
M. I.T. \~-~;=~~~-~:~---~~=puter Sciegce r"'· July 12, 1976

Request for Comments No. 118 Computer Systems Research Division
"-··-·-"-"•

~.,>ANNUAL REP~RT: Ju1.-y;-· 1975--June, .. 1976 ..

by J. H. Saltzer1 M. D. Schroeder, D. D. Redell, D. P. Reed, K. T. Pogran
and D. D. C.Lark

The Computer Systems Research Division of the M.I.T. Laboratory for

Computer Science completed several key parts of its information sharing kernel

design project, and initiated exploration of the potential of distributed

computing systems during the 197 5-76 year. Several other, network-related

activities were also accomplished. These activities are described separately,

in the three following sections.

I. THE INFORMATION SHARING KERNEL DESIGN PROJECT

About three years ago, we entered into a subcontract with Honeywell

Information Systems Inc. to perform engineering studies on strategies for

simplifying the design of the resource- and information-sharing kernel of a

full-scale computer system, with the goal of making the sec,Jrity aspects of a

system simple enough that certification of correctness might be possible.

Multics is the laboratory in Which these experiments have been performed.

This year, significant progress occurred on several key a~pects of this work:

Development of the use of type-extension as a strategy for

systematic design of the kernel itself.

Organization of processor multiplexing in two layers, with

memory multiplexing sandwiched between, to untangle these

two complex mechanisms.

Organization of memory multiplexing in identified parallel

processes rather than in a central structure.

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission, and it should not be referenced ln other

.,..--. publications.

2

Organization of process initiation as an unprivileged

operation controlled by domain entry mechanisms.

Development of a new model of process synchronization,

called the "eventcount" model, that leads to simpler

coordination algorithms and minimizes unnecessary

communication, a feature important to security.

The cumulative impact of these projects on the structure of a system

kernel, together with a variety of other ideas currently being explored,

appears to be significant in that the kernel becomes modular, ordered, and

thereby incrementally verifiable.

The activities reported this year on this project are of a different

nature than those reported in previous years. Earlier reports concentrated on

reducing the size of the security kernel by removing unnecessary functions,

while this year's work has concentrated on better understanding of how the

remaining, essential functions might be more systematically organized. Two

key ideas have led us to this understanding. First, the use of abstract types

as a methodology for choosing and specifying the interfaces inside the kernel

(as pioneered in HYDRA, CLU, and SIMULA) gives a useful and clear

decomposition of the kernel. Second, the use of processes within the kernel

to multiplex the resources used in implementing objects of abstract type gives

a much simpler control structure inside the kernel.

Our basic approach to simplifying the structure of the kernel is to

decompose its design and implementation into modules. By structuring the

decomposition into modules correctly, we hope to obtain a system in which

understanding or verifying the system as a Whole requires little more effort

than understanding or verifying every module separately. The problem with

obtaining such a well-structured decomposition of the system is to find a way

to decompose the system into modules that are internally simple and have

simple interactions with the other modules of the system.

Simplifying the interactions among modules is aided by two techniques.

First, the method by which interacting modules communicate can be simplified.

3

Philippe Janson, in his Ph.D. thesis, has categorized modularizations into

two classes: strict modularization, in which modules interact with another

module only by invoking procedures in the other module, and weak

modularization, in which modules may communicate via shared data bases. By

designing a system in terms o~ strict modules, it is much simpler to define

the effect of a particular intermodule interaction. The second technique for

simplifying interaction is to define a partial ordering of modules based on

functional dependency. Module A depends on module B if B must correctly meet

its functional specification in order for A to meet its functional

specification. If all dependencies are uni-directional, and form a partial

ordering, then it can be quite simple to verify the correct operation of all

modules. One starts with modules that are assumed to be correct (for example,

the hardware) and proceeds to verify all modules by induction on the

partially-ordered structure.

