
PROJECT MAC

Computer Systems Research Division

CASE STUDIES OF PROTECTION SYSTEM FAILURES

by J. H. Saltzer

October 27, 1975

Request for Comments No. 92

The attached material was constructed as an appendix to the

subject 6.033 notes on protection. I am interested in receiving

comments on accuracy, and also any further anecdotes that might

be worth including.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per
mission, and it should not be referenced in other publications.

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 0 2 1 3 9

6.033 -- Information Systems

October 7, 1975

APPENDIX G: CASE STUDIES OF PROTECTION SYSTEM FAILURES

Although a system designer must know fundamental protection concepts,

such as those explored in chapter six, and should be familiar with details

of several examples of real protection systems, another valuable asset is

familiarity with a large collection of examples of failures in previously

designed systems. In addition to teaching humility, a good collection

of case studies provides a ready source of ad hoc tests for a new idea:

would my design be vulnerable to some variation of this attack? Further,

one can develop from failure case studies an intuition about which

approaches are inherently weak or difficult to implement correctly.

Finally, they provide evidence of the impressive range of considerations

that a designer of a protection system must consider.

The case studies described here all really happened. However, failures

are sometimes embarrassing, have legal consequences, or if publicized would

jeopardize ongoing production systems that have not yet been repaired or

redesigned. For this reason, some of the case studies have been disguised

by embedding them in fictional circumstances. Ironically, many failures

passed on only after receiving promises of strictest confidence turn out to

be duplicates of failures already well known in other systems.

@ 1975 by J. H. Saltzer

G-2

In reviewing each case studyJ three questions should be kept in mind:

1. What design principle or design principlesJ if anyJ were violated

by this design? Often there is evidence of more than one design

principle being overlooked.

2. Is this a particular example of a more general class of problem

that the same system probably exhibits in other forms too?

3. What is the best way to redesign this system?

1. The old garbage analysis trick. Many protection systems have failed

because they did not attach sufficient importance to protecting residuesJ

the sometimes analyzable remains of a program or data in storage. On early

versions of the M.I.T. Compatible Time-Sharing System (CTSS) this failure

took the following form: a user operated in a memory region of an assigned

size and he could request a change in current size by a supervisor call. If

the user requested a larger sizeJ the supervisor assigned a contiguous

block of memory no longer being used by other programsJ but it failed to

clear the contents of the block of memoryJ so the residue of some previous

program became accessible to any program extending its memory size.

At first glanceJ this oversight merely provides read-only access to an

uncontrollable collection of garbageJ and appears fairly hard to systematically

exploit. HoweverJ an industrious penetrator observed that the system adminis

trator ran a self-rescheduling job every midnight that updated the primary ac

counting and password files. On the assumption that the password file was pro

cessed by the administrator's program by copying it into primary memoryJ the pene

trator wrote a program that extended its own memory size from the minimum to the

maximum size, then searched the residue in the newly assigned area for his own password.

G-3

If found, that would suggest that other passwords might be stored nearby, so

the entire memory residue was copied onto a file for later analysis. This

program was scheduled to go into operation just before midnight, and use a

timer to try the memory extension trick every few seconds. It worked quite

well. The penetrator found in the residue a copy of a section of a file

relating user names and passwords.

This general attack has been reported in a variety of other forms, such

as reading the contents of newly allocated disk files, tracks, or cylinders,

or reading newly assigned magnetic tapes. The potential for such an attack

turns up in a slightly different form when a hardware technician is

asked to repair a storage device--unless the device is cleared first, the

technician can read the residue. [Indeed, in certain data-dependent hardware

failures, it may be essential that the technician be allowed to read the residue

to help diagnose the failure.]

2. Sophisticated garbage analysis. Related to the previous residue problem

is a more sophisticated one encountered when recording on continuous media

such as magnetic tape, disk, or drum. If the residue is erased by overwriting,

it is no longer readable by programs. But analysis of the recording media in

the laboratory will disclose residual magnetic traces of previously recorded

data. For this reason, certain U. S. Department of Defense agencies reutinely

burn magnetic tapes and disk packs, and destroy magnetic drum surfaces, rather

than discarding them or returning them to the manufacturer. Further, DoD

regulation 5200.28-M calls for overwriting of certain magnetic media 1000

or more times before a medium formerly containing classified information

can be considered "declassified".

G-4

3. Exploiting weaknesses in operational design. Some design choices,

while not strictly affecting the internal security properties of a

system, can affect operational aspects enough that system security is weak

ened. In the CTSS system, as mentioned, passwords were stored in a text

file together with user names; this file was effectively a master user list

and the system administrator therefore, wherever he changed the file, printed

a copy for quick reference. He had no interest in the passwords, but the

list of user names was needed to avoid duplication of names when adding

new users. This copy, including the passwords, was processed by printer

controller software, handled by the printer operator, placed in output bins,

moved to the system administrator's office, and eventually discarded by his

secretary when the next version arrived. At least one penetration of CTSS

was accomplished by a student who discovered an old copy of this printed

report in a wastebasket. At another time, the system administrator was

reviewing and updating the master user list using a standard editing program.

