
·-

,_..._-

PROJECT MAC October 7, 1974

Computer Systems Research Division Request for Comments No. 61

COMPUTER SYSTEMS RESEARCH DIVISION ANNUAL PROGRESS REPORT
July, 1973 to June, 1974

by Jerome H. Saltzer, Michael D. Schroeder, and David D. Clark

OVERVIEW

The current research activities of the Computer Systems Research

Division can roughly be described as trying to discover and implement the

minimum mechanism essential to support a full-scale computer utility

system. Its activities are pragmatic, which means that most ideas are

subjected to practical implementations as part of their development. The

division uses the ~Iultics system as its laboratory, taking advantage of

the nearby Honeywell Multics development facilities to test special

modified versions of the system.

The largest portion of current work is inspired by the need to certify

the correctness of privacy-achieving and other information-isolating

mechanisms in a shared-user system. On the basis that certification of

correctness should be easier if the mechanism being certified is simpler,

work is proceeding to first identify and then minimize the complexity of the

central protection kernel of Multics.

A second major area of interest is simplifying and better understanding

the attachment of the ARPANET to Multics. Because the ARPANET involves an

element of distributed computations connected by communication lines, it

relates directly to a longer-range interest in the future of computer-utility

systems in an era when logic and memory costs are predicted to make personal

computers as commonplace as today's hand-held calculators. The central

utility is still needed for communication, sharing of information, and

handling peak loads, but its interfaces and possibly its functions must cer-

tainly be different from those of today's systems.

CSR-1

Another activity reported here is called "technology transfer", a

collection of efforts to communicate with industry and users the results

of previous research, particularly the development of the Multics system.

This report is organized in four sections. The first three describe

the major work: the certification/simplification projects, ARPANET

related activities, and the technology transfer activities. The fourth

reports other miscellaneous activities of the division.

CSR-2

CERTIFICATION OF COMPUTER SYSTEMS

Introduction

This year the Computer Systems Research Division began a new

research project with the goal of making possible the certification that

the data security facilities in a large-scale, multiuser computer system

have ·been correctly implemented. This effort, intended to be the primary

research activity of the Computer Systems Research Division for approximately

three years, is directed at the problem of producing computer systems which

guarantee to prevent unauthorized release, modification, and denial of use

of the information that they contain. The need for such certification arises

when a single system provides computation and information storage service

~· to a community of users. As the economic and functional advantages of such

shared systems have been recognized, so has the need to include facilities

for controlling the access of the various users to the contained information.

Without these facilities, sensitive information can be handled only if the

user community is carefully restricted to be a highly homogeneous group.

Xany systems now include protection mechanisms for enforcing intricate,

externally specified policies on information access. The presence of such

mechanisms, however, is not enough. Users, whether they be individuals or

private or governmental organization~ must have confidence in the inteerity

of the protection mechanisms before they can entrust sensitive data to a

system. The system must be certified to implement without failure the desired

policies for controlling access to the contained information.

CSR-3

There are three ways in which the security of information stored in a

computer system can be violated:

1. Unauthorized release: an unauthorized person is able to read, and take

advantage of, information stored in the computer. Concern sometimes

extends to "traffic analysis", in which the person observes only the

patterns of use of information and from those patterns can infer some

content.

2. Unauthorized modification: an unauthorized person is able to cause

unexpected changes to stored information.

3. Unauthorized denial of use: an unauthorized person can prevent legi

timate access or modification, even though he may not be able to access

or modify the information, for example by causing a system "crash".

Complicating things in a shared computer is the fact that the unauthorized

person with respect to a specific act may be an otherwise legimate user of

the system.

In practice, producing a system that actually does prevent all such

unauthorized activities has proved extremely difficult. Sophisticated users of most

currently available systems are probably aware of at least one way to "crash"

the system. Penetration exercises involving a large number of different

systems have shown that, in all systems confronted, a wily user can construct a pro

gram that can obtain unauthorized access to information stored within the system.

The primary reason for these failures is the presence of design and

implementation flaws that provide paths by which the access constraints

supposedly enforced by the system can be circumvented. Underlying this cause

are two interacting difficulties. The first is that preventing all unauthor-

ized acts is a negative kind of requirement. It is intrinsically quite hard

to prove that this requirement has actually been achieved, for one must de

monstrate that no means for violating data security exist. The second is

CSR-4

the well-known tendency for the operating systems of shared, general-pur-

pose computers to be extraordinarily complex, large in size, difficult to

maintain, and awkwardly organized. This tendency interacts badly with the

need to prove non-existance of paths for violating data security, by

providing a very complex environment in which to attempt such a proof.

There seem to be several reasons for the tendency toward complexity,

such as:

attempts to stretch the functional capabilities of the system as

far as possible;

working in a hardware environment that was determined before

software requirements were fully understood;

attempts to squeeze the system to its absolute limit of performance;

attempts, because of the high cost of system development, to get

the system running in the absolutely shortest time possible.

Of these four, probably the last two are the strongest contributors to

overall complexity, since both encourage shortcuts to be taken and modularity

to be violated against the better judgement of the system designer.

The certification of a system means that someone has signed-off on a

statement of adequacy. By signing, the certifier states that the security

provided is adequate to the intended application. He also assumes the responsibility

for failures. A system is certifiable if the certifier can be convinced

to sign. With currently available commercial systems, there is no way for a

potential certifier even to start developing the confidence in a system pre-

requisite to signing. Most are of a size and complexity to preclude even

reading all of the code, much less comprehending the entire mass in detail.

CSR-5

I

The Computer Systems Research Division research effort is aimed directly ~

at the size and complexity. The overall plan is to evolve an existing,

commercial, multiuser computer system, Multics, which is easily modifiable

and which has advanced protection mechanisms, into a prototype operating system

with all the essential features of the present Multics system, but with a small

and simple central core that is susceptible to certification through line-by

line review by an expert. The goal is a system sufficiently small, well

structured and easy to understand that a certifier can read it all, understand

the reason for every line of code, and develop a confidence in its correct

operation adequate to most applications.

Method of Attack

The problem of constructing a certifiably secure system recently has

attracted considerable interest and is being attacked with a variety of dif

ferent strategies by many research groups in addition to the Computer Systems

Research Division [Saltzer: "Ongoing Research and Development on Information

Protection", ACM Operating Systems Review, July, 1974]. It is generally recog

nozed that the key to the ultimate solution is methodical design and constructioG

techniques which systematically exclude flaws that can be exploited to produce

security violations. Many imagine ultimately being able to construct a formal

specification for a system, prove desired security (and other) properties about

the specification, and then, by essentially mechanical steps, construct a

matching operational system. To this end, many research groups are conducting

investigations into methods of proving assertions about programs and program

like specifications, methods for formally describing properties like security,

and techniques of top-down program construction by successive refinement of

descriptions of algorithms and data structures. On the other end of the

CSR-6

spectrum, several groups are engaged in finding and cataloguing flaws in

existing systems with the aim of convincing skeptics that the problem is

real and of understanding the sort of flaws that can be exploited. Somewhere

between these two extremes are several groups, including our own, looking for

the simplest possible structures with which to securely implement the full

set of functions that seem desirable in a multiuser, general-purpose

computer system. An understanding of simpler ways to organize such systems

will contribute to the development of the ultimately required mechanical

construction techniques. But of more immediate importance, it will also

allow us to build less complex systems to do the same job, thus providing a

less complex environment in which to establish the absence of security flaws.