Abstract Types~~ Structuring !2£1

A structuring methodology that leads to both a strict modularization and

a modularization that is partially ordered in functional dependency is the

type-extension mechanism for creating abstract types. An aQstract type is a

collection of abstract objects and operations on the abstract objects. The

specification of the properties of and interface to the objects of the type is

independent of the actual storage representation of the vbjects or

implementation of the operations in terms of the storage representation. The

only way to manipulate objects of the type is to call on the operations of the

type. Thus a modularization based on abstract types is strict. Types may be

implemented in terms of objects of other types. This results in a

uni-directional functional dependency.

Both Janson and David Reed have investigated the use of abstract types in

the design of the kernel of an operating system such as Multics. In an

operating system, the implementation of abstract types and the process of type

extension cause difficulties not present in abstract type concepts as

implemented in programming languages such as CLU. The major difficulty arises

from scarcity <Jf memory and processing resources to implement objects and

4

operations, requiring multiplexing of those resources. Using the abstract

type concept to structure the multiplexing functions has led to some new

insights into the structure of operating systems and the mechanism of type

extension. In contrast, the HYDRA system, which supports abstract types

outside the kernel, does not use abstract types in the multiplexing of memory

and processors to provide virtual memory or virtual processors.

Janson has defined a new model of abstract types to be used in the design

of the kernel of the system where multiplexing of objects is the key problem.

The primary difference between this model and older ones is that he explicitly

recognizes the limitations on the supply of low-level resources, such as

primary memory and processor resources. He also recognizes the multiplexing

function, by explicitly including in his model a time-varying mapping between

objects of abstract type and the objects used in their representation.

An important part of describing a modularization is to determine all

functional dependencies between modules. Janson has extensively categorized

these dependencies for a modularization based on abstract types. The five

categories he has described are:

1. Component dependencies - dependency of an abstract type on

the types used to provide storage for parts of the

objects.

2. Program dependencies - dependency of an abstract type on

the types used to provide storage for programs that

implement its operations.

3. Map dependencies - dependency of a type on the types used

to provide storage for its maps.

-4. Environment dependencies - dependency of a type on the

types that are used to structure the address space or

naming environment of the programs that implement the

type.

5

5. Interpreter dependencies - dependency of a type on the

types used to control the allocation of processor

resources to the programs that implement the type.

The envirorunent and interpreter dependencies are partic:.~larly difficult

to deal with in structuring a system. A mechanism for simplifying these

dependencies has been proposed by Reed. It consists of implementing the

kernel type managers on dedicated virtual processors that rely on a simple

(perhaps hardware-implemented) fixed addressing environment, rather than as

operations in a privileged domain of each user process. The envirorunent of

the type manager need not depend on the domain mechanism, and the processing

of type manager operations does not depend on the resource central mechanisms

that regulate the virtual processors that run user processes.

A particular pattern of type-extension that recurs frequently in

construction of a kernel has been described by Janson. It is the cache

management pattern, which consists of building a new type of object out of two

~- representation types, the cache type and the encached type. The functionality

of the new type is quite similar to the functionality of the cache type. The

encached type merely provides a large amount of storage. This pattern arises

because there are not enough objects of cache type. A new type is created

using the encached type to store the status of objects of the new type

whenever they are not stored in cache type objects. Janson finds numerous

examples of this pattern in the virtual memory design; for example, a virtual

memory page type is created out of a primary memory page type and a secondary

memory page type. Reed has also found this pattern in structuring the

implementation of virtual processors.

Disentangling Processor and Memory Multiplexing

An important result of our work on structuring the kernel is actually

disentangling the interdependency between processor and memory multiplexing

algorithms. This interdependency results from the need to provide a large

amount of memory for tables used in implementing virtual ~rocessors for user

6

computations performed by the operating system and the simultaneous nL'ed to

provide and control the processing power used to interpret the virtual memory

algorithms.

The technique used by Reed to break up this interdependency is to divide

processor multiplexing into two levels. The first level of processor

multiplexing provides a small set of virtual processors, called level 1

processors, that have sufficient functionality to implement the virtual memory

algorithms. These virtual processors access primary memory in exactly the

same way that physical processors do, through address translation hardware.

