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GLOSSARY 

The following glossary provides definitions for several terms as 

used in this paper in the context of protecting information in computers. 

access-control-!!!! - A list of principals which are authorized to access 
some object. 

authentication - Used to denote mechanisms and techniques that check 
the identity of the person making a request. 

authorization Granting a user permission to access certain 
information. 

· capability - In a computer system, an unforgeable ticket which, 
when presented by a process, can be taken as incon­
testable proof that the process has permission to 
access the object named in the ticket. 

certification Used to denote the checking of the accuracy, correct­
ness, and completeness of a security or protection 
mechanism. 

complete isolation - A protection system which separates users into groups 
between which no flow of information or control is 
possible. 

descriptor 

domain, protection 

encipherment 

- Used to denote a protected value which is (or 
leads to) the physical address of some protected 
object. 

- An abstraction used to refer to the set of objects 
which currently may be directly accessed by a process. 

- The (usually) reversible scrambling of data according 
to a secret transformation key, so as to make it safe 
for transmission or storage in a physically unprotected 
environment. 

hierarchical control - referring to ability to change authorization, a 
scheme in which each authorization is controlled by 
another authorization, resulting in a hierarchical 
tree of authorization. 

list-oriented - Used to describe a protection system in which each 
protected object has a list of authorized accessors. 

~. 



password 

permission 

prescript 

principal 

privacy 

privileged state 

propagation 

protected object 

protected subsystem 

protection 

protection ~ 

revocation 

- A secret character string which may be used to 
authenticate the claimed identity of a user. 

Used to indicate a particular form of access which 
is allowed, e.g., permission to read as contrasted 
with permission to write. 

- A rule which must be followed before access to an 
object is permitted. 
impediment to access 
is discouraged. 

Its purpose is to provide an 
so that abuse of the access 

- The entity directly responsible for the activities 
of a process. A principal is a precise abstraction 
for the responsibility; principals may be associated 
with users on a one-to-one basis or in other more 
complicated arrangements. 

- The ability of an individual (or organization) to 
decide when and to whom personal (or organizational) 
information is to be released. 

- A processor mode which allows use of instructions 
which can potentially modify protection information 
such as descriptor values. 

- When a user, having been granted access to some 
object, grants access to someone else. 

- A data structure whose existence is known to a user, 
but whose internal organization is not accessible, 
except by invoking the protected subsystem (q.v.) 
which manages it. 

- A collection of procedures and data objects which are 
encapsulated in a way that the internal structure of 
a data object is accessible only to the procedures 
of the protected subsystem, and the procedures may 
be called only at designated entry points. 

- 1. Security (q.v.) 2. Used more narrowly to denote 
mechanisms and techniques which control the access of 
executing programs to stored information. 

- A principal which may be used by several different 
individual users. 

- The action of a user taking previously authorized 
access away from some other user. 

v. 



security 

self-control 

ticket-oriented 

unforgeab il ity 

user 

- Used to denote mechanisms and techniques which 
control the use, modification, and release of 
information. 

- Referring to ability to change authorization, a 
scheme in which each authorization contains within it 
information on who may change it. 

Used to describe a protection system in which each 
active accessor (e.g., a process or a procedure, as 
appropriate) maintains a list of unforgeable bit 
patterns, called tickets, one for each object it is 
authorized to access. 

- The inability to duplicate an object, such as a 
badge or key, or a register value, such as a 
descriptor. 

- Used imprecisely to refer to the person who assumes 
responsibility for the activities of a process. 

vi. 
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THE PROTECTION OF INFORMATION IN COMPUTER SYSTEMS 

This tutorial paper explores the protection of computer-stored information 

from unauthorized use or modification. It concentrates primarily on those 

architectural structures--whether hardware or software--that are necessary 

and useful to support information protection. The paper is organized in 

three main sections. The first part covers basic principles and should be under-

standable to any reader familiar with computers. The second part, on general 

descriptor-based protection systems, requires some familiarity with modern 

descriptor-based computer architecture. The third part contains some genezal 

observations about the state of the art and some unsolved research problems. 

I: Basic Principles of Information Protection .. = 

Introduction 

As computers become better understood and more economical, every day 

brings new applications. Many of these new applications involve both storing 

information and use by several individuals, often simultaneously. The 

key concern in this paper is multiple use. For those applications in which 

all users should not have identical authority, some scheme is needed to insure 

that the computer system implements the desired authority structure. For 

example, in an airline seat reservation system, a reservation agent might 

have authority to make reservations and to cancel reservations for people 

€) 1974 by J. H. Saltzer 
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whose names he can supply. A flight boarding agent might have the 

additional authority to print out the list of all passengers who hold 

reservations on the flights for which he is responsible. The airline 

might wish to withhold from the reservation agent the authority to print 

out a list of reservations) so as to make less likely his cancelling a 

reservation of some legitimate seat-holder in order to make room for a 

customer who has offered a bribe. 

The airline example is one of protection of corporate information for 

corporate self-protection (or public interest, depending on one's view.) A 

different kind of example is an on-line warehouse inventory management system 

which generates reports about the current status of the inventory. These 

reports not only represent corporate information which must be protected 

from release outside the company, but also they may provide an indication 

of the quality oi the job being done by the warehouse manager. In order to 

preserve his personal privacyJ it may be appropriate to restrict the access 

to such reportsJ even within the company, to those who have a legitimate reason 

to be judging the quality of the warehouse manager's work. 