The editor, unbeknownst to the administrator, operated by creating an unpro

tected copy of the file being edited in the current directory, under a name

chosen by the editor. Another system operator working simultaneously from

another terminal was using the same editor to update another file in the same

directory--the "message of the day", a short file printed out whenever a

user logs in. The two instances of the editor used the same intermediate

file, with the result that the master user list, complete with passwords, was

appended to the end of the message of the day.

G-5

4. The system programmer attack. A programmer was temporarily given the

privilege of modifying the supervisor of a time-sharing system, as the

most expeditious way of getting a user problem solved. While he made the

changes appropriate to solve the problem, he also added a feature to a

rarely-used metering entry of the supervisor: if called with a certain

argument value, the metering entry would reset the status of the current

user's account to show no usage. This new "feature" was used by the pro

grammer, and his friends, for months afterwards to obtain unlimited quantities

of computer time.

5. The supervisor trusts the~· In the first version of CTSS, a short

cut was taken in the design of the supervisor entry that permitted a user to

read his own file directory. Rather than remembering in a supervisor data

base the current position in the file directory, as part of each read call

the supervisor returned to the user an index that the user was to provide

in turn when calling for the next record. A curious user printed out the

index, concluded that it looked like a disk track address, and wrote a pro

gram that specified track address zero, which contained track addresses of

key system files. From there he was able to find his way to the master user

table containing passwords.

Although the vulnerability seems obvious, many operating systems have

been discovered to contain some situation in which the supervisor leaves

some critical piece of data in an unprotected user area, and later relies

on its integrity. In one large-scale operating system implementation effort,

each system module was allocated a limited quota of system protected storage, as

a strategy to keep the size of the system down. Since in many cases the quota

was too small, system programmers were effectively forced to place system data in

unprotected user areas. Despite many later efforts to repair the situation, an

acceptable level of protection was never achieved in that system.

G-6

6. The supervisor trusts the ~without realizing it. As a subtle

variation of the previous problem, consider the following supervisor

program:

delete_file: procedure (file_name, code);

call check_auth (file_name, user_id, code);

if code = 0 then

return;

end;

call destroy (file name);

This program is a user-callable entry point, and it is apparently correctly

checking to see that the user has correct authority before actually destroy-

ing the file. Program check_auth will set "code" to some non-zero value

if it finds that the user named by "user id" does not have the necessary

authority for file "file name".

But variables "file name" and "code" are user-supplied arguments,

allocated and stored in user-chosen and user-accessible areas. The user may

be able (by use of a second, parallel process, for example) to observe the

value of code being set by check_auth, and quickly reset it before

delete file gets a chance to test it. Alternatively, by careful timing, the

user may be able to change the name stored in variable file name between

the time "check auth" examines it and "destroy" uses it. In one time-sharing

system, several dozen examples of this penetration route were found.

7. The "open design" penetration. In the process of working out a system design,

there is often an argument made by system programmers that there is nothing wrong

with letting the user have read access to most supervisor programs and tables,

since the algorithms are not secret. The usual reason for this argument is

that it makes debugging easier: without special privilege a system programmer

can examine system tables following unusual situations and perhaps detect clues

G-7

to the cause of the problem. The following article from Computerworld shows

the result. (Note that this attack is not unique--it was used successfully

on CTSS, too.)

T /S Service Security
Crodt_ed by Sc~oolbov
\'l!ith Series of Trid~s

Special to Computerworld

LQ;-.;ooN - A 15-year-old schoolboy
with only four months' experience in its
Assembly language cracked the security
of a major time-sharing service here -
while keeping up with his regular home
work.

Using the teletypewriter terminal in his
school, the student, identified only as
"Joe," obtained access to the system's
most secret files. He was able to read and
change them at will and even affect bill
ing procedures, but Joe said he had never
done this. ·

Joe's trick was to learn the system's
highest level account names and pass
words, but that required a long series of
steps.

First, Joe found there was no read
protection on any location in core, so he
wrote a dump program and printed out
the operating system. From that listing,
along with some tips from programmers
at the time-sharing service and one ob·
solete systems manual, he was able to
work out much of the system.

The next step was relatively easy. Joe
found that he could print out the account
name and line number of every terminal
logged on to the sytsem. This showed
that there was a simple algorithm for
assigning the line number to the next
user.

