which

had the impact reported above.

In terms of reducing the actual bulk of the kernel code, the most

dramatic impact may come from a project that is only now being completed, and

whose impact can therefore only be estimated. This project has to do with

removal from the kernel of much of the code having to do with connection of

the system to multiplexed networks [Ciccarelli, 1977]. Two multiplexed

communication streams are attached to the Multics system: the ARPANET, and

the local front end processor with all its attached terminals. At the start

of the project, approximately 7,000 lines of PL/I were dedicated to handling

these multiplexed lines, about 20% of ring zero. If a third network were to

be connected to Multics, the original strategy would require that yet a third

handler be added to this system. In other words, the bulk of the network

control code would grow linearly with the number of networks attached. We are

34

now completing a project whose goal is to demonstrate that almost all of the

network control software can be removed from the kernel into the user domain,

and that much of the software that remains in the kernel to perform the actual

demultiplexing of this stream can be, to a significant extent, constructed in

a fashion independent of the particular network. Thus, the bulk of the kernel

is much reduced, and only grows slightly as new networks are attached. While

the results in this area are not yet demonstrable by a complete

implementation, we estimate that this 7,000 lines of code in the kernel may

shrink to less than 1,000, a reduction of 17% of the supervisor.

Another project whose size impact can only be estimated is the redesign

of the system initialization mechanism, which proposed that certain parts of

initialization be done in a user process environment in a previous system

incarnation. We estimate that the removal of this code will shrink the kernel

by 2,000 lines of PL/1.

It is useful to assess the combined effect of all the changes discussed

above. The table below summarizes the various results.

Kernel Size, Start of Project

44K ring 0

10K Answering Service

54K TOTAL

Reductions

Linker 2K

Name Manager 1K

Answering Service 9K

Network I/O 6K

Initialization 2K

Exclusive use of PL/I BK

TOTAL 28K

35

As this accounting indicates, the combined effect of our various projects

could be to cut the size of the kernel roughly in half. At the start of the

project, we had hoped that our impact on the bulk of the kernel could be

somewhat greater than it was. Our optimism was, to a significant extent,

based on the hope that projects such as the redesign of the memory manager

would yield a simpler and thus smaller algorithm. In fact, the result was

somewhat more subtle than this; the algorithm did get simpler, but not by

outright elimination of pieces of code. Rather, the effect was elimination of

paths between pieces of code. Operations originally in the kernel continue to

be needed, but are executed under circumstances more constrained and better

understood. Thus, the effect on absolute size is less than hoped, but the

effect on complexity, although more difficult to gauge, is considerable.

Another area of interest is what might be the impact of specializing a

Multics to be just a network-connected file storage system, with no

general-purpose user programming permitted. Interestingly, many of the

functions that one might expect to see deleted have already been removed from

the kernel. Our best estimate is that such specialization might reduce the

kernel size by at most another 15 to 25%.

Impact ~ redesign ~ performance

The effect of these projects on the performance of the system must be

assessed. Our goal was not to achieve a performance improvement, but a

significant performance degradation would be a cause for concern. In fact,

the conclusion reached by most of the studies is that the performance of the

system was not significantly affected by the proposed changes. While the

dynamic linker ran somewhat slower when removed from the kernel, the causes

36

were well understood and curable. The name space manager ran somewhat faster.

The revised Answering Service, in its preliminary implementation, ran about 3%

slower.

The more interesting performance questions arise in connection with

modules which, rather than being moved wholesale, were redesigned for clarity

while remaining in the kernel. The two most interesting examples of this sort

of modification are the new memory management and process management software.

The process management software is interesting because the new design included

a two-level process scheduler, a structure which in the past has not yielded

good system performance although no one to our knowledge has been willing to

claim such a failure in print. Unfortunately, the trial implementation that

we are doing to explore this scheduler performance is not yet done. We have

implemented and studied the bottom layer of the scheduler, and are confident

that the combination of the layers will have a performance about the same as

the current system. However, this claim is only speculative.

The performance of the memory management software was studied in detail.

The new design was somewhat slower, for two important reasons. First, parts

were recoded in PL/I from assembly language, which seemed to cost a factor of

two in the speed of the code. Second, the new version of the memory manager

used two dedicated processes to perform part of its function, while the

original design ran all functions whenever a user took a page fault. This use

of processes required memory management software to call the process

management software, which added a small but unavoidable cost. On the other

hand, the use of processes allowed part of the function to run at a low

priority, when the processor might otherwise have been idle. This lower

priority represents a performance improvement of uncertain magnitude. All

37

together, the performance impact of the new design would be negative, but not

significant unless the system were cramped for memory and thrashing.

Conclusion

The primary conclusion of this project is that the kernel of a

general-purpose operating system (or of a specialized file-management system)

can be made significantly simpler by imposing first a clear criterion as to

what should be in it, and second a design discipline based on type extension.

This simplification does not appear to lead to gross diseconomies, although

minor performance problems do appear.

On the other hand, compared with kernel designs that have been proposed

for less ambitious functions [Lipner, 1974] the kernel of a general-purpose

system seems still to be a large program--30,000 lines of source code in this

case study. And it is not apparent that specialization of the system to be

just a file storage and management facility would make a very big reduction in

this number--maybe 20%.

It is also apparent that minor adjustments of the underlying hardware

architecture can make a significant difference in operating system complexity,

and similarly that minor variations in the semantics of the user interface can

make major differences in the complexity of implementation of the kernel.