Many other examples of systems requiring protection of information are 

encountered every day: credit bureau data banks, law enforcement infor-

mation systems, time-sharing service bureaus, on-line medical information 

systems, and government social service data processing systems. These examples 

span a wide range of needs for organizational and personal privacy. All have 

the common element of controlled sharing of information among multiple users. 

All, therefore, require that some plan be made to insure that the computer system 

• 

helps implement the correct authority structure. Of course, there are some 

applications in which no special provisions in the computer system are necessary.~ 
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It may be, for instance, that an externally administered code of ethics or a 

lack of knowledge about computers provides adequate protection of the stored 

information. However, although there exist situations in which the computer 

need provide no extra aids to assure protection of information, more commonly 

the computer system is called upon to enforce a desired authority structure. 

As suggested in the above examples, the ~ "privacy" denotes 

~ socially defined goal of ~ individual (£E organization) ~-

cerning when and ~ whom information about himself (£! itself) is 

to be released. 

This chapter will not be explicitly concerned with privacy*, but instead with 

the mechanisms used to help achieve it. 

~ terms 11protection11_..£E. "security" (the ~ terms being 

synonymous in ordinary usage**) denote techniques which control 

the ~' modification, and release of information. 

Some examples of security techniques which are sometimes applied to computer 

systems include: 

labeling of files with lists of authorized users 

verifying the identity of a proposed user by demanding a password 

shielding the computer to prevent interception and interpretation 

of electromagnetic radiation 

enciphering information sent over telephone lines 

* A thorough and scholarly discussion of the concept of privacy may 
be found in the book Privacy and Freedom by Alan Westin (Atheneum, 1967). 
An interesting study of the impact of technology on privacy is The Assault 
~Privacy, by Arthur R. Miller (University of Michigan, 1971; Signet, 1972). 

>'<* In 1967_, Willis Ware {AFIPS .f2E.!. R!:.£.£· 30 (1967), 287-290] suggested that the 
term security be used for systems which handle classified defense informa-

~- tion, and privacy for systems handling non-defense information. This 
suggestion has never really taken hold outside the defense security commun­
ity, but literature originating within that community often uses Ware's 
definition. 
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padlocking the room containing the computer 

controlling who is allowed to make changes to the computer system 

(including both hardware and software changes) 

using redundant circuits or progrannned crosschecks which maintain 

correct operation in the face of hardware or software failures 

certifying that the hardware and software is actually implemented 

as intended 

It is thus apparent that a wide range of considerations and techniques are 

pertinent to the engineering of security of information. Historically, the 

literature of computer systems has more narrowly defined the term "protection" 

to be just those techniques that control the access of executing processes to 

stored information. An example of a protection technique is the labeling of 

computer-stored files with lists of authorized users. Similarly, the term ~ 

"authentication" is used for those techniques that check the identity of a 

remote human user of a computer system. An example 

of authentication is the demanding of a password. The next sections concen-

trate primarily on protection and authentication mechanisms, with only 

occasional reference to the other equally necessary security mechanisms.* 

* Some authors have widened the scope of the term "protection" to additionally 
include mechanisms designed to prevent or limit the consequenses of acci­
dental mistakes in progrannning or in applying programs. With the wider 
definition, even computer systems used by a single person might include 
"protection" mechanisms. The effect of this broader definition of "pro­
tection" would be to also include in our study, for example, interlocks 
which can be bypassed by the user, on the basis that the probability of 
accidental bypass can be made as small as desired by careful design. Such 
accident-reducing mechanisms are often essential, but one would be ill 
advised to apply one to a situation in which a systematic attack by ~ 
another user is to be prevented. Therefore, we will insist on the narrower 
definition. Protection mechanisms are very useful in preventing mis-
takes, but mistake preventing mechanisms may not be helpful in 
providing protection. 
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One should, however, recognize that in concentrating on protection and 

authentication mechanisms one is taking a narrow view of the information security 

problem, and that there is a special reason for a narrow view to be dangerous. 

The functional objective of a secure system is to prevent all unauthorized 

information release, which is a negative kind of requirement. It is usually 

quite hard to prove that this negative requirement has actually been achieved, 

for one must demonstrate that no means of unauthorized information release exist. 

Thus, an expansive view of the problem is probably most appropriate, to help 

assure that no gaps appear in the strategy.* 

Functional levels of information protection 

Many different designs and mechanisms have been proposed, and sometimes 

implemented, for protecting information in computer systems. The significant 

differences among protection schemes usually lie in the different functional 

properties of the schemes, that is in the kinds of access control which can 

be expressed and enforced. It is convenient to divide protection schemes 

according to their goals, as follows: 

0. Unprotected systems. Some systems have essentially no provision for 

preventing access by a determined user to every piece of information 

stored in the system. Although these systems are not directly of interest 

here, they are worth mentioning since, as of 1974, many of the most 

widely used commercially available batch data processing systems--for 

example, the Disk Operating System for the IBM System 370 [ref. 

********** ] -- fa 11 into this category . * * 

* The broad view, encompassing all the considerations mentioned above and more, 
is taken in several current books, e.g., Security, Accuracy, and Privacy in 
Computer Systems, by James Martin (Prentice-Hall, 1973), and the chapter 
entitled " ********** " by James Anderson in Rubinoff' s Advances in Computers, 
Y£1. 11 (Academic Press, 1973). 