The system has a unique buffer for each
line to store data being input on that line.
With a little bit of trouble, Joe was able
to locate the buffers. He then wrote a
program to eavesdrop on whatever was
being typed on a terminal simply by
printing out the contents of the buffer.

With Ius "who's-logged-in" program, Joe
was able to find which lines were already
in use and thus predict which one would
be used next. With his "buffer-watching"
program he then waited until someone
signed on, gave his account name and
password, and then Joe print~ out the
content of the buffer.

In practice, there were a few· snags. Joe's
account had a low priority, and the sys·
tern therefore did not like him just sitting
in a loop checking a section of core. Joe
had to pretend to do something beside
looping and thus ran the risk of losing
information from the buffer on which he
was eavesdropping.

He did, in the end, get the. privileged
passwords- but he never did much with
them. He wrote to the time-sharing serv·
ice and explained how he cracked the
security- but he never received a reply.

His teacher did ban him temporarily
from the terminal, however.

Shortly after receiving Joe's letter, the
time-sharing service introduced a new ver·
sion of the operating system. Joe doubts
that it has corrected his route into the
system and wants to try his method
again.

But that will have to wait a little while,
because he is in the middle of exams at
the moment.

@ Copyright Computerworld, Inc.
Newton, Mass. 02160

Computerworld]!~ 5, January 29, 1975.

G-8

8. The incomplete check of parameters. A fairly common method of pene

trating systems has been to examine the code at the supervisor entry points,

looking for places that unexpected, out-of-range parameter values might

cause trouble. A.n interesting example occurred in a system that, like CTSS,

allowed the user to request a different memory size. In that system, a

penetrator discovered that if the user requested a negative memory size,

the supervisor would blindly assign additional contiguous storage at the

wrong end of the user's program. That particular area happened to contain

critical supervisor information regarding that user, and the user could,

by modifying it, obtain control of the supervisor.

9. Spoofing the operator. Many operating systems include a system feature

to transmit a message to the system operator, for example to ask a question

or to provide supplementary information to a request to mount a user-supplied

tape. This message is printed at the operator's terminal, intermixed with

messages from the operating system. The operating system normally prints a

warning banner ahead of the user's message so that the operator knows its

source. In CTSS, the supervisor placed no constraint on either the length or

content of such messages, so a user could send a single message that, first,

printed several blank lines, to push the warning banner out of sight, then

print a line that looks like a system-provided message, such as an instruction

to mount a tape or to shut down the system, Other systems have also been

discovered to be vulnerable to this trick.

10. The system release trick. A Department of Defense time-sharing system

was claimed to be secured well enough to process military classified infor

mation. A (fortunately) friendly penetration team looked over the system for

a short time and tried the following strategy: they constructed on another,

similar computer, a modified version of the operating system with some extra

G-9

entry points that permitted any user to "take over" the supervisor. They then

mailed to the DoD installation a copy of a tape containing the modified system

together with a modified copy of the most recent "new system version" distribu-

tion letter from the computer manufacturer. The letter and tape were received,

and the tape installed as the standard operating system. A few days later the

team proceeded to demonstrate system takeover by any user.

11. Signalling with clandestine channels. Once information has been released

to a program it can be very difficult to be sure that the program is not

passing the information along to someone else. Even though non-discretionary

controls may be operating, the program may be able to signal using a clandestine

channel. In an experiment with a virtual memory system that allows shared

library procedures, an otherwise confined program used the following signalling

technique: for the first bit of the message to be transmitted, it touched

(if the bit value was ~) or failed to touch (if the bit value was ~)

a previously agreed-upon page of a large, infrequently used computer program

in the library. It then waited a while, and repeated the procedure for the

second bit of the message. • A receiving process observed the presence of the

agreed-upon page in memory by measuring the time required to read from a variable

stored there. A short (microsecond) time meant that the page was already in

memory and a one value was recorded for that bit .. Using a single page for

data transmission, and other pages to signal in the reverse direction that

the bit had been received, a data rate of about one bit per second was

attained.

12. Unintentional signalling with clandestine channels. If a supervisor entry

is trying not to release a piece of information, it may be possible to infer

its value from externally observed behavior, such as the time it takes for the

supervisor to execute, or the pattern of user data in memory after it finishes.

' .
G-10

An example of this attack occurred on a time-sharing system that used demand

paging for user memory areas, and allowed a program to acquire the privileges

of another user if the program could supply that user's secret password. The

supervisor routine that examined the user-supplied password did so by comparing

it, one character at a time with the corresponding entry in the password table.

As soon as a mismatch was detected, the supervisor password checking routine

stopped and returned an error code.

A clever user noticed that the user-supplied password could be placed

anywhere in user memory, for example at a boundary between two pages such

that only the first character of the password was at the end of the first page.