Any attempt to access an object not in primary memory is reflected as a fault,

just as in the real processor. The virtual memory software is implemented in

terms of these level 1 processors. Andrew Huber has proposed a design for

virtual memory implementation that uses multiple dedicated virtual processors

to perform its functions. The second level of processor multiplexing

multiplexes a subset of the level 1 virtual processors to provide a large set

of level 2 virtual processors, used to run user processes. The data bases of

the level 2 proce~sor multiplexing algorithms are implemented in terms of

virtual memory objects. The processor resources for the level 2 manager

algorithms are provided by three dedicated level 1 processors.

Using Processes _as ~ Structuring Tool

As a result of this two level design, level 1 virtual processors can be

dedicated to handle management of many multiplexed operating system resources.

Level 1 processors are relatively cheap compared to real physical processors,

so dedicating them gives some of the effect of dedicating a physical

processor, without the cost.

Structuring the kernel as a set of processes running on dedicated level 1

processors is another powerful tool for structuring the kernel. The opposite

approach, used in operating systems like Multics, TENEX, and OS/360, is to

implement kernel operations as subroutines called by users of those

ope~, _ions. Let us call the first approach the multi-process supervisor

approach, and the second the distributed supervisor approach.

7

The multi-process supervisor approach simplifies the handling of types

built of multiplexed resources by centralizing the operations that manage

those resources in one or more dedicated processes. In such a design, a type

manager process is isolated from the processes that request operations on the

resources. Consequently, interference with the implementation of the type by

processes using the type is precluded.

One advantage of implementing a type manager ~s a process is that it need

not share a data base with other instances of itself acting in parallel. Only

the type manager process need have access to the data structures used in

managing the objects it implements. The sequentiality imposed by interlocking

in the distributed supervisor is achieved by using the sequentiality inherent

in the queue of the type manager process. The sequence of actions that may be

performed on objects is explicitly represented in the programs of the type

manager process, rather than implicitly in the locking protocols.

Another advantage of implementing a type manager as a process on a

dedicated processor is isolation of its enviromnent and control point from

accidental (or intentional) interference. As noted above, the environment of

a type manager executing on its own dedicated processor need not be managed by

the same manager that performs the complex operations needed to manage user

process environments. This simplifies the dependency structure by eliminating

environment dependencies. Similarly, the multiplexing of processor resources

that provides resources to type managers need not include the complexity of

the resource controls used to limit user process resource usage. On the other

side, the implementation of user process environments and scheduling

algorithms for user processes need not take into account the special

requirements of user processes when executing kernel algorithms (such as

protecting the process from destruction while in the kernel or protecting the

kernel type manager environment from tampering). Taking these requirements

into account would in any case probably result in a cyclic dependency.

The allocation of kernel type managers to dedicated level 1 processors

also aids the principle of least privilege. Each .type manager need have only

the privileges necessary to access its own data bases. This principle can be

8

enforced by restricting the environment (by controlling the set of descriptors

in the descriptor segment) of the type manager processes. In a distributed

supervisor, on the other hand, the kernel operations have access to more

objects than they need. For example, in the present Multics, every kernel

operation has access to all objects in the environment of the user process

that invokes it. An operation that maps a page into primary memory has the

capability to simultaneously copy data from one user object to another. In a

distributed supervisor, for this reason, each supervisor operation must be

inspected to see that it does not do additional operations extraneous to its

function. The multi-process structure provides a natural mechanism for mutual

protection.

Finally, the multi-process structure helps simplify the structure of the

system by avoiding the need to specify unnecessary ordering constraints. An

example of this can be found in the design of a multi-process page control by

Huber. The page removal algorithm is only indirectly coupled to the algorithm

that handles page faults. Each page fault requires using up a page frame in

primary memory, but waiting until a page fault occurs to write pages out of

primary memory would result in unnecessary delay. To avoid this delay, the

pages that are to be written should be located and the write started by a

predictive algorithm, which is very hard to fit into a page manager that is

invoked only on each fault. A much better structure would be to implement the

page removal algorithm as a process that controls the rate of removal of pages

in a way that is only loosely coupled to the fault sequence. The page removal

algorithm can then easily be designed to run at the optimal times, rather than

being constrained to execute only at page fault time. This use of processes

also exemplifies the principle of least privilege, because the faulting

process need never touch a page other than the one it requires (and presumably

has access to). In a distributed supervisor, where removal is done at fault

time, the fault handler doing the removal must touch pages that the user

process should not have access to.