Another lesson for designers is that one cannot hope to develop a modular

design without consideration of the complete set of desired functions. If one

leaves out, for example, resource control or reliability strategies for later

addition, the chances are great that this addition will disrupt the module

boundaries or introduce undesired dependencies.

38

With these several conclusions in mind, and the objective of a

certifiable design as the goal, a designer of a new system should be able to

create a design whose implementation can actually be reviewed for integrity,

and used with confidence.

Publications~ the Kernel Design Project

A. External Publications

Saltzer, J.H., "Protection and the Control of Information Sharing in Multics,"
Comm. ACM Q, 7 (July, 1974), pp. 388-402.

Saltzer, J.H., "Ongoing Research and Development on Information Protection,"
ACM Operating Systems Review~. 3 (July, 1974), pp. 8-24.

Schroeder, M.D., "Engineering a Security Kernel for Multics," Proceedings of
5th Symposium on Operating Systems Principles, ACM Operating Systems
Review i• 5 (November, 1975), pp. 25-32.

Janson, P .A., "Dynamic Linking and Environment Initialization in a
Multi-Domain Process," Proceedings of 5th Symposium on Operating Systems
Principles, ACM Operating Systems Review i• 5 (November, 1975), pp.
43-50.

B. External Publications in Preparation

Gifford, D., "Hardware Estimation of a Process' Primary Memory Requirements,
Version II," submitted to CACM.

Schroeder, M.D., Clark, D.D., and Saltzer, J.H., "The Multics Kernel Design
Project," submitted to Sixth ACM Symposium on Operating Systems
Principles.

Reed, D.P., and Kanodia, R.J., "Synchronization with Eventcounts and
Sequencers," submitted to Sixth ACM Symposium on Operating Systems
Principles.

Kanodia, R.J., and Reed, D.P., "Synchronization in Distributed Systems," in
preparation.

Janson, P .A., "Using Type-Extension to Organize Virtual-Memory Mechanisms," in
preparation.

C. Theses and Technical Reports

Janson, P .A., "Removing the Dynamic Linker from the Security Kernel of a
Computing Utility," S.M. thesis, Massachusetts Institute of Technology,

39

Department of Electrical Engineering and Computer Science, June, 1974,
also Project MAC Technical Report TR-132.

Bratt, R., "Minimizing the Naming Facilities Requiring Protection in a
Computer Utility," S.M. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, July, 1975,
also Project MAC Technical Report TR-156.

Gifford, D., "Hardware Estimation of a Process' Primary Memory Requirements,"
S.B. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976, also Laboratory
for Computer Science Technical Memorandum TM-81.

Huber, A., "A Multi-process Design of a Paging System," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May, 1976, also Laboratory for Computer
Science Technical Report TR-171.

Montgomery, W., "A Secure and Flexible Model of Process Initiation for a
Computer Utility," S.M. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, June, 1976,
also Laboratory for Computer Science Technical Report TR-163.

Reed, D., "Process Multiplexing in a Layered Operating System," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, June, 1976, also Laboratory for
Computer Science Technical Report TR-164.

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, August, 1976, also
Laboratory for Computer Science Technical Report TR-167.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," E.E. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, December,
1976, also Laboratory for Computer Science Technical Report TR-174.

Goldberg, H., "Protecting User Environments," S.M. thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and
Computer Science, January, 1977, also Laboratory for Computer Science
Technical Report TR-175.

D. Theses and Technical Reports in Preparation

Luniewski, A., "A Certifiable System Initialization Mechanism," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, thesis completed January, 1977,
Laboratory for Computer Science Technical Report in preparation.

Mason, D., "A Layered Virtual Memory Manager," S.M. thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and

40

Computer Science, expected date of completion, April, 1977.

Ciccarelli, E., "Multiplexed Communication for Secure Operating Systems," S.M.
thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, expected date of completion, June,
1977.

Feiertag, R., "A Methodology for Designing Certifiably Secure Computer
Systems," Ph.D. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, expected date of
completion, June, 1977.

E. Annual Reports

M.I.T. Project MAC Annual Report XI, 1973-74, pp. 155-183.

M.I.T. Project MAC Annual Report XII, 1974-75, (in preparation)

M.I.T. Laboratory for Computer Science Annual Report, 1975-76, (in
preparation)

M.I.T. Laboratory for Computer Science Annual Report, 1976-77, (in
preparation)

References

Bell, D., and LaPadula, L., "Secure Computer Systems," Air Force Elec. Syst.
Div. Report ESD-TR-73-278, Vols. I, II, and III, November, 1973.

Bredt, T., and Saxena, A., "A Structured Specification of a Hierarchical
Operating System," ACM Proc. Int. Conf. £!!. Reliable Software .!.Q_, 6 (June,
1975), pp. 310-318.

Brinch Hansen, P., "The Programming Language Concurrent Pascal," IEEE Trans.
£!!_Software Engineering SE-1, 2 (June, 1975), pp. 199-207.

Lampson, B., "A Note on the Confinement Problem," Comm. ACM 1..2., 10 (October,
1973), pp. 613-615.

Lampson, B.W., et al., "Report on the. Programming Language EUCLID," Defense
Advanced Research Projects Agency Information Processing Techniques
Office Report, August, 1976.

Lipner, S., Chm., "A Panel Session--Security Kernels," AFIPS Con£. Proc. 43,
NCC 1974, PP• 973-980.

Neumann, P., et al., "A Provably Secure Operating System," Final Report on SRI
Project 2581, Stanford Research Institute, 1975.

Ritchie, D.M., and Thompson, K., "The UNIX time-sharing system," CACM !1.• 7
(July, 1974), pp. 365-375.