Given that problems of structure are to be attacked, two approaches

are possible. This first is to wipe the slate clean and design a new

system from scratch. The accumulated knowledge of past successes and

failures could be brought to bear in an attempt to produce a new design that

is well-organized, simple, and concise. By starting from scratch a great

deal of freedom is gained to organize the entire system and its specifications

to facilitate demonstration of a lack of flaws. The second approach is to

modify in an evolutionary way an existing system so as to simplify its

organization to the point where the absence of security flaws can be demon

strated. Our choice of this second approach requires some comment.

The first approach, while appealing, has the defect that there seems

to be no way to release the designer of a new system from the pressures

toward complexity which were mentioned earlier, especially the pressure to

get a system operational as soon as possible because of the development

expense. Any attempt to mitigate this pressure by stopping short of producing

LCSR-7

an operational system seems to have two problems. First, with the current

state of understanding of computer systems, it is hard to have confidence

that the full implications of a system structure are understood without

complete implementation. Second, if an operational system is not the goal,

it is very easy to leave out many of the complexity-producing convenience

features that users demand of a production system. A structure which grace

fully supports a toy system may be badly strained under the load of

conflicting features required in its real decendant. Put another way,

design and implementation flaws representing potential security violations

tend not to be a problem in toy systems.

To avoid these difficulties, the Computer Systems Research Division

has adopted the approach of evolving an existing operating system to simplify

its structure and reduce its bulk. The great danger of this approach is that

the system chosen for evolution will prove so resistant to graceful alteration

that no evolution of structure is possible, short of starting over. Thus,

it is extremely important to pick a suitable subject. We are using the

Multics system, previously developed by the Computer Systems Research Division

of Project MAC. Multics is better organized than most systems for evolution

and modification, because it is relatively modular, is largely written in PL/I,

and was originally constructed with evolution as a primary objective.

Also, Multics has been developed from the ground up to protect the information

it contains from unauthorized access. It already includes protection

mechanisms as advanced as any available, including special hardware features

such as protection rings. Thus, the system both exhibits a set of protection

features that would be interesting to certify and provides protection features

that will make the job of certification easier. Finally, because Multics is a

CSR-8

commercially available product and new ideas developed in the course of this

research should be relatively easy to retrofit to the standard system, the

result, if successful, can be easily exported in a directly useful way.

Although the original design of Multics was very methodical, and the

system is, if anything, already less complex in organization than most contemp

orary computer operating systems with similar functional goals, potentially, it

could be supported with mechanisms that are much simpler yet. The intense

pressure of initial implementation did not permit time for contemplation and

development of simpler supporting structures. The basic premise of this

research is that one wave of simplification applied to the central core of

the system will produce a badly needed example of a structure that is signi

ficantly easier to understand.

CSR-9

The Security Kernel

The total volume of software in a system like Multics is enormous. In

addition to the supervisor and other system provided software such as

subroutine libraries, compilers, and specialized applications packages,

a large community of active users produces many programs of its own. If the

security of information in such a system depended upon the correctness of

the entire collection, then our task clearly would be hopeless. To make

progress, the system must be arranged so that the security of each user's

data depends only on the correct operation of some subset of all the

software contained in the system--the smaller this subset the better.

Indeed, the programs produced and executed by other users must be able to

be excluded from the subset affecting any one user, for the potential malicious

activities of another user is the presumed threat.

The overall structure used by Multics to control user access to stored

information is to provide each user computation with its own process and address

space. A process has no ability to access the address space of another. In the

address space of every process are the procedures and data of the Multics

supervisor. Among other things, the supervisor manages hardware resources

and creates processes and their address spaces. The ring protection

mechanism of the hardware processors is exploited to restrict the access

to the supervisor of the user code executing in a process~ Supervisor

components cannot be directly referenced; only specially designated entry

points may be called. Once called, the supervisor procedures have direct

access to other supervisor procedures and data The supervisor manages

all on-line storage, and can be requested to add a segment of on-line data

* The rings actually provide a process with eight different protection states
rather than the two implied here, but that level of detail is unnecessary
for this discussion.

CSR-10

or procedure to a process's address space where it may be referenced by the

user code of that process. Such a request will be granted only if the

supervisor has been informed that the user controlling the process is

authorized to access the segment.

The security of the data stored in the system certainly depends upon the

correctness of the supervisor, for it is the primary path by which one user's

computation can influence another's data or computation, legitimately or

otherwise. For example, an attempt by one user to gain unauthorized access

to data, or to deny access to an authorized user, might be made by invoking

a supervisor entry with an unexpected pattern of arguments, perhaps causing

the supervisor mistakenly to do a dirty deed to another user. Because of the

size and complexity of .the supervisor, the chances of a clever attacker

ultimately succeeding in uncovering an exploitable flaw are good.

The supervisor is a software mechanism that is common to all users of

Multics. A mechanism is common to a group of users if it can be used by one

to influence the data or computation of another in the group legitimately or

otherwise. At the heart of every common mechanism must be some group of data

items whose value one user's computation can influence and another's can

notice. The influence and notice may be very direct--one writes into a

data item and another reads it--or quite indirect--the invocation of a

procedure by one somehow alters its internal state so that the outcome of a

later invocation by another is affected. Common mechanisms are required to

implement any explicit or implicit communication among a set of users. If no

such communication or coordination is involved, however, then a common mechanism

is not required to implement a function. It is precisely the existence·of

common mechanisms that allow one user the possibility of exerting unauthorized

influence over the computations or data of another. Malicious users must

CSR-11

---------~--------

exploit flaws in common mechanisms to work their will. To prevent such

malicious activity it is the common mechanisms that must be certified to

contain no exploitable flaws, and once certified must be protected against

tampering.

The Multics supervisor is bigger and more complex than it needs to be.

This is partly the result of the presence in the supervisor of procedures

and dataproviding functions that need not be implemented with common

mechanisms, for they include no element of communication or coordination.

Yet, by being part of the supervisor, with the attendant access privileges.

effectively they are part of the common mechanism. Flaws they contain mav

be exploited as illicit access paths.

A primary strategy of the research project is to evolve the current

supervisor into a security kernel that contains only functions required to be

implemented as common mechanisms, removing all other functions to execute as

user programs in each process, where they cannot be exploited as illicit interuser

access paths. The security kernel produced should be the least amount of

common mechanism necessary to implement the patterns of information sharing,

interprocess communication, and physical resource multiplexing that are

required in the system. As the common mechanism is made small its structure

will be simplified also, the goal being a smallness and simplicity sufficient

to permit certification of the resulting kernel. It appears feasible to extract

a kernel with 4,000 to 8,000 lines of source code from the present supervisor

of approximately 50,000 lines of source code.*

* It is expected that almost all of the source code will be in the PL/I
language. Using PL/I to generate the kernel seems to require that the
PL/I compiler be certified, as well as the kernel, a troubling thought
since the compiler itself is a 25,000 line PL/I program. In the case
of the compiler, however, certification may be less of a problem than
for the kernel. The kernel needs to work correctly for all possible
input; the compiler need compile correctly only the specific programs ~

of the kernel -- not all possible programs. Thus, the compiler's effect
on the kernel can be certified by comparing the source code for each
kernel module with the compiler-produced object code, a task much simpler
than certifying the compiler correct for all possible source programs.