L~<•th' ~ the Kernel Design Project

The work of Janson, Huber, and Reed has led to a fairly cohesive and

implementable kernel design. Janson and Reed have worked out a structuring of

the Multics kernel into modules that each manage one abstract type. The use

9

of processes to structure the kernel has been investigated by Huber and Reed.

The status 0f the use of these ideas in the design of a Multics kernel

varies. Huber implemented and tested his use of processes in page control in

a special version of Multics. Reed has proposed a detailed design for the two

levels of processor m~ltiplexing. A test implementation of part of this

design is in progress. Janson has proposed a very detailed structure for the

virtual memory management portion of the Multics kernel.

Related Activities

In addition to the closely interrelated activities just mentioned,

several other activities in the kernel design project either were completed or

made significant progress during the year:

1) An internal report was completed by Rajendra Kanodia and Reed describing

the use and implementation of the "eventcount" process coordination model.

Basically, eventcounts are semaphore-like coordination variables that are

constrained to take on monotonically increasing values. Coordination of

parallel activities is achieved by having a process wait for an eventcount to

attain a given value; one process .signals another by incrementing the value of

an eventcount. Any coordination problem for which a solution has been

developed using semaphores can be easily converted to a solution using

eventcounts. In addition many eventcount solutions seem to have the property

that most eventcounts are written into by only one process; this reduction in

write contenti.on has beneficial effects on security problems and on

coordination of processes separated by a transmission delay, as in a

"distributed" c001puter system. Eventcounts provide a solution to the

"confined readers" problem, a version of the reader' s-writer' s coordination

problem in which readers of the information are supposed to be confined in

such a way that they cannot communicate information to the writers. Finally,

for the class of synchronization problems encountered inside an operating

system kernel, eventcounts appear to lead to simple, easy-to-verify solutions.

2) A thesis and trial implementation completed by Warren Montgomery

establish that it is practical to remove many of the traditional constraints

10

on process creation without creating problems for security or resource

administration. The concern here is that when a process is created, say in

response to a user's dial-up and request for service, the designation of the

principal identifier for the new process must be done correctly, or else all

access control will be worthless. For this reason, process-creating programs

of the "network logger", the "answering service" and the "absentee user

manager" have been considered sensitive, privileged programs. Montgomery's

approach is to allow any process to request creation of other processes

without restraint on principal identifiers proposed; control is provided by

associating with every principal identifier a designated starting procedure

for the new process. This starting procedure checks to see if proper

identification has been submitted by the requestor of the creation. By

decentralizing this check, making it the responsibility of the concerned

party, a strategy parallel to that of entering a protected subsystem (at a

designated starting point) has been created. The result is to remove from the

security kernel several large programs previously thought to require

certification.

3) The use of end-to-end cryptographic protection for network connection to

a secure host was explored in depth by Stephen Kent in an independently

supported, but closely related, project. Kent examined the impact of

end-to-end encryption on network protocols, and developed strategies for

character-at-a-time full duplex interaction, key distribution, and

resynchronization following high-priority messages or line disruption. He

also examined the question of proper placement, within an operating system, of

a cryptographic protection module. He concluded by developing a practical

design, based on the National Bureau of Standards Data Encryption Standard,

and testing that design in a Multics/ARPANET implementation.

4) Another related activity, supported by Honeywell and Ford Motor Company,

was the trial, by David Gifford, of a simple method of estimating the primary

memory requirement of an executing program, for control of multiprogramming.

G1tl"'-, J' s method is to observe the rate of "misses" of the processor's

associative memory for page table words, and assume that a high miss rate is

an indication that a large program is being executed. Gifford found that

11

basing multiprogramming control on this measurement provided a level of system

effectiveness equal to that achieved by careful hand tuning, and that the

incredibly complex memory size estimator currently in the Multics security

kernel is unnecessary.

With the completion of the activities described above, the majority of

work planned for the kernel design project is finished. We expect that the

coming year will see the completion of the remaining research tasks for this

project, and a final report; activity will continue, however, to provide

support and technology tranfer to the larger Air Force/Honeywell project of

which this work has been a part.