** One can develop a spirited argument as to whether systems originally 
designed as unprotected, and later modified to implement some level of 
protection goals, should be reclassified or continue to be considered 
unprotected. The argument arises from skepticism that one can success­
fully change the fundamental design decisions involved. Most large-scale 
commercial batch processing systems fall into this questionable area. 
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1. All-~-nothing systems. These are systems which provide either complete ~ 

isolation or complete sharing of each piece of information. If only 

complete isolation is provided, then each piece of information is 

accessible to only one user, and the user of such a system may just as 

well be using his own private computer, as far as protection is concerned. 

More commonly, such systems have public libraries which every user may 

access. In some cases the public library mechanisms may be extended to 

accept user contributions, but still on the basis that all users have 

equal access. Most of the first generation of commercial time-sharing 

systems provide a protection scheme with this level of function. Examples 

include the Dartmouth Time-Sharing System [ref. ********** ], IBM's 

system VM/370 [Meyer and Seawright, l!lli .§.I!. :I.· .2_ (1970), 199-218], and 

innumerable privately constructed time-sharing systems. 

2. Controlled sharing. The next level of functional capability that is 

of interest and that introduces significantly more complex machinery is one 

which permits explicit control of who may access each data item stored in 

the system. For example, such a system might provide each file with a 

list of authorized users, and allow an owner to distinguish several 

common patterns of use, such as reading, writing, or executing the contents 

of the file as a program. Although conceptually a straightforward idea, 

actual implementation is surprisingly intricate, and only a few complete 

examples exist. These include M.I.T.'s Compatible Time-Sharing System 

[CTSS Programmers' Guide, (M.I.T. Press, 1965)], Digital Equipment 

Corporation's DECSystem/10 [ref. **********], System Development 

Corporation's ADEPT [Weissman, AFIPS Con£. f!££. 35 (1969), 119-133], 

and Bolt Beranek and Newman's TENEX [Bobrow,~ 15, 3 (1972), 

135-1431. 
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3. User-specified sharing controls. For some applications, the user wishes 

to specify some form of restriction of access to a file that is not 

provided in the standard facilities for controlling sharing. For example, 

he may wish to allow access only on weekdays between 9:00 a.m. and 

4:00 p.m. Possibly, he may wish to permit access to only the average 

value, or some other statistically aggregated summary, of the data in 

a file. Maybe he wishes to require that modification of a file should be 

done only if agreement of two users is obtained. For such cases, and a 

myriad of others which can be imagined, a general escape is to provide 

for user-defined protected objects and subsystems. A protected subsystem 

is a collection of programs and data with the property that direct access 

to the data (that is, the protected objects) is restricted to the programs 

of the subsystem. Access to the programs is limited to calling specified 

entry points. Thus, the programs of the subsystem exercise complete con­

trol over the use made of the data. By constructing a protected subsystem, 

a user can develop any programmable form of access control to the objects 

he creates. Permitting user-specified protected subsystems raises several 

difficult issues, which probably explains why only a few of the most advanced 

system designs have tried it. These include Honeywell's Multics [Corbato 

et al., AFIPS Conf. Proc. 40 (1972), 571-583], The University of California's 

CAL System (Sturgis, Ph.D. thesis, University of California at Berkeley~ 

1973], Bell Laboratories' Unix System [Thompson and Ritchie, CACM 12, 7 

(1974)], and two systems currently under construction: the 

Cambridge Capability system of Cambridge University [Needham, AFIPS 

Conf. ~· 41 (1972), 571-578, and the HYDRA System of Carnegie-Mellon 

University [Wulf, et al., CACM 11, 6 (i974), 337-345]. Exploring alterna­

tive mechanisms for implementing protected subsystems is a research topic 

of current interest. 
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4. Putting strings ~ information. One of the concerns of the previous 

three levels has been establishing conditions for the 

release of information to an executing program. The fourth level of 

functional capability is to somehow maintain some control over the use of 

the information even after it has been released. Such control is what 

is desired, for example, in releasing income information to a tax 

advisor: constraints are desired which prevent him from passing the 

information on to a firm which prepares mailing lists. The printed 

labels on classified military information which declare a document to be 

"TOP SECRET" are another example of a constraint on information after 

its release to a person authorized to receive it. One may not (without 

risking severe penalties) release such information to others, and the 

label serves as a notice of the restriction. Computer systems which 

implement such strings on information are rare and mechanisms are partial. 

For example, the ADEPT system keeps track of the classification level ~ 

of all inputs used to create a file; all output data is automatically 

labeled with the highest classification encountered during execution. 

In examining any particular design, some care should be taken to distinguish 

among: 

The protection intentions of the person responsible for the information. 

The mechanisms for enforcing those intentions which are external to the 

computer system, and 

The mechanisms for enforcing those intentions which are internal to the 

computer system. 

Considering the four levels of functional capabilities, the person responsible for the 

information may have intentions which require any or all of the four levels. 