CSR-12

Does a certified security kernel, as just defined, really produce a system

guaranteed to prevent all unauthorized attempts to release, modify or deny

access to contained data? The answe~ unfortunately, is no. Any non-security

kernel software which executes in a process that has access to some data has

the potential to compromise that data. These programs can be grouped in four

categories. First there are the system-provided programs--the library

subroutines, compilers, and application packages available in most systems

plus all the programs thrown out of the old supervisor in the minimization

of the new security kernel. These system-provided programs are not common

mechanisms, even though in Multics all processes share the same non-writeable

segments of code that embody their algorithm, for a private copy of the

alterable part of these procedures, the variable data, is provided for each

process. Because they are private mechanisms, no interuser interaction can

occur through them. They may still contain errors if they are not certified,

but these errors can be triggered only by the actions of the process that they

might damage as a result of the triggering. By presuming that the system pro

grammers who constructed them are non-malicious and did not willfully plant

"trojan horses", it seems justified to assume that the mistakes caused by these

system-provided ~procedures will decrease in time as all normally used functions

are exercised, and that the security threat posed by a potential random error

causing undesired release or modification or a users' data is acceptable for

most applications. Unlike the software mechanisms of the security kernel,

these are not susceptible to willful exploitation by other users. In any

case, a user unsatisfied with their trustworthiness may, in Multics, choose not

to use them, substituting his own procedures.

The last comment suggests the second category of procedur5 executing in

the user environment of a process -- procedures constructed by that user. Any

CSR-13

security threat posed by errors in these is the user's own problem. The

only possible help would be providing tools to aid the user in certifying

his own programs.

The third category, possible in Multics, is procedures borrowed from

other users. These are a real danger to the security of the borrower's data.

Because they will execute with all the access authority of the borrower's

own procedures, they can contain "trojan horse 11 code maliciously constructed

to cause a security violation.* A user should only borrow procedures from

another when the borrower has reason to trust the lender. The inclusion of

security kernel facilities to support user-constructed protected subsystems

provides a tool to reduce the potential damage such a borrowed trojan horse

can do, but a user initiated certification of the borrowed program is the

only complete protection against this threat.

The fourth category is common mechanisms set up among a group of users

by their mutual consent to implement some function involving interuser communi- ~

cation or coordination. Such a mechanism makes the group susceptible to

undesired interaction in the same way that an uncertified supervisor does

for the whole user community. If a user agrees to become party to such a

common mechanism, then he must satisfy himself of its trustworthiness.

In considering these four categories, it is apparent that none is so

important to system security as the common mechanism of the security kernel,

for every user of the system is forced to rely upon it. Because it appears

to have maximum leverage on the security problem, the Computer Systems

Research Division is concentrating on abstracting the security kernel and on

simplifying its internal structure. A Multics with a certified security kernel

would provide a usefully greater level of security than the present system

provides.

* Note that this is a special case of a common mechanism. The data items whose
value the lender can cause to change and thereby influence the data of the
borrower is the code of the lent procedure itself. Even if the procedure
is non-writable when lent, it was written by the lender when constructed.

CSR-14

Specifics

The effort by the Computer Systems Research Division to produce a

security kernel for Multics can be broken into four interrelated categories

of activity: reviewing, removing, simplifying and partitioning. This

section describes these categories, giving examples of each. The next sec-

tion provides a complete list of the work performed during this report

period.

The review category covers all efforts to understand better the specific

problems of the current Multics supervisor. In addition to trying to under-

stand the reasons for the size and complexity of the current supervisor, an

effort is being made to identify and correct existing security flaws. A list

of all known Multics security flaws is maintained. Each flaw reported is analyzed

to determine how it happened, how it can be fixed, and how similar flaws can

be avoided in the future. Several audits have been made to uncover suspected

new flaws. One highly successful search for new flaws was undertaken as a

result of a suggestion by Richard Bisbey II, at the Information Sciences

Institute of the University of Southern California, who has been trying to

abstract from many system penetration exercises some general patterns that

lead to security flaws in different systems. He reported that multiple references

by supervisor code to user-provided arguments can be exploited in many systems

to cause supervisor malfunction, and pointed out one example he had uncovered

in Multics. The problem is illustrated by the following procedure which might

be used to implement the segment deletion function in a system like Multics:

delete_seg: procedure(name, code); 1
call verify_permission(name, "delete", code); 2
if code = proper_access 3

then call delete(name, code); 4
return; 5

end; 6

CSR-15

Assume that "name" and "code" are user-provided arguments passed by

address. The first identifies the segment to be deleted from the file

system while the second provides a place for a return error code. The

call to "verify_permission" verifies that the user controlling this pro-

cess has permission to destroy the named segment. If the "code" returned

indicates that the user has delete permission for the segment, then the

"delete" procedure is called to perform the requested act. Now imagine that

the user contrives to change the value of "code" between lines 2 and 3.

Then clearly he can cause the deletion of a segment for which he has no

delete permission. The same problem exists with the "name" argument. In

almost all systems, including Multics, the user can cause such a carefully

timed change in the value of an argument in a methodical way.*

As a result of Bisbey's suggestion, an audit of the 170 entries to the

Multics supervisor was made, looking for this pattern. The audit uncovered

50 entries that made multiple references to arguments. Of these 8 clearly

were exploitable security flaws, 34 looked safe, and 8 were questionable.

The problem can be systematically avoided by requiring all supervisor entries

to copy their arguments before using them.

So far, all of the flaws uncovered ~y the review activities are isolated

and easily repaired. No major design flaws have been found.

The second category of activity is removing from the superVisor those

mechanisms not implementing functions of information sharing, interprocess

communication, or physical resource management, i.e., those functions not

* In fact, it is particularly easy on the Multics Honeywell 6180 processor, because
of the existence of a mode of addressing where the value of an indirect
address stored in memory will increment automatically with each use.
Placing an auto-incrementing indirect address in an argument list of a
supervisor call can generate the desired change of arg~ent value at just ~
the right moment.

CSR-16

required to be implemented as common mechanisms. In many cases removal in

volves undoing a pattern caused by a performance characteristic of the

Multics implementation for the Honeywell 645 computers. For that older machine

protection rings were simulated in software and cross-ring calls were quite

expensive. Thus, a call that went from a user protection environment to the

supervisor cost much more than a call which did not change protection

environments. The result was an effective pressure to include many functions

in the supervisor that did not need to be implemented as part of a common

mechanism. The reason for this pressure can be seen from the following

figure:

user

supervisor

A

B

A and B are procedure modules in the supervisor. Imagine that a single

invocation of A (by a user procedure) can result in a flurry of calls from

A to B. Then there is a clear performance cost in moving the user/supervisor

boundary to between A and B, even if only B need be part of the protected,

common supervisor.