II. INVESTIGATION OF THE POTENTIAL FOR DISTRIBUTED COMPUTING

During the past six months, the CSR Division has been investigating the

area of "distributed computing" as one possible vehicle for future reseach.

From a series of planning meetings, and a spring term graduate seminar,

several observations about distributed computing have emerged:

that the essence of a distributed design is the loose

coupling of many essentially autonomous hardware and

software modules. Geographic separation is one (but not

the only) context in which such a design is useful.

that distributed designs have the potential for

reliability, smooth growth, and optimal exploitation of

LSI technology, but that the realization of this potential

is a subtle problem.

The term "distributed computing" is perhaps a bit misleading, since it

suggests that physical separation of the computing elements is the essence of

the problem. It would appear that the actual heart of the matter is a subtle

but very important shift of viewpoint to what might be called a

"communication-centered" approach to system design. For a variety of reasons,

this view has become more fruitful than either the "processor-centered" or

"memory-centered" views which have previously seemed appropriate.

12

Originally, when processors were complex and expensive, they naturally

assumed a central position in system architecture (as suggested by the term

"central processing unit"). Modern LSI technology, however, has not only

reduced the cost of processors dramatically, but has also introduced a peak in

the cost-effectiveness curve which, at least for the near future, suggests

that the optimum processor size is considerably smaller than the total

processing required in most typical computer systems. This suggests a

multiprocessor approach, which tends to focus attention on a large shared

memory, and the proLlem of connecting several processors to it.

As memories have become bigger and processors cheaper, the

"memory-centered" approach has naturally arisen. From this viewpoint one can

regard the function of the system's processor(s) as being that of keeping the

memory as busy as possible. Since a modular memory can process several

accesses in parallel, the goal becomes that of keeping all the modules active

simultaneously. One obvious way to do this would be to directly attach a

processor to each mod11le, dedicated to keeping it busy. It has never been

clear, however, how to use such a partitioned system in a general-purpose way;

hence most systems have emphasized full interconnection between processors and

memory through the use of mechanisms such as the crossbar switch.

Unfortunately, these mechanisms appear to have a universal property of

non-linear scaling: as the total amounts of processing power and memory

capacity are increased, the cost of full interconnection grows as the product

of the two, while the total raw power of the system, in some rough sense,

grows only as the sum.

Thus, it appears that intercommunication of processors and memory is

indeed a central issue in system architecture today. Ihis

communications-centered view emphasizes the need for interconnection

techniques which provide:

high speed: no performance bottleneck should be introduced

parallelism: no interference among concurrent activities

should be introduced.

13

linear scaling: the cost should be proportional to the number

of units (processors/memories) being connected.

full interconnection: each processor should be able to access

any data it requires, at some appropriate cost.

Unfortunately, it does not appear possible to design a single mechanism

that provides all of these features. This suggests the use of two or more

mechanisms; it would appear that two are sufficient:

high speed memory access by each processor to its own

tightly coupled memory module, similar to the

"partitioned" approach above.

linear-cost full interconnection among these units using

techniques from digital network design.

It is important to note that interconnection techniques that grow at

linear cost and provide full interconnection always seem to rely on total or

partial serialization of accesses that could otherwise proceed in parallel.

This tends to limit performance, especially as the system grows. As a result,

the success of the proposed hybrid communication scheme seems to depend

heavily on the extent to which the majority of accesses take place in parallel

via the local processor-memory paths. This parallelism depends in turn upon

the extent to which interesting applications can be decomposed into loosely

coupled parts. A general attack on this problem appears very difficult, but

case-by-case attacks on specific applications have provided some reasons for

optimism.