On the other hand, he may insist on computer-aided enforcement of only some of 

these intentions, and use external mechanisms such · as contracts, 1gnorance, or 

barbed wire fences, for others. As indicated, this discussion is focused on 

the internal mechanisms. 
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Finally, there is a set of functional properties that cuts across all 

four levels of functional capability: the dynamics of ~· This term 

refers to the provisions for initializing and changing the specification of 

who may access what. At all four levels it is relatively easy to envision (and 

design) systems that statically express a particular protection intent. Most 

of the complexity in protection systems is introduced by the need to change 

protection specifications dynamically, and for such changes to be requested 

by executing programs. Most of the existing systems differ primarily in their 

methods of handling the protection dynamics. To gain some insight about the 

kind of complexity introduced by program-directed changes to protection-specifi­

cations, consider that to answer the question "can user A access file X?" one 

must examine not only the static specification of who may access file X, but 

also the specification of who may change the statement of file X's accessibility, 

and also who may change~ specification, etc. Another example of an interest­

ing problem of dynamics is what to do if the owner revokes access to a file 

while it is being used by a (previously) authorized user. The alternative of 

permitting the previously authorized user to continue access until he is 

"finished" with the information may not be acceptable if the owner has suddenly 

realized that the file contains sensitive data. On the other hand, immediate 

withdrawal of access may be disruptive to the previously authorized user; the 

disruption may effectively invade his privacy. It should be apparent that 

provisions for the dynamics of use are at least as important as those for static 

specification of protection intent. 

Design orincioles and evaluation considerations 

Security specialists (e.g., Anderson, in Advances in Computers Jl) have 

found it useful to place potential security violations in three categories: 
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1. Unauthorized information release: an unauthorized person is able 

to read, and take advantage of, information stored in the computer. 

This category of concern sometimes extends to "traffic analysis", in 

which the intruder observes only the patterns of use of information and 

from those patterns can infer some information content. 

2. Unauthorized information modification: an unauthorized person is able 

to make undetected changes in stored information, a kind of sabotage. 

Note that this kind of violation does not necessarily require that the 

intruder succeed in seeing the information he has changed. 

3. Unauthorized denial of use: an intruder can prevent an authorized user 

from accessing or modifying information, even though the intruder may not 

be able to access or change the information, for example by disrupting 

a scheduling algorithm or causing a system "crash". Denial of use is 

another kind of sabotage. 

The thing which most complicates the situation in a general-purpose, remote­

accessed computer system is that the "intruder" in these definitions may be 

an otherwise legitimate user of the computer system. 

The term "unauthorized" in the three categories listed above means that 

release, modification, or denial of use occurs contrary to the desire of the 

person responsible for the information, and possibly even contrary to the constraints 

supposedly enforced by the protection mechanisms of a system. Whatever the 

level of functionality provided, the usefulness of a set of protection mechanisms 

depends upon the ability of a system to prevent these three kinds of security 

violations. In practice, producing a system at any level of functionality 

(except perhaps level 0) that actually does prevent all such unauthorized acts 

has proven extremely difficult. Sophisticated users of most currently available 

systems are probably aware of at least one way to crash the system, thus 

denying other users authorized access to stored information. Penetration 

exercises involving a large number of different systems have shown that in most 
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existing systems a user can contruct a program which can obtain unauthorized 

access to information stored within the system. Even in systems designed and 

implemented with security as an important objective, localized design 

and implementation flaws have provided paths by which the access constraints 

intended by the system could be circumvented. This phenomenon is a direct 

result of the negative quality of the requirement to prevent all unauthorized 

actions. Design and construction techniques which systematically exclude 

such flaws are the topic of much current research activity, but no complete 

method applicable to the construction of large, general-purpose systems exist 

yet. 

In the absence of such methodical techniques, experience has provided 

some useful design principles which can guide the design and contribute to 

an implementation without security flaws. Here are eight examples of design 

principles which particularly apply to protection mechanisms: 

1. Economy of mechanism. Keep the design as simple and small as possible. 

This is a well-known principle applying to any aspect of system design, 

but it bears repeating with respect to protection mechanisms, since 

there is a special problem: design and implementation errors which result 

in unwanted access paths will not be immediately noticed during normal 

use, (since normal use usually does not include attempts to exercise 

improper access paths). Therefore, techniques such as complete, line­

by-line inspecition of software and hardware which implements protection 

mechanisms are necessary. For such techniques to be successful, a small 

and simple design is essential. 
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2. Failsafe defaults. Base protection mechanisms on permission rather 

than exclusion. This principle, suggested by E. L. Glaser in 1965, 

means that the default situation is lack of access, and the protection 

scheme identifies conditions under which access is permitted. The 

alternative, in which mechanisms attempt to identify conditions under 

which access should be refused, seems to present a wrong psychological 

base for secure system design. A conservative design must be based on 

arguments on why objects should be accessible, rather than on why they 

should not. In a large system some objects will be inadequately considered, 

so a default of lack of permission is more fail-safe. Similarly, a design 

or implementation mistake in a mechanism which gives explicit permission 

tends to fail by refusing permission, a safe situation, since it will be 

quickly detected. A design or implementation mistake in a mechanism 

which explicitly excludes access tends to fail by not excluding access, 

a failure which may go unnoticed. This principle applies both to the 

appearance of the protection mechanism to its users and also to the under­

lying implementation. 