The new hardware base for Multics, the Honeywell 6180, implements the protection

rings in hardware. One result is that calls from one ring to another now

cost no more than calls inside a ring. Thus, the performance penalty asso-

ciated with supervisor calls has been removed, and many modules included in

the supervisor for performance reasons rather than protection reasons now

CSR-17

can be removed.*

The actual removal activities are much more complex than suggested

by the example of the previous paragraph. In most cases the common and

private parts of a facility are not so neatly packaged in separate pro-

cedures, but are intricately intertwined in the same procedures and

data bases. Insight and ingenuity are required to separate the private

and common parts of a mechanism, leaving a reasonable interface. Also,

supervisor procedures execute in a slightly different environment than

other procedures. Code written for the supervisor environment often depends

upon the special way in which the supervisor execution environment is

initialized, the availability of internal interfaces implementing powerful

but primitive operations, and the ability to access all segments in the

address space of a process, regardless of the protection rings. Even if a

module implementing only a private function were found, it might not

execute outside the supervisor environment without being carefully modified.

This year the most important removal activities have been centered on

the file system. In a project now almost completed the functions of dynamic

intersegment linking and directing the search of the file system to satisfy

a symbolic reference have been removed from the supervisor. This project

is notable for two reasons. First, it removed an especially vunerable and

complex mechanism from the supervisor. The vulnerability is a result of the

linker having to accept user-constructed code segments as input data; the

chances of such a complex "argument", if maliciously malstructured, causing

the linker to malfunction while executing in the supervisor were demonstrated

* There may still exist other performance penalties associated with
removing functions from the supervisor that will inhibit production
of the smallest possible kernel. One goal of the research is to under
stand better the performance cost of security.

CSR-18

to be very high by numerous accidents. The complexity is apparent in that

the linker's removal eliminated 10% of the gate entry points into the

supervisor. The second interesting result of the linker's removal was

the demonstration that linking procedures together across protection

boundaries, i.e., rings, could be done without resort to a mechanism common

to both protection regions.

A second project related to the file system is the removal from the

supervisor of the facilities for managing the association between names and

the segments in the address space of a process. This project, now in its

initial implementation phase, requires that a data base central to the manage

ment of the address space, the known segment table, be aplit into a private

and a common part, and that the supervisor learn to lie convincingly on occa

sion about the existence of certain file system directories. The project will

result in a new, simpler interface to the file system portion of the supervisor.

Instead of identifying a directory by the sequence of character string names

locating it in the directory hierarchy, a segment number for the directory

will be used. The notion of a tree name locating an element of the hierarchy

is thus removed from the supervisor to be implemented by procedures executing

in the user protection environment. (The actual file system hierarchy still

remains protected inside the supervisor).

Another removal project of a different flavor is investigating the

possibility of moving most of system initialization from executing inside the

supervisor each time the system is started to executing once in a user

environment of a previous system. The idea is to produce as a system tape

a bit pattern which, when loaded into memory, manifests a fully initialized

system, rather than letting the system bootstrap itself in a complex way

CSR-19

each time it is loaded from a tape containing the separate pieces. One

pattern of operation may be much simpler to certify than the other.

The third category of activity is simplifying those mechanisms that

must remain in the kernel. Such activities can reduce both the size and

the complexity of the kernel. Simplification activities cover a broad

range. In some cases a piece of the kernel can simply be eliminated because

its function can be duplicated by another kernel mechanism. For example.

the possibility of replacing all mechanisms for performing external

I/O (to terminals, tape drives, card readers, card punches, and printers)

with the ARPA Network attachment is being explored. This would remove from

the kernel a large bulk of special mechanisms for managing the various

I/O devices, leaving behind a single mechanism for managing the network

attachment. Using network technology to provide the only path for external

I/O to Multics appears feasible. Internal I/O functions (for managing

the virtual memory, performing backup, and loading the system) would still be

managed in the kernel.

Another example of simplification involves a less obvious duplication

of mechanisms. A new buffering strategy for input and output from the

network has been devised which, by utilizing the virtual memory, provides a

core resident buffer which appears to be of infinite length. The infinite

buffer scheme is much simpler than the old circular buffer which had to be

used over and over again, with attendant problems of old messages not being

removed before a complete circuit of the buffer was made. The old buffer

scheme was really providing a special purpose storage management facility,

and the simplification was to use the standard storage management facility

of the system--the virtual memory--for this function.

CSR-20

Several specific simplification projects involve using multiple parallel

processes to implement kernel functions. A characteristic of the current

Multics implementation is that processes are relatively expensive, for each

must have an independent address space. As a result, many system functions

involving inherently parallel activities are forced into sequential algorithms.

The cost is increased complexity. As a basis for reimplementing such functions

taking advantage of their natural parallelism, a facility providing low cost

processes is being implemented. The processes are made cheap by having several

of them share the same address space. Several applications of cheap processes

are underway. Each interrupt handler will be assigned its own process

in which to execute, rather than being forced to inhabit whatever user process

was running when the interrupt occurred. As a result, the system interrupt

interceptor will simply turn each interrupt into a wakeup of the corresponding

process. By virtue of being full-fledged processes, the interrupt handlers

can use the normal system interprocess communication mechanisms to coordinate

their activities with one another and the user process, greatly simplifying

their structure.

Another important application of low cost processes is in simplifying the

structure of system resource management algorithms. The mechanism for moving

pages among the three levels of the memory hierachy is a good example. When

ever a missing page fault occurs in a process, the fault handler attempts to

initiate the transfer of the desired page from bulk store or disk to core.

This can only be done if a free core block is available. If not then the fault

handler first must move a page from core to the bulk store to make room. This,

in turn, is possible only if a free block of bulk store is available. If not, a

page must be moved from the bulk store, via core, to a disk by the fault handler.

This complex series of steps occurs sequentially with page control executing in the

process which took the page fault and then in various other user processes that happen to

CSR-21

receive the subsequent I/O interrupts. The new scheme i.nvo Lving mu It ip I e

dedicated processes is much simpler. One process runs in a loop making sure

that some small number of free core blocks always exist. Whenever the number

of free core blocks drops below that number, this process is awakened to trans

fer pages to bulk store. Another keeps space free on the bulk store by moving

pages to disk when required. The core freeing process is activated by wakeups for

processes that have taken a page fault and discovered a lack of free core blocks.

The bulk store freeing process is driven in a similar manner by the core freeing

process. The pabh taken by a user process on a page fault is greatly simplified.

This process can just wait until a core block is free and then initiate the trans

fer of the desired page into core. The overall structure looks as though it

will be much simpler than that currently employed.

The various simplification activities will eventually extend to all parts

of the kernel, and to the overall structure of the kernel. Careful attention

will be paid to the proper modularization of the entire kernel.

The final category of activity is partitioning the kernel into differently

protected pieces that can be certified separately, some perhaps less carefully

than others. While the specific projects in this category are less well developed

than those for other categories, two techniques for partitioning seem worth

exploring. The first is dividing the kernel that is part of each process into

multiple layers in different rings of protection. For example, the bottom layer

might implement a file system in which all segments were named by system gene

rated unique identifiers. The next layer would implement a user named directory

hierarchy on top of the primitive first layer file system. Another suggestion

is that mechanisms to provide absolute compartmentalization of users and stored

information be implemented at the bottom layer, and mechanisms to allow

controlled sharing within the compartments be implemented at the next layer. ~-

CSR-22

This last suggestion is particularly intriguing, because if correctly

done the notion of minimizing common mechanisms would be well supported.