So far, the only issue considered has been cost-effectiveness of

low-level hardware architecture, but the shift to a communication-centered

viewpoint really affects all levels of system design. A~ important example is

the notion of local autonomy of the individual processors, of program modules,

or, in the extreme view, of every computational object in the system. This

emphasis on communication among actively cooperating objects, as contrasted

with manipulation of many passive objects by a few active objects, may prove

to be crucial in the construction of systems that are robust in the face of

14

isolated failures. The balance between loose and tight coupling of system

components is a delicate one, however, and each instance must be carefully

analyzed. A case in point is the naming mechanism used to refer to objects in

the system. For example, the invention of names for new objects must be

properly coordinated to insure uniqueness, yet sufficiently autonomous to

promote parallelism and robustness. In general, the balance of tight vs.

loose coupling of system components revolves around the degree of global

inconsistency which can be tolerated at any given time, and this, again, is

often application-dependent.

In summary, it would appear that full exploitation of foreseeable trends

in LSI technology will require a notion of modular architecture far more

ambitious than any developed so far. By focusing on communication as the

central issue, it may be possible to provide extremely economical and reliable

systems that are capable of scaling gracefully over several orders of

magnitude in total system capacity.

III. OTHER ACTIVITIES

The division carried out several other activities, which can be loosely

described as exp~riments in issues of intercomputer network connection:

1) National Software Works. Douglas Wells has been working to help define

and criticize the protocols that underly the National Software Works, and also

to design and implement the software required to make Multics a participant

"tool-bearing host'1
) in the National Software Works. This activity has

proceeded effectively, and we expect to have Multics participate in early

demonstrations of NSW capabilities. The NSW requirements have been met with

minimum modification to Multics, although the opportunity was taken to

slightly remodularize the Multics ARPANET Network Control Program and the

libraries of network support programs to provide more effective support of

NSW. One interesting result of this work (which involves judicious

(a

L ~·:-, :• ... ,....ment of library routines) is that most Multics programs can be expected

to work as NSW "tools" with little or no modification.

15

2) Multics/ARPANET Technology transfer. This activity concerns the software

developed at M.I.T. to attach Multics to the ARPANET; the objective is to have

Honeywell make this software a standard product option of the Multics system.

During the year, meetings were held with several interested parties concerning

attachment of Honeywell's Phoenix Multics site to the ARPANET, and further

discussions were held regarding the amount of effort required to make the

software into a standard product. Progress has been slow but movement is

perceptible. Also, during the year, a few minor changes wer~ made to the

software to keep it in step with changes made to the rest of Multics.

3) Local Network. A project was begun during the year by Kenneth Pogran to

design a local network to interconnect the several PDP-10, PDP-11, and Multics

computers used by the laboratory, and to provide a "gateway" to the ARPANET so

that computers at the laboratory that are not ARPANET hosts can access the

ARPANET. The first draft of an implementation proposal for the local network

was completed at year's end, and is expected to be available early in the

coming year.

Two alternative technologies were considered for the network: a ring

network, such as that developed by Farber at the University of California at

Irvine for the Distributed Computing System, and a packet broadcast net, such

as the Ethernet developed by Metcalfe and Boggs at the Xerox Palo Alto

Research Center. We have concluded that nearly identical function is provided

by the two technologies, and have elected to implement a version of the packet

broadcast net using host interface hardware containing packet buffers,

introducing the concept of a "buffered packet broadcast net". This concept

was first suggested by R. Greenblatt of the M.I.T. Artificial Intelligence

Laboratory. It has been our goal to design the network hardware interface

seen by a host to be as independent as possible of the final choice of

underlying network technology, making it possible to adopt some other

technology in the future, if appropriate.

Protocols for use with the network are being devised and reviewed at the

present time. Another goal of ours has been to design the network, and its

protocols, to be easily expandable to cover the needs of an organization the

size of M.I.T., which could potentially involve computers nt~bering in the

16

hundreds, and terminals numbering in the thousands. Our current thinking

along these lines is to organize a campus-wide network as a group of

interconnected subnetworks. Our design will, in effect, make the laboratory's

network the first subnetwork of this future campus-wide network.

A third goal for the local network is to eliminate the need for the

laboratory to have six or more separate ARPANET attachments and an ARPANET

TIP. Purely local, intra-laboratory communication should not burden our

ARPANET IMP and TIP, as it does today.

PUBLICATIONS, TALKS, AND THESES

Publications

Redell, D.D. and Fabry, R.S., "Selective Revocation of Capabilities,"
submitted to Communications .£i the ACM, April, 1976.