3. Complete mediation. Every access to every object must be checked for 

authority [Anderson, Air Force Technical Report ESD-TR-73-51 (1973)]. This 

principle, when systematically applied, is the primary underpinning of 

the protection system. It forces a system-wide view of access control 

which in addition to normal operation includes initialization, recovery, 

shutdown, and maintenance. It also implies that a foolproof method of 

identifying the source of every request must be devised. In a system 

designed to operate continuously, this principle requires that when 

access decisions are remembered for future use, careful consideration 

be given to how changes in authority are propagated to include the 

remembered decisions. 
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4. Open design. The design should not be secret [Baran, Rand report 

RM 3265-PR (1964), Vol. 9]. The mechanisms should not depend on the 

ignorance of potential attackers, but rather on the possession of specific, 

more easily protected, keys or passwords. This strong decoupling between 

protection mechanisms and protection keys permits the mechanisms to be 

examined by many reviewers without concern that the review may itself 

compromise the safeguards. In addition, any skeptical user may be allowed 
• 

to convince himself that the system he is about to use is adequate for 

his purpose. 

5. Separation of privilege. Where feasible, a protection mechanism which 

requires two keys to unlock it is more robust and flexible than one which 

allows access to the presenter of only a single key. The relevance of 

this observation to computer systems was pointed out by R. Needham in 1973. 

The reason is that, once the mechanism is locked, the two keys can be 

physically separated and distinct programs, organizations, or individuals made 

responsible for them. From then on, no single accident, deception, or 

breach of trust is sufficient to compromise the protected information. 

This principle is often used in bank safe-deposit boxes, and is also at 

work in the defense system which requires that firing a nuclear weapon 

can be done only if two different people both give the correct command. 

In a computer system, separated keys are applicable to any situation 

in which two or more conditions must be met before access should be 

permitted. 

6. Least privilege. (Suggested by D. Edwards) Every program and every 

user of the system should operate using the least amount of privilege 

necessary to complete the job. The primary purpose of this principle is to 

limit the damage that can result from an accident or error. Another purpose 

is to reduce the number of potential interactions among privileged programs to 

the minimum necessary to operate correctly, so that one may develop 
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confidence that unintentional, unwanted, or improper uses of privilege do 

not occur. Thus, if a question related to misuse of a privilege occurs, the 

number of programs which must be audited is minimized. Put another way, if one 

has a mechanism available which can provide "firewalls", the principle 

of least privilege provides a rationale for where to install the fire­

walls. The military security rule of "need-to-know" is an example of 

this principle. 

7. Least common mechanism. (Suggested by G. Popek,) Minimize 

the amount of mechanism that is-common to more than one user and that every 

user has no choice but to depend on. The reason is that every shared 

mechanism (especially a shared data base) represents a potential information-

passing path between users, and must be designed with great care to be sure 

it does not unintentionally compromise security. Further, any mechanism 

which serves all users must be certified to the satisfaction of every user, ~ 

a job presumably harder than satisfying only one or a few users. Thus, for 

example, given the choice of implementing a new function as a supervisor pro­

cedure shared by all users or as a library procedure which can be handled as 

though it were the user's own, the latter course would be preferable. Then, 

if one or a few users are not satisfied with the level of certification of 

the function, they can provide a substitute or else not use it at all. 

Either way, they cannot be harmed by a mistake in it. 

8. Psychological acceptability. It is essential that the human interface 

be designed for naturalness, ease of use, and simplicity, so that users 

will routinely and automatically apply the protection mechanisms correctly. 

Also, to the extent that the user's mental image of his protection goals match 

the mechanisms he must use, mistakes will be minimized. If he must 

translate his image of his protection needs into a radically different 

specification language, he will make errors. 
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As is apparent, these principles do not represent absolute rules, but instead 

serve best as warnings: if some part of a design violates a principle, the 

violation is a symptom of potential trouble, and the design should be carefully 

reviewed to be sure that the trouble has been accounted for, or is unimportant. 

In a similar vein, two evaluation considerations suggested by Turn and 

Shapiro [RAND report P-4871 (1972)] can help in the review of a proposed design. 

These are: 

1. Compare the cost of the protection mechanism with the value of the 

information being protected. Although precise evaluation of cost and 

of information value is very hard, it may pe sufficient to identify only 

the order of magnitude of each to decide whether a protection mechanism 

is reasonable or extravagant. 

2. Compare the cost of circumventing the mechanism with the resources of 

a potential attacker. The cost of circumventing, commonly known as 

the "work factor", may in some cases be easily calculated. For example, 

the number of experiments needed to try all possible four-letter alpha-

4 4 . 7" betic passwords is 26 == 56, 9 6. If the potential attacker must 

enter each experimental password at a teletype, one might 

consider a four-letter password to be adequate. On the other hand, if 

the attacker could use a large computer capable of. trying a million 

passwords per second, as might be the case where industrial espionage or 

military security is being considered, a four-letter password would 

be a minor barrier for a potential intruder .. 

Finally, we may note that mechanisms that reliably record that a compromise 

of information has occurred are very valuable, and can sometimes be used in 

place of more elaborate mechanisms which prevent_ loss. An unbreakable padlock 

on a flimsy file cabinet is an example of such a mechanism. Although access 
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is not hard to obtain, with proper design the cabinet will inevitably be damaged 

and the loss detected by .the next legitimate user. For another example, many 

computer systems record the date and time of most recent use of each file. 

This record may be useful to dlscover unauthorized use. 

The ~ssentials £! information protection 

For purposes of discussing protection, the information stored in 

a computer system is not a single monolithic object. The information is 

divided into mutually exclusive partitions, as specified by its various 

creators, with the property that each partition contains a collection 

of information, all of which is intended to be protected uniformly. The 

uniformity of protection is the same kind of uniformity that applies to all 

of the diamonds stored in the same vault: any person who has a copy of the 

combination can obtain any of the diamonds. Thus the contents of each par­

tition are the fundamental objects to be protected. 