The second layer mechanisms would be common only within each compartment.

The second partitioning technique under investigation is separating

the policy component from the mechanism component of resource management

algorithms by putting the policy algorithms in a non-kernel protection

ring in special system processes. For example, the process described

earlier that removed pages from core memory could

be arranged as a multi-ring process. In the most privileged rings would

execute the standard system kernel with some special gate entry points

to implement movement of a particular page from core to a particular

free block on the bulk store. Other gates would provide usage information

on pages in core. In a less privileged ring would execute the policy

algorithm that decides which page to remove when another free core block

needs to be generated. The special gates into the supervisor would be

used to do the actual moving, once a decision was made. The policy algorithm,

however, could never read or write the contents of pages, learn the segment

to ~vhich each page belonged, or cause one page to overwrite another, for

the supervisor gates would be programmed to prevent these actions. The

result is that the policy algorithm could never cause unauthorized use or

modification of the information stored in the pages. It could only cause

denial of use. Under the circumstance that denial of use was deemed less

serious than the other security violations, the policy algorithm need not

be as carefully certified as the rest of the kernel. It appears that the

idea of separating policy from mechanisms applies to all resource manage

ment algorithms.

CSR-23

This completes the discussion of the specific techniques to be used by

the Computer Systems Research Division to produce a certifiably secure

kernel for Multics. The next section details the specific tasks performed

during the progress report period.

CSR-24

Tasks ln ~ Certjfjcatioo Project, ~ 1, lill-~ iQ, lili

The following lists all tasks on which progress was made during
the year. Since the list is complete, some of the tasks
mentioned here duplicate the samples of the previous section.

I. Census of Ring 0.

As a first step in the certification of the Multics
system, it was necessary to get some rough idea of the
magnitude and structure of the present kernel of the
system. To provide this information, Victor Voydock
prepared a summary of the size of all the ring 0 modules,
and listed these modules according to what subsystem they
were a part of, and according to their source language.
This overview of the present system was very helpful in
determining which components of the system ought to be
attacked first.

11. Removal of the Linker from Ring 0.

The project of removing the linker from ring 0 was
undertaken by Phillipe Janson as a Master's thesis, which
was completed In May, 1974, and is now available as a
Project MAC Technical Report, TR-132. It was important
that the linker be removed, since several other components
of the system, in particular the management of reference
names, could conceivably be removed from the kernel after
the linker had been removed. The user ring version of the
linker which he created Is now completely operational;
the only task remaining before the linker can be installed
in the standard system is to insure that performance of
the new linker is at least equivalent to the performance
of the linker currently being used in the kernel.

111. Removal of Name-Space Management From Ring 0.

One of the functions of the Known Segment Table, or K$T,
is to remember the associations between segment numbers
and reference names on a per-process basis. One of the
principal users of this facility is the linker, which
must resolve named references into segment numbers. With
the linker now existing in the user ring, it is possible
to consider rernov i ng portions of the KST manager into the
user ring as well. Richard Bratt, as part of his Master's
thesis research, has proposed a scheme for moving this
function to the user ring which eliminates the drawbacks
of allowing the user to directly initiate directories.
The only function which remains inside the kernel of the
system in his proposal is the association between segment
numbers and unique ID's.

CSR-25

IV. Removal of the Storage Hierarchy from Ringo.

The two previous tasks represent removal from the kernel
of the system of much of the per-process segment name
management. Douglas Hunt is also considering whether
certain of the system wide name management mechanism could
be removed from the kernel or at least partitioned in a
separate area of the kernel. In particular, he is
considering whether the concept of the storage hierarchy
could be removed from the kernel, leaving within the
kernel only a catalog of segments indexed by unique 10.
In the outer ring an association would be maintained
between name, unique ID, and segment number.

v. Removal of User 1/0 from Ring 0.

A thesis completed by David Clark, now available as
Project MAC Technical Report TR-117, discusses a strategy
for handling user-initiated 1/0 which operates almost
completely in the user ring. The only function which is
required within the kernel is the management of
multiplexed devices. The scheme uses as the buffering
strategy for 1/0 the virtual memory management algorithm
of the system Itself. The scheme described in the thesis
effectively removes 1/0 from the kernel of the system;
however, it requires an 1/0 controller with capabilities
slightly greater than the one currently available on
Multics, so that .this particular removal will not
actually be implemented in the near future. However,
Honeywell has implemented an interface to the 1/0 system,
which has some of the same features as the scheme
described in the thesis.

VI. Simplification to Page Control.

Andrew Huber is considering ways to simplify the memory
management algorithm of the Multics system. In
particular, he Is considering a reorganization in which
most of the functions of page control are executed in
separate asynchronous processes, so that the only task
which the user process executes is the actual fetching of
a missing page. It is felt that by isolating functions in
separate processes, and constraining them by restricting
the interprocess communication paths, it will be easier to
understand and certify the overall algorithm. One of the
other benefits of structuring page control in this way is
that It should be possible for several processors to take
and handle a page exception simultaneously, without
interfering with each other. We are currently preparing,
in a high level language devised by Bernard Greenberg, a
version of page control structured in this fashion, which
can be used for discussion.

CSR-26

VII. Simplification of Traffic Control.

The group is attempting to restructure the process
scheduling algorithm of the Multics system. In
particular, we are interested in separating two ideas, the
actual switching of the processor from one process to
another, and the decision making algorithm which
determines which processes are eligible to run. It is
hoped that this will speed up the act of switching from
one process to another, and also make the algorithm easier
to understand.

VIII. Removal of the Answering Service from the Kernel of the
System.

The Answering ~~rvice, those algorithms which authenticate
users, create processes, and manage teletype lines, must
currently be considered within the kernel of the system,
even though they are not within ring 0 but within a
separate process. It is very desirable that we identify
some component of this mechanism which, if properly
isolated and certified, would eliminate the need to
certify the remainder of the answering service. Warren
Montgomery has proposed a strategy for user-authentication
and process creation which would effectively r~nove from
the kernel almost all of the current answering service
mechanism. He is currently attempting to discover what
problems arise from this proposed division of the
function.

IX. The Use of Multiple Processes as an Organizational Tool.

As the discussion of page control suggested, an approach
to understanding the structure of the system is to
separate portions of it into separate processes. There
are a variety of projects underway to explore this
organizational structure. We are currently developing a
special kind of process which runs only within ring 0,
which has limited capability, and Is very efficient to
execute. It is our intention to use this kind of process
in several applications within the system kernel. The
example of page control has already been given. Another
application of these processes is in the handling of
interrupts. Code which executes at interrupt time is
subject to several special constraints, for example, it
may not abandon the processor and it may not loop on a
lock. This makes code which runs at interrupt time much
more comple~ and prone to errors. Running this code
instead in a different process will eliminate these sorts
of problems. Robert Mabee is currently proceeding with
the implementation of this sort of process, and as a test
case intends to modify the typewriter control software so
that the code now running at interrupt time runs instead

CSR-27

in a process.