The user then waited long enough for both pages to be "paged out" of memory,

then called the supervisor entry asking for the other user's privileges and

giving the address of the strategically placed password. When the supervisor

returned with a mismatch report, the user program then measured the real

time required to read a variable stored in the page containing the second

half of the password. A long (millisecond) clock reading meant that that
'

second page was not already in memory, presumably because the supervisor had

not touched it, implying that the first character of the password had not been

correctly guessed. By cycling through the letters of the alphabet looking for

one that produced a short (microsecond) clock reading, the program could

systematically search for the first letter of the password. Then, the password

could be moved up one character position, and the second character searched

for. Continuing in this fashion, the entire password could quickly be

exposed.

13. The case of the undeleteable data. It is a common practice for a time-

sharing system to periodically make backup copies of all user files on magnetic

tape in various formats. One format might allow quick reloading of all files,

G-11

while another might allow efficient searching for a single file. Several

backup copies, perhaps representing user files at one week intervals for a

month, and at one month intervals for a year, might be kept. The administrator

of such a time-sharing system was served with an official government request

to destroy all copies of a certain file belonging to a user who had compiled

an on-line list of secret telephone access codes, which could be used to

place free long distance calls. Destroying the on-line file was straight

forward, but the potential expense involved in locating and destroying all

of the backup copies was enormous. (A compromise was reached, in which

the backup tapes received special protection until they were due to be

recycled, up to a year later.)

14. The special~ !h!! failed. In a large-scale processor designed for

maximum speed, the circuitry to check read and write permission was invoked

as early in the instruction cycle as possible. When the instruction turned

out to be a request to execute an instruction in another location, the

execution of the second instruction was carried out with later timing, so

the standard circuitry to check read and write permission was not used--a

special case version of the cirQUit was used instead. Although originally

designed correctly, a later field change to the processor accidentally dis

abled one part of the special case protection checking circuitry. Since

instructions to execute other instructions are rarely encountered, the

accidental disablement was not discovered until a penetration team began a

systematic study and found the problem. The disablement was dependent on

the address of both the executed instruction and its operand, and was there

fore unlikely to have ever been noticed by anyone not intentionally looking

for security holes.

G-12

15. The ~ password transformer. In a system that performed a "one-way

transformation" on passwords for storage purposes, a penetration team

mathematically examined the one-way transformation algorithm and discovered

an inverse transformation. When the inverse transformation was tried, however,

. ..

it did not work. After much analysis, the team discovered that the system proce

dure that did the supposedly one-way transformation used a library mathematical subroutine

that contained an error; the passwords were being incorrectly transformed,

although since the error was consistent it did not interfere with operation.

The erroneous algorithm was reversible, too, so the system was successfully

penetrated. An interesting sidelight arose when the error in the mathematical

subroutine was reported and a fix developed. If the fixed routine had been

installed, the password transforming algorithm would have begun working

correctly, which would have meant that correctly-supplied passwords would

transform to values that did not match the stored values that had been created

using the incorrect algorithm. Thus no one would be able to log in. A

creative solution (which the reader may attempt to reinvent) was found for the

dilennna.

16, The uncheckable data channel. A common architecture for input/output

channel processors is the following: channel command programs refer to

absolute memory addresses without any hardware protection, and they may

modify themselves by reading data in over part of the channel command program.

If, in addition, the operating system permits the user to directly create

channel command programs it becomes very difficult to enforce protection

constraints. Even if the channel programs are reviewed by the supervisor

to make sure that all memory addresses refer to areas assigned to the user

who created them, if the channel program makes use of the self-modifying

feature, the checks of its original content are meaningless. In the case

'"' ' G-13

of CTSS this problem led to a prohibition on timing dependent and self

modifying channel programs. The trouble is, there was no way to enforce

the ban, and a battle of wits resulted: for every ingenious technique

developed to discover that a channel command program contained an obscure

self-modification feature, some clever user discovered a still more obscure

way to conceal self-modification in channel command programs.

17. A thorough system penetration job. One particularly thorough system

penetration operation went as follows: first, computer time was obtained

at a site different from the one to be penetrated, but running the same hard

ware and same operating system. On that system many experiments were performed,

and an obscure error in protecting a supervisor routine was found. The error

permitted general changing of any supervisor-accessible variable, so it could be

used to modify the current job's principal identifier. After perfecting the

technique, the penetrator moved his operation to the site being used for

development of the operating system itself. He used the privilege of the new

principal identifier to modify one program in a directory containing copies

of object programs of the operating system. The change he made was a one

line revision to omit a crucial protection check at a supervisor entry point.

Having installed this change in the program, he than covered his trail by

changing the directory record of date-last-modified, thereby leaving behind

no traces except for one changed line of code in the supervisor library.

The next version of the system to be distributed to customers contained the

penetrator's revision, which could now be exploited at a third target site.