It may be convenient for the protection partitions to exactly coincide 

with those of some system-provided naming scheme. Thus if the system provides 

symbolically named files for the storage of information, the information in a 

single file might be protected uniformly, but perhaps differently from infor­

mation in another file. Coincidence between the standard system naming method and 

protection is not, however, a requirement. One could devise a system in which 

the separately protected objects are physical storage devices, each of which may 

contain many files. Alternatively, it may be appropriate for the separately 

protected objects to be smaller than a file. 

Conceptually, then, it is necessary to build an impenetrable wall around 

each distinct object which warr.ants separate protection, provide a door in the 

wall through which access may be obtained, and provide a guard at the door to 

control its use. Control of use, however, requires that the guard have some 

way of knowing which users are authorized to have access, and that each user 
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have some reliable way of identifying himself to the guard. This authentica-

tion is usually implemented by having the guard demand a match between some-

thing he possesses and something the prospective user possesses. Thus~ a 
' . 
primitive protection scheme has two components: a protection mechanism (a 

wall with a door and a guard) and an authentication mechanism. (a way of identi-

fying authorized users). Protection of information may be handled at several 

places within a computer system~ but every example includes some adaptation of 

these two components. 

Before extending these abstractions~ we shall pause to consider two 

concrete examples~ the multiplexing of a simple computer system 

among several users, and the authentication of a user's claimed identity. 

These initial examples are complete isolation systems--no sharing of infor-

mation can happen. We will need later to return to extend our model of 

guards~ walls~ and protected objects, in order to discuss sharing. 

An isolated virtual machine 

A typical simple computer consists of a processor, a linearly ad: 

dressed memory system, and some collection of input/output streams associated 

with the processor. It is relatively easy to use a single computer to simulate 

several machines, each of which is completely unaware of the 

existence of the others, except for the fact that time passes more slowly 

than usual. Such a simulation is of interest, since during the intervals 

when one of the simulated (commonly called virtual) machines is waiting for 

an input or output operation to complete, another virtual machine may be able 

to progress at its normal rate. Thus, a single processor may be able to take 

the place of several. Such a scheme is the essence of a multiprogramming 

system. 
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To allow each machine to be unaware of the existence of the others, it 

is essential that some isolation mechanism be provided, such as a special hard-

ware register, called a descriptor register, as in figure 6-1. In this figure, 

all memory references by the processor are checked by an extra piece of 

hardware which is interposed in the path to the memory. The descriptor regis-

ter serves to control exactly which part of memory is to be accessible. 

The descriptor register contains two components: a base value and a bound 

value. The base is the lowest numbered address which the program may use, 

and the bound is the number of locations beyond the base which may be used.* 

We will call the value in the descriptor register a descriptor, as it describes 

an object (in this case, one program) stored in memory. As we go on, we will 

embellish the concept of a descriptor: it is central to the implementation 

of protection and of sharing of information. 

We can associate this example with our abstractions. The information 

being protected is the distinct programs of figure 6-1. The impenetrable 

wall, with a door, is provided by the descriptor register. The guard is 

represented by the extra piece of hardware which enforces the descriptor 

restriction, but we note that his authentication scheme is degenerate: the 

process controlling the processor has full access to everything in the 

base-bound range. 

In most lmplemenlalions, addresses are also relocated by adding to them the 
value of the base. This relocation implies that for an address A to be legal; 
it must lie in the range (O,:SA<bound). The concept of a base and bound regis-
ter with relocation was used in the M.I.T. Compatible Time-Sharing System in ~ 
1960 [Corbato et al., Proc. WJCC (l962), 335-344]. The concept of a descriptor 
as used in the BSOOO computer was anonymously documented in a 1961 Burroughs 
publication, ~Descriptor. 
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At least part of the degeneracy stems from our not having provided for 

the dynamics of a complete protection scheme: we have not discussed who 

loads the descriptor register. If any running program could load it with any 

arbitrary value, there would be no protection. Therefore, the instruction 

which loads the descriptor register with a new descriptor must have some 

special controls--either on the values it will load, or on who may use it. 

The easiest form of control is on who may use it, and an historically common 

scheme is to introduce an additional bit in the processor state, called the 

privileged state bit*, All attempts to load the descriptor register are 

checked against the value of the privileged state bit; the privileged state 

bit must be~ for the register to be loaded. One program (say program S 

in figure 6-1) runs with the privileged state bit ~' and controls the simu­

lation of the virtual machines for the other programs. But now, we have 

an authentication scheme in the privileged state bit; ability to authorize 

use of memory (e.g., ability to load the descriptor register) requires pre­

sentation of a privileged state bit with value on. All that is needed to make 

the scheme complete is to insure that the privileged state bit cannot be changed 

by the user except, perhaps, by an instruction which simultaneously transfers 

control to the supervisor at a planned entry location. (In most implementa­

tions, the descriptor register is not used in the privileged state). 

One might expect the supervisor to maintain a table of values of descriptors, 

one for each virtual machine; when the privileged state bit is off, 

the index in this table of the program currently in control identifies exactly 

which program--and thus which virtual machine--is responsible for 

the activity of the processor. Note that for protection to be complete, it 

* Also called the master/slave bit, or supervisor/user bit. 
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must not be possible for a program running under the control of one of the 

virtual machines to be able to make arbitrary changes either to 

the descriptor currently in the descriptor register, or to the values in 

the table of descriptors. If we suppose the table to be stored inside the 

supervisor program, it will be inaccessible to the virtual 

machines. 