Another experiment with the use of multiple processes
involve modifications of the user ring environment so that
the single process of the user is conceptually shared
between a number of tasks, all running in the same virtual
address space. This structure, in addition to simplifying
the user ring environment, seems to have several
beneficial effects on the structure of the kernel. The
handling of the fvlultlcs "quit" is an obvious example. The
propagation of this signal through the kernel from its
receipt by the interrupt handler to the ultimate process
interrupt is very complex and torturous. It appears that
the simplest thing for the kernel to do with a "quit"
signal is to translate it immediately into a wake-up for
some process. It is not clear, however, what arrangement
of processes in the user ring can best take advantage of
this interpretation of a "quit". The current experiment
with the user ring environment will let us explore how to
take advantage ~f this interpretation of the "quit".

X. Restructuring of Network Control Program.

Because of our group's direct involvement in the
connection of Multics to the ARPA Network, we have
developed significant expertise in that portion of the
system. For this reason, the network is a good candidate
for investigation of techniques for simplification of the
system kernel. Having the network software properly
structured is especially important, since it is possible
that a suitable network could serve as the sole form of
external 1/0. For this function it seems appropriate to
use multiple processes as a tool for simplification. In
this case, it may be possible to remove some of the
processes from the kernel thus reducing directly the bulk
of the supervisor code related to the ARPA network.
Notice that the ARPA network is especially interesting in
this respect, since, being a multiplexed facility, some
protection is required of the de-multiplexing and
multiplexing function. Any technique that removes this
from the kernel, without compromising its security, is an
especially valuable modification to the system.

XI. System Initialization.

In order to certify the Multics system, it will be
necessary to certify the "initial state" of the system;
the ad hoc initialization techniques currently used makes
such a certification very difficult, if not impossible.
The intention of this study is to discover new ways of
initializing the system which are more amenable to
certification.

CSH-28

XII. Recovery from System Errors.

X I I I.

Related to the issue of system initialization Is the issue
of recovery from errors. They have in common the
requirement that is necessary to certify or assure that
the system is in some known state. We are Interested in
determining whether there are some particular structures
for data bases and algorithms which makes it much easier
to assure that the data base is in fact consistent and
correct. One particular project which we are carrying out
In an attempt to learn more about the structure of data
bases is a comparative analysis of Multics and the
Burroughs operating system, currently being prepared by
Ben WI 11 iams. The Burroughs Master Control Program
apparently recovers very effectively from a wide variety
of errors, and we are hopeful that insight gained from an
understanding of this system can help the Multlcs system
recover from errors more gracefully and reliably.

High-Level Description of System Functionality.

As part of any attempt to certify a system, it Is
necessary to have some description of the intended
functionality of the system itself to serve as a standard
against which to certify. Several members of the project
have tried var.Jous notational schemes for describing the
functionality of various parts of the system. A
representation of system data bases and and related
algorithms in the VIenna Definition Language was performed
by Richard Bratt, using the known segment table as a case
study. A similar description with directory control using
English as the descriptive language was performed by
Douglas Hunt. Finally, Bernard Greenberg, as part of his
thesis (Project MAC Technical Report TR-127), has devised
a language for describing program with complexity
structured data bases, which attempts to avoid
implications concerning the implementation of the data
base structure. This language is now being used to
represent various alternative algorithms being considered
as part of the restructuring of page control.

XIV. Formulation of Criteria for Inclusion of Modules Within
the Kernel.

Richard Feiertag Is currently attempting to develop a
specific set of rules which would determine whether a
module should or should not be included within the kernel
of the system. He is attempting to Identify these rules
by studying a number of specific parts of the current
system and identifying the trade offs related to moving
these particular parts out of the kernel. He is currently
studying the separation of policy from mechanism in page
control.

CSR-29

XV. Study of Multics Security Holes.

An understanding of how system bugs arise and what is
required to fix them gives insight into the problems of
certification. For this reason we are interested in the
discovery and understanding of the flaws in the current
system. We attempt, periodically, to catalog all known
ways to violate the security of Multics, and to identify
the general class of problems of which each bug is a
specific example. ·

XVI. Implementation of New 1/0 Buffering Strategy

As part of designing a simple structure for 1/0, we are
producing a buffer management mechanism which uses the
virtual memory manager algorithm. This is described in
the section of the progress report which describes CSR
division work on the ARPA network.

CSR-30

ARPA NETWORK ACTIVITIES

This last year has been a year of transition for those working on the

ARPA network, as the development effort necessary to get the network oper

ational on Multics is gradually phasing out, to be replaced with more

research oriented projects.

These research efforts on which the division is now embarking repre

sent the best indication of the direction in which we see ourselves going

in the next year.

As part of this transition, the number of staff assigned to this area

has dropped from five full-time to one full-time and two half-time, with

the half-time staff spending the remainder of their time working on projects

related to the division's certification effort. This sharing of staff is

part of our effort to unify the various efforts of the division.

The various network tasks in which the division has engaged are

detailed below:

Conversion of Multics to New Hardware

Before and during the Summer of 1973, the Multics operating system

was modified to run on a Honeywell 6180, rather than a Honeywell 645. It

was necessary, as part of this transition, to modify the Multics software

so that the ARPA network would operate with the 6180. Several sub-tasks

were implied by this transition. First, it was necessary to redesign a

portion of the Network Control Program so that it would interface to a

full duplex rather than a half duplex network interface. Our experience,

in common with that of the network community at large, was that the half

duplex interface was undesirable; we seized this opportunity to convert

CSR- 31

to full duplex. It was also necessary, as part of the move, to construct

a new hardware interface between the 6180 and the IMP. The interface

designed for the 645 was inappropriate, first because it was half duplex,

and second because it did not support the distant interface, which we

intended to use.

It has been our intention to hand off the day to day operation of the

ARPA network to the staff of the Information Processing Center. For this

reason, we invested some effort during the move in developing and inte

grating the network software so that it could be manipulated by the Multics

system operators, as part of their standard procedures. This effort, which

involved automating the starting, stopping, and recovering from errors of

the network, was successful to the extent that we now need intervene only

in very exceptional circumstances, such as a network crash or a hardware

failure.

In the switching from one machine to another, the physical location of

the hardware changed. For this and other reasons, the M.I.T. community

obtained a second IMP. A certain amount of effort was required on our part

to cut-over from the old to the new IMP. This task has been completed, and

the operational responsibility for this IMP has been given to the

Information Processing Center's staff.

Improvements to Network Service

During the course of the year, the Computer Systems Research Division

has completed several tasks to enhance the quality of the network service

provided by Multics. Several programs have been rewritten, either to enhance

performance or to eliminate bugs. For example, the user interface to the

Telnet protocol, which previously existed as a privately maintained program

CSR-32

on Multics, has been upgraded and made a part of the official Multics network

software library. There is a continuing effort to enhance the mail sending

facility, both in-bound and out-bound. Multics now supports a facility which

allows unsendable out-bound mail to be queued for later retransmission.

In-bound mail can now be delivered without the sender knowing the project

ID of the recipient. We currently have designed a modification to in-bound

mail handling which would decrease the cost and increase the reliability.

This feature should be installed in the near future.

The network documentation has been upgraded substantially during the

year. We have assembled a draft version of a Network Users' Supplement to

the Multics Programmers' Manual, which gives an overview of the ARPA network

on Multics, and describes how to get into Multics from the ARPA network, and

how to get out to the ARPA network from Multics. In addition to the Network

Users' Supplement, we are also producing a description of internal inter

faces and program strategies of the system programs which support network

use, to be published as one of the series of Program Logic Manuals which

Hone~~ell is producing to describe the Multics operating system.