Redell, D. D. and Clark, D.D., "Protection of Information in Computer Systems,"
Tutorial notes, IEEE Publication No. 75CH1050-4, September, 1975.

Saltzer, J.H. and Schroeder, M.D., "The Protection of Information in Computer
Systems," Proceedings .£i IEEE.§]_, 9, (Sept., 1975), pp. 1278-1308.

Sal tzer, J. H., "Computer," article in 1976 Yearbook, McGraw-Hill Encyclopedia
of Science and Technology New York: McGraw-Hill (Scheduled 1976).

Schroeder, M.D., "Engineering a Security Kernel for Multics," Proceedings of
5th Symposium on Operating Systems Principles, ACM Operating Systems
Review i' 5, pp. 25-32.

Svobodova, L., Computer Performance Measurement and Evaluation Methods:
Analysis and ~ications, American Elsevier, Elsevier Computer Science
Library (scheduled 1976).

Svobodova, L., "Computer System Measurability," Computer i' 6 (June, 1976),
pp. 9-17.

Svobodova, L., ana Mattson, R., "The Role of Emulation in Performance
Measurement -tnd Evaluation," Proceedings .£i the International Symposium
on Computer Jerformance Modeling, Measurement and Evaluation, Cambridge,
Mass., March, 1976 •

.)(l0va, L., "The Role of Emulation in Measurement, Evaluation, and
Selection of Computer Systems," CENTACS Report No. 58, U.S. Army
Electronics Comm::tnd, Fort Monmouth, New Jersey, August, 1975.

17

Theses Completed

Gifford, D., "Hardware Estimation of a Process' Primary Memory Requirements,"
S.B. Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976.

Lake, A., "Adapting TENEX for use on a Network of Personal Computers," S. B.
thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May, 1976.

Smith, A., "Implementation of a Network-Wide File System on Multics," S.B.
Thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May, 1976.

Bratt, R., "Minimizing the Naming Facilities Requiring Protection in a
Computer Utility," S.M. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, July, 1975,
also Project MAC Technical Report TR-156.

Broughton, J., "An Extensible Command Language for the Multics System," S.M.
Thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May, 1976.

Huber, A., "A Multi-process Design of a Paging System," S.M. and E. E. Thesis,
Massachusetts Institute of Technology, Department of Slectrical
Engineering and Computer Science, May, 1976.

Kent, S., "Encryption-Based Protocols for Interactive User-Computer
Communication," S.M. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, May, 1976,
also Laboratory for Computer Science Technical Report TR-162.

Milch, D., "A Simulation of IBM's Advanced Administrative System (AAS) in a
Distributed Environment," s. M. Thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science,
June, 1976.

Montgomery, W., "A Secure and Flexible Model of Process Initiation for a
Computer Utility," S.M. and E.E. thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science,
June, 1976.

Reed, D., "Process Multiplexing in a Layered Operating SystP.rr.," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, June, 1976.

Wilens, M., "High Level Language Management for Modular l1emory Computers,"
S.M. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976.

18

Theses in Progress

Skalka, S., "Simulation Model for Evaluating Performance of an Interactive
System," S.B. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, expected date of
completion November, 1976.

Benjamin, A., "Improving Information Storage Reliability Using a Data
Network," S, M. and E. E. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, expected date
of completion, September, 1976.

Frydman, U., "Multiple-Minicomputer Systems in an Automated Factory," S.M.
thesis, Massactusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, expected date of completion, December,
1976. .

Goldberg, H., "Protecting User Environments," S.M. thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and
Computer Science, expected date of completion, November, 1976.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," E.E. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, expected date
of completion, September, 1976.

Luniewski, A., "A Certifiable System Initialization Mechanism," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, expected date of completion, January,
1977.

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesif, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, expected date of completion,
August, 1976.

Feiertag, R., "A Methodology for Designing Certifiably Secure Computer
Systems," Ph.D. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science.

Talks and Presentations

Pogran, K., "Introduction to the ARPA Network," given at:
Communications Forum at Honeywell Information Systems Inc., Phoenix,
Arizona, July 16, 1975.