With an appropriately sophisticated and careful supervisor program, we 

now have an example of a "complete isolation" type of system. Similarly 

isolated permanent storage can be added to such a system by attaching some 

long-term storage device (e.g., magnetic disk) and developing a similar 

descriptor scheme for its use. Since long-term storage is accessed less 

frequently than primary memory, it is common that its descriptor scheme 

be interpreted by supervisor programs rather than built into the hardware, 

but the principle is the same.* Long term storage does, however, force us 

to face one further issue. Suppose that the virtual machine 

communicates with its user through a typewriter terminal. If a new user 

approaches a previously unused terminal and requests to use a virtual 

machine, which virtual machine (and therefore which set of long term 

stored information) should he be allowed to use? We may solve this problem 

outside the system, by having the supervisor permanently associate a single 

• 
virtual machine with its long term storage area with a single typewriter terminal. 

Then, for example, padlocks can control access to the typewriter terminal. 

If, on the other hand, a more flexible system is desired, the supervisor 

program must be prepared to dynamically associate any terminal with any vir-

tual machine; 

* For an example, see IBM System VM/370 [Meyer and Seawright, IBM ~· ~· 2, 
(1970) 199-218], which provides virtual IBM 370 computer systems, complete 
with private storage devices. 
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Authentication mechanisms 

Our second example is of a distinctly different kind of protection 

system: a system which verifies a user's claim as to who he is. The 

mechanics of this protection system differ from those of the virtual computer 

mainly because not all of the components of the system are under uniform 

physical control. In particular, the user himself and the communication 

system connecting his terminal to the computer are components to be viewed 

with suspicion. Conversely, the user needs to verify that he is in communica-

tion with the expected computer system. Such systems follow our abstract model 

of a guard who demands a match between something he possesses and something the 

user possesses. However, because of the lack of physical control of the user 

and the communication system, the security of the system then depends on 

either the secrecy or the unforgeability of this identification. 

In time-sharing systems the most common scheme depends on secrecy: the 

user begins by typing the name of the person he claims to be, and then 

the system demands that the user type a secret password, presumably known 

only to that person. 

There are, of course, many possible elaborations and embellishments of 

this basic strategy. In cases where the typing of the password may be ob­

served, passwords may be good for only one use, and the user carries a list 

of passwords, crossing each one off the list as he uses it. Passwords may have 

an expiration date, or usage count, to limit the length of usefulness of a 

compromised one. 

The list of acceptable passwords is a piece of information which must be 

carefully guarded hy the system. Tn Rome systems, all passwords are passed 
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through a hard-to-invert transformation* before being stored, an idea suggested 

by M. Wilkes. When the user types his password, the system transforms it also, 

and compares the transformed versions. Since the transform is supposed,to be 

hard to invert, even if the stored version of a password is compromised, it may 

be very difficult to determine what original password is involved. It should be 

noted, however, that a good measure of "hardness of inversion" is difficult to 

come by. The attacker of such a system does not need to discern the general 

inversion, only the particular one applying to some transformed password he has 

available. 

Passwords as a general technique have some notorious defects. The most 

often mentioned defect lies in choice of password--if a person chooses his own 

password, he may choose something easily guessed by someone else who knows his 

habitsr For this reason, some systems have programs which generate random 

sequences of letters for use as passwords, and may even require that all pass-

words be system-generated and frequently changed. On the other hand, frequently 

changed random sequences of letters are hard to memorize, so such systems tend 

to cause users to make written copies of their passwords, inviting compromise. 

A second significant defect is that the password must be exposed in order 

to use it. In systems where the terminal is distant from the computer, the 

password must be sent through some communication system, during which passage 

a wiretapper may be able to intercept it. 

An alternative approach to secrecy is unforgeability. The user is given .. 
a key, or magnetically striped plastic card, or some other unique and difficult-

to-duplicate object. The terminal has an input device which examines the object 

and transmits its unique identifylng code to the computer system, which treats 

* For example, the password is used as the parameter in a high-order polynomial 
calculated in modulo arithmetic [Purdy, CACM !Z, 8 (1974), 442-445]. Evans, 
Kantrowitz and Weiss [CACM Jl, 8 (1974), 437-442] have suggested an alterna­
tive, more complex scheme based on multiple functions. 
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the code as a password which need not be kept secret. Proposals have heen mnlk 

for fingerprint readers [**"'*******] and dynamic signature readers ["'*"""'*~""***.,.'], 

in order to increase the effort required for forgery. 

The primary weakness of such schemes is that the hard-to-duplicate object, 

after being examined by the specialized input device, is reduced to a stream 

of bits to be transmitted to the computer. Unless the terminal, its object 

reader, and its communication lines to the computer are physically secured 

against tampering, it is relatively easy for an intruder to modify the terminal 

to transmit any sequence of bits he chooses. It may therefore be necessary to 

make the acceptable bit sequences a secret after all. On the other hand, the 

scheme is convenient, resists casual misuse, and provides a simple form of 

accountability through the physical objects used as keys. 