New Protocols

During the year our group has participated in the development and

implementation of several new network protocols. Code to implement the new

Telnet protocol was implemented and installed by Doug Wells. Ken Pogran

has.contributed to the current redesign of the file transfer protocol and

plans to implement this new protocol whenever the specification has stabilized.

In addition to these two protocol revisions, which have required significant

effort on our part, Raj Kanodia has also proposed modifications to the host

protocol which attempts to deal with lost messages in a more graceful manner

than the current protocol does.

CSR-33

Research Topics

The division has carried out several research tasks in the network

area this year; this is perhaps the most interesting work done relating to

the ARPA network. In an attempt to increase the efficiency of transmitting

data to and from the network, and at the same time gain a more basic under

standing of the interaction between input/output functions and virtual

memory computer systems, Raj Kanodia and David Clark have been devising a

new buffering strategy for reading and writing from the network. The result

of this design is a buffer which, by utilizing the virtual memory, appears

to be infinite in length. This use of the virtual memory eliminates any

need to compact or otherwise manage the buffer area, thus reducing overhead.

The buffer is also directly accessible to a user process, since it is in the

virtual address space; this avoids the necessity of copying data in order ~

to make it accessible. It is our intention to attempt to use this same

buffering strategy to interface the typewriter control processor as well as

the ARPA network; it appears that this strategy can be exploited successfully

for all devices for which the system's nucleus must take responsibility.

This unification of buffer management, by reducing the bulk and complexity

of the kernel, is a significant contribution to our certification project

discussed earlier in the report.

As part of our research into the use of the ARPA network as a vehicle

for communication between active processes, Warren Montgomery and Ken Pogran

have been studying and implementing the RSEXEC protocol devised by Robert H.

Thomas of Bolt, Beranek and Newman. Initial investigation of this protocol

suggests that parts of it can be adapted easily for our operating system,

but the other parts, in particular the manipulation of files, are difficult

to dovetail into our particular view of a storage system and user interface

CSR-34

thereto. More research is intended in this area, as manpower permits;

we hope that a partial implementation of RSEXEC will become available

on Multics.

In a project related to the previous one, we have currently established

a process in Multics which is always available for the purpose of providing

services related to the ARPA network. Currently, this process will queue

and retransmit mail which for some reason is currently undeliverable across

the network. In the near future, we intend that this process will handle

in-bound mail, and support those functions of RSEXEC which we are able to

implement.

As part of our redesign of the buffering strategy for the network,

Art Benjamin has attempted to increase the precision of the meters which

tell us about traffic flow between Multics and the ARPA network.

Michael Padlipsky has developed the specification for a network-wide

text editor, called neted, which has been implemented and used at eight

different sites on the ARPA network. It is felt that this editor serves

as a small but valid example of the fashion in which one standard command

interface can be adapted to various time sharing systems, with their various

user interfaces.

Network Committees

During the year our group has contributed to the network effort by

active participation in several ARPA network committees. These include

the "USING" subcommittees which are specifying the common command language

and neted; the committee which is redesigning the

file transfer protocol; the Review Committee for the ARPA network terminal

CSR-35

system (ANTS) and the ELF operating system for PDP-11; the Graphics

protocol committee; and an informal group redesigning the ARPA network

host-to-host protocols.

CSR-36

TECHNOLOGY TRANSFER

The term "technology transfer" may be loosely applied to making re

search results accessible to industry, government, and education institu

tions. Since, in undertaking the Multics project, the Computer Systems

Research Division developed a sizable store of technology, transfer of

that technology has recently been a major activity. Several specific

points indicate the progress of this transfer:

l) In April, 1974, Honeywell Information Systems Inc. announced

availability of an upgraded hardware system for Multics, the model

68/80, which includes a cache memory in each processor and support

for a large (2-8 million words) directly addressable memory.

2) Honeywell 6180 Multics installations were completed at M.I.T.,

the Air Force Data Services Center, Ford Motor Co., and General

Motors. These installations are in addition to the older Honey

well 645 installation at Rome Air Development Center and also

Honeywell internal Multics sites in Waltham and Billerica, Mass.,

Phoenix, Arizona, Paris (Honeywell Bull) and Tokyo (Toshiba).

In total, as of June 30, 1974, there were three 645 sites and

seven 6180 sites running Multics. Each of the non-Honeywell sites

has initiated contact with M.I.T. to facilitate more direct trans

fer of knowhow and, in some cases, of M.I.T.-developed Multics

subsystems.

3) The M.I T. Information Processing Center and the Telefunken Co.

completed negotiations for Telefunken's acquisition of knowhow and

rights to utilize the Multics PL/1 compiler.

CSR- 37

4) As development of the Multics ARPANET attachment has matured,

transfer of that technology to Honeywell has begun. Although not

yet fully supported by Honeywell, the network attachment is currently

available to other Honeywell customers as an option, using M.I.T.

supplied software.

5) One M.I.T. staff member versed in ARPANET development has moved to

the MITRE Corporation to help implement a government network similar

to the ARPANET.

6) Of the ten undergraduate and graduate students of CSR who completed

their educational programs, four accepted positions with Honeywell.

7) Faculty members of the Computer Systems Research Division have been

actively consulting with several different government and industrial

organizations; these consulting activities largely consist of

translating the Multics experience into forms applicable to other

system designs. Organizations include Control Data Corporation,

IBM Corporation, General Telephone and Electronics, and System

Development Corporation, and groups within the Department of Defense.

In a related activity, the Computer Systems Research Division entertained

several industrial visitors interested in Multics technology, many

making contact through the M.I.T. Industrial Liason Office.

8) The first draft of a tutorial paper on the protection of information

in computer systems was completed by Professors Saltzer and

Schroeder. This paper captures for educational purposes many of

the insights discovered in the course of Multics development. Also

made available in Project MAC Technical Report form was the intro

duction to the Multics Programmers' Manual.

CSR-38

9) Japanese interest in computer systems technology has been high

for several years; in most recent periods we have had one or

more Japanese visitors. This year, Professor Eiiti Wada of the

University of Tokyo joined the division as a visiting Associate

Professor. Also, two books about Multics were published (in

Japanese) by former visitors. The first was a translation of

Elliott Organick's book "The Multics System" by Akio Sasaki and

Toyohiko Kikuchi. The second, a new book entitled "Structure

of Computer Utility - Anatomy of MULTICS" was written by Professor

Katsuo Ikeda of Kyoto University.

CSR-39

OTHER ACTIVITIES

During the current reporting period Masters' theses by Robert M.

Frankston and Lee J. Scheffler have been completed under the supervision

of F. J. Corbato

In the thesis by Frankston, entitled "The Computer Utility as a

Marketplace for Computer Services," the implications of widespread

commercial use of a computer utility were explored. As stated in the

abstract:

"Most contemporary computer systems are oriented towards

users who run programs. The environment for services puts

different requirements on the computer system than do the

needs of programmers, so as to permit all the participants

in the market to make effective use of its facilities without

requiring dedicated facilities and without interfering with

each other. As with any marketplace, it must be convenient

to do business within its framework."