'l-1, R., "Eventcounts: A new model of process synchronization," given at:
lnstitute for Advanced Computation, Sunnyvale, California, August, 1975.
Xerox Palo Alto Research Center, June 14, 1976
IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, June
24, 1976.

19

Redell, D.D. and Clark, D.D., "Protection of Informlition in Computer Systems,"
·day-long tutorial given at:
Eleventh IEEE Computer Society Conference, Washington, D.C., September 8,
1975.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," given at:
Sperry Research Center, Sudbury, Massachusetts, October, 1975.
C.S. Draper Laboratory, Cambridge, Massachusetts, April, 1976.

Redell, D.D., "Proprietary Subsystems and Personal Computers, 11 given at:
IBM San Jose Research Laboratory, November 17, 1975.
Xerox Palo Alto Research Center, February 6, 1976.

Clark, D. D., "Engineering a Security Kernel for Multics ," given at:
University of Southwestern Louisiana, November 18, 1975.

Saltzer, J.H., "Computer Science at M.I.T.," given at:
University of Southwestern Louisiana, November 18, 1975.

Clark, D. D., "Multics Computer Systems Research at Project MAC," given at:
Honeywell Information Systems Inc. Multics Symposium, December 11, 1975.

Redell, D.D., "The Multics Kernel Design Project," given at:
IBM San Jose Research Laboratory, March 5, 1976.

Schroeder, M.D., "The Multics Kernel Project," given at:
Xerox Palo Alto Research Center, January, 1976.
Cambridge University, England, April, 1976.

Wells, D., "Use of the ARPANET with Multics," given at:
Rome Air Development Center, New York, April 28, 1976.

Wells, D., "Implementation of the National Software Works on Multics," given
at:
Rome Air Development Center, New York, April 29, 1976.

Svobodova, L., Session Chairman, "Computer Structures," AFIPS National
Computer Conference, New York, June, 1976.

Kanodia, R. , Panel Member, "Network Measurements," AFIPS Na tiona! Computer
Conference, New York, June, 1976.

Saltzer, J.H., "The Multics Kernel Design Project," given at:
Honeywell Information Systems Inc., Phoenix, Arizona, June 8, 1976.

Saltzer, J.H., "System Implications of Advancing Storage Technology," given
at:
IBM San Jose Research Laboratory, California, June 11, 1976.

Janson, P., "Validating the Protection Mechanism of a System," given at:
~- IRIA Workshop on Protection and Security in Data Networ~, France, June

28, 1976.

20

Committee Memberships

Pogran, K.T., ARPA Message Service Committee

Pogran, K.T., ARPA Committee on Computer-Aided Human Communication

Saltzer, J.H., ARPA Secure Systems Working Group

Wells, D., ARPA National Software Works Protocol Committee

21

PERSONNEL, June, 1975 - July, 1976

Professional Staff

Nancy C. Federman
Rajendra K. Kanodia
Robert F. Mabee
Kenneth T. Pogran
Douglas M. Wells

Support Staff

Paulyn G. Heinmiller
Joanne P. Knowlton
Virginia M. Newcomb
Carol Sarner
Muriel Webber

Undergraduate Students

Charles R. Davis
Ross S. Gale
David K. Gifford
Arthur G. Gottlieb
Barry M. Grant·
Tony B. Lake
Roy P. Planalp
Gerard J. Rudisin
Anthony D. Smith
Steven A. Swernofsky

Faculty !E& Research Associates

David D. Clark
Fernando J. Corbato
Clarence A. Ellis
David D. Redell
Jerome H. Saltzer (Division Head)
Michael D. Schroeder
Liba Svobodova

Graduate Students

Arthur J. Benjamin
Toby Bloom
Eugene C. Ciccarelli
Richard J. Feiertag
Har.ry C. Forsdick
Robe~t M. Frankston
Harold J. Goldberg
Andrew R. Huber
Douglas H. Hunt
Philippe A. Janson
Stephen T. Kent
Allen W. Luniewski
Andrew A. Montgomery
David P. Reed
Masaoki Shibuya
Victor Voydock

Guests

Nathan A. Adleman
Samuel E. Estes
William B. Maczko