The thesis, available as MAC TR-128, also includes as an example a

design evolved from the Multics System which implements a particular

marketplace model.

"Performance Evaluation of Rotating Disk Subsystems in Multiprogrammed

Computer Systems" is the title of the thesis by Scheffler. This thesis

analytically derives, using primarily the mathematics of Operations Research,

CSR-40

expressions (or in some cases bounds) for the performance of various

common classes of disk subsystems subject to work loads typical of large

scale multiprogrammed computer utilities. As stated in the abstract, this

study

11 is fundamental to 1) predicting the overall performance of the

system; 2) enhancing disk subsystem performance to meet evolving

secondary memory performance requirements; and 3) choosing disk

subsystems to meet stated performance requirements."

The derived expressions were validated against measurements taken on the

Multics System at M.I.T.

Another Master's thesis, by Bernard Greenberg, developed a set of

measuring tools for exploring the paging rate of Multics for very large

memory sizes. This work involved modifying Multics to intercept all movements

of data to and from the disk and thereby record an address reference string.

The reference string is recorded during actual Multics operation, and later

analyzed with a least-recently-used algorithm simulator to discover what disk

traffic rate would have resulted with larger main memory sizes. The measurement

is complicated by a variety of real-life factors such as Multics cleverly not

writing out pages which happen to contain all zeroes, and Greenberg succeeded

in providing suitable corrective measures for each of them. Unfortunately the

development and proof that the measuring tool worked was a thesis in itself;

a systematic program of measurements with the tool awaits some other student.

A Bachelor's thesis, by Gordon Benedict, developed two software implemen

tations of the IBM "LUCIFER" enciphering algorithm. The purposes of this

activity were three fold:

CSR-41

1) to discover whether or not the IBM disclosure of the LUCIFER

system was actually complete enough to permit its duplication,

2) to establish one example of the potential performance of soft

ware encryption strategies on the Honeywell 6180 computer,

3) to provide a tool with which to experiment with several proposed

information protection strategies such as end-to-end encryption

of ARPANET links, and encryption of files stored on line.

The encryption study is of interest both to the ARPANET activities and

also to the information.protection and certification study.

CSR-42

•

PUBLICATIONS, TALKS AND THESES

Publications

Ikeda, K., Structure of Computer ytility - Anatomy of MULTICS, Shokodo Co., Ltd.,
Tokyo, 1974.

Multics Programmers' Manual, Part l (Introduction), Revision 14,
September 30, 1973.

Multics Programmers' Manual, Part II (Reference Guide), Revision 15,
November 30, 1973.

Saltzer, J. H., "A Simple Linear Model of Demand Paging Performance,"
Comm. ACM 17, 4 (April, 1974), pp. 181-186.

Schroeder, M. D., "P,roceedings of the ACM SIGPLAN/SIGOPS Interface Meeting,"
SIGPLAN Notices~' 9 (September, 1973), (editor with R. M. Graham).

Schroeder, M. D., "A Brief Report on the SIGPLAN/SIGOPS Interface Meeting,"
Operating Systems Review 2, 3 (July, 1973), pp. 4-9.

Technical Reports Published

Rotenberg. L. J .• "Making Computers Keep Secrets," Project MAC Technical
Report TR-115 (Ph.D. thesis, M.I.T. Department of Electrical Engineering,
June, 1973).

Stern, J. A., "Backup and Recovery of On-Line Information in a Computer
Utility," Project MAC Technical Report TR-116 (E.E. thesis, M.I.T.
Department of Electrical Engineering, August, 1973).

Clark, D. D., "An Input/Output Architecture for Virtual Memory Computer
Systems," Project MAC Technical Report TR-117 (Ph.D. thesis, M.I.T.
Department of Electrical Engineering, August, 1973).

"Introduction to Multics," Project MAC Technical Report TR-123, November, 1973.

Greenberg, B. S., "An Experimental Analysis of Program Reference Patterns
in the Multics Virtual Memory," Project MAC Technical Report TR-127
(S.M. thesis, M.I.T. Department of Electrical Engineering, January, 1974).

Frankston, R. M., "The Computer Utility as a Marketplace for Computer
Services," Project MAC Technical Report TR-128 (E.E. thesis, M.I.T.
Department of Electrical Engineering, January, 1974).

Janson, P. A., "Removing the Dynamic Linker from the Security Kernel of a
Computing Utility," Project MAC Technical Report TR-132 (S.M. thesis,
M.I.T. Department of Electrical Engineering, May, 1974).

Other Theses Completed

-~- Gumpertz, R. H., "The Design and Fabrication of an ARPA Network Interface,"
~,_ S.B. thesis, M.I.T. Department of Electrical Engineering, July, 1973.

Scheffler, L. J., "Performance Evaluation of Rotating Disk Subsystems in
Multiprogrammed Computer Systems," E.E. thesis, M.I.T. Department of
Electrical Engineering, June, 1974.

Benedict, G. G., "An Enciphering Module for Multics," Project MAC Technical
Memoradum~M-50 (S.B. thesis, M.I.T. Department of Electrical
EngineerinS, June, 1974).

CSR-43

Theses Completed, continued

Goulet, L. J., "A Dynamic Peripheral Allocation Scheme Between Identical
Processors," S.B. thesis, M.I.T. Department of Electrical Engineering,
May, 1974.

Vogel, D. A., "Manufacturing Technical Data Systems," S.B. thesis, M.I.T. -·
Department of Electrical Engineering, June, 1974.

Theses in Progress

Bratt, R. G., "Removing Name Space Management from the Security Kernel of
a Computer Utility," S.M. thesis, M. I. T. Department of Electrical
Engineering, expected date of completion, December, 1974.

Reed, D. P., "A Simple Implementation of Processes as a Basis for a Certifiable
Computer Utility," S.M. thesis, M.I.T. Department of Electrical
Engineering, expected date of completion, January, 1975.

Bishop, P. B., "Very Large Address Space Modularly Extensible Computer Systems,"
Ph.D. thesis, M.I.T. Department of Electrical Engineering, expected
date of completion, June, 1975.

Talks and Presentations

Saltzer, J. H., "Engineering Insights Based on Experience with Multics,"
series of six lectures given at the Technion International Summer School
on Time-Sharing, Haifa, Israel, July 8-10, 1973.

Saltzer, J. H., "Protection and the Control of Information Sharing in Multics,"
presented at the Fourth ACM Symposium on Operating System Principles,
Yorktown Heights, New York, October 15-17, 1973.

Thomas_, E. L., "Proposed ARPA Network Graphics Protocol," presented at the
Workshop on Machine-Independent Graphics, National Bureau of Standards,
Gaithersburg, Maryland, April 22-23, 1974.

Pogran, K. T., "Using Multics ARPA Network Software," presented at the
University of Illinois Center for Advanced Computation, October 25-26, 1973.

ARPA Network Committee memberships

Padlipsky, M. A.: User Interest Group (USING) and subc9mmittees.

Thomas, E. L.: ARPA Network Graphics Group

Pogran, K. T.: ARPA Network Graphics Group,
ARPA Network Terminal System Steering Committee,
File Transfer Protocol Committee.

CSR- 44

.. .