A problem common to both the password and the unforgeable object 

approach is that they are "one-way" authentication schemes. They authen-

ticate the user to the computer system, but not vice-versa. An easy way 

for an intruder to actively penetrate a password system, for example, is 

to intercept all communications to and from the terminal and direct them 

to another computer which is under the interceptor's control. This com-

puter can be programmed to "masquerade", that is, to act just like the 

system the caller intended to use, up to the point of requesting him to 

type his password. After receiving the password, the masquerader grace-

fully terminates the communication with some unsurprising error message, 

and the caller may be unaware that his password has been stolen. 

A more powerful authentication technique is sometimes used to protect 

against masquerading. Suppose that a remote terminal is equipped with en-

ciphering circuitry, such as the LUCIFER system [Smith, et al., Proc. ACM 25 
. - ----

Conf. (1972), 282-298], that scrambles all signals from that terminal. Such de-~ 

vices normally are designed so that the exact encipherment is determined by the 
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value of a key, known as the encrypting or transformation key. For example, 

the transformation key may consist of a sequence of 1000 binary digits read 

from a magnetically strip_ed plastic card. In order for a recipient of such an 

enciphered signal to comprehend it he must have either a deciphering circuit 

which is primed with an exact copy of the transformation key, or else he must 

cryptanalyze the scrambled stream to try to discover the key. The strategy of 

encipherment/decipherment is usually invoked for the purpose of providing 

communications security when using an otherwise unprotected communications system. 

However, it can simultaneously be used for authentication, using the following 

technique first published in the unclassified literature by Feistel [IBM 

Research Report RC-2827 (1970)]: the user, at a terminal, begins by by-

passing the enciphering equipment. He types his name. 

This name passes, unenciphered, through the communication system to the 

computer he plans to use. The computer looks up the name, just as with the 

password system. Associated with each named principal, instead of a secret 

password, is a secret transformation key. The computer loads this transforma-

tion key into its enciphering mechanism, turns it on, and attempts to communicate 

with the user. Meanwhile, the user has loaded his copy of the transformation 

key into his enciphering mechanism, and turned it on. Now, if the keys are 

identical, exchange of some standard hand-shaking sequence will succeed. If 

they are not identical, the exchange will fail, and both the user and the computer 

system will encounter unintelligible streams of bits. If the exchange succeeds, 

the computer system is certain of the identity of the user, and the user is 

* certain of the identity of the computer. The secret 

* Actually, there is still one uncovered possibility: a masquerader could 
exactly record the enciphered bits in one communication, and then intercept 
a later communication and play them back verb~tim. (This technique is some-
times called spoofing.) Although the spoofer may learn nothing by this technique, 
he might succeed in thoroughly confusing the user or the computer system. A 
simple protection technique is for the computer to immediately use the enciphered 
connection to transmit the current date and time, and request the user to echo 
it back. Each successive message can then include as a cross-check a short 
piece of the previous message. This technique is analyzed in detail by 
Smith et al. [f!:2.£. ACM 25 Conf. (1972), 282-298]. 
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authenticator--the transformation key--has not been transmitted through the 

communication system. If communication fails because either the user is un-

authorized or the system has been replaced by a masquerader, the legitimate 

party to the transaction has immediate warning of the apparent illegitimacy 

of the other party. 

Relatively complex elaborations of these various strategies have been 

implemented, differing both in economics and in assumptions about the 

psychology of the prospective user. For example, Branstad [Proc. AIAA Comp. 

Network Systems Conf., paper 73-427 (1973)] explored in detail strategies of 

authentication in multinode computer networks. Such elaborations, though 

fascinating to study and analyze, are diversionary to our main topic of pro-

tection mechanisms, to which we now return. 

Shared information 

The virtual machines of the earlier section were totally ~ 

independent, so far as information accessibility was concerned. This property 

means that each user might just as well have his own private computer system, 

and with the steadily declining costs of computer manufacture there are few 

technical reasonsnotto use a private computer. On the other hand, for many 

applications some sharing of information among distinct users is essential. 

For example, there may be a library of commonly used, reliable programs. 

Individual users may create new programs that other users would like to use. 

Distinct users may wish to be able to update a common data base, such as a 

file of airline seat reservations, or a collection of source language programs 

which implement a biomedical statistics system. In all these cases, the 

virtual machine is inadequate, because of the total isolation 

of its users. Before extending the virtual machine example any further, 
~ 

let us return to our abstract discussion of guards protecting objects with walls. 
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The implementations of protection mechanisms which permit sharing tend 

to fall into the two general categories described by Wilkes [Time-Sharing 

Computer Systems (American Elsevier, 1972)]: 

1. "List-oriented", in which the guard holds a list of names of authorized 

users, and the user carries a unique, unforgeable identifier which must 

appear on the guard's list if access is to be permitted. A store clerk 

checking a list of credit customers is an example of a list-oriented 

implementation in practice. The individual might use his driver's license 

as a unique, unforgeable identifier. 

2. "Ticket-oriented", in which the guard holds the description of a single 

identifier, and each user has a collection of unforgeable identifiers, or 

tickets, corresponding to the objects to which he has been authorized 

access. A doorlock which opens with a key is probably the most common 

example of a ticket-oriented mechanism; the guard is implemented as the 

hardware of the lock, and the matching key is the (presumably) unforgeable 

authorizing identifier. 

Authorization, which is defined to be giving a user permission to access some 

object, is different in these two schemes. In a list-oriented system, a use~ 

is authorized to use an object by placing his name on the guard's list for 

that object. In a ticket-oriented system, a user is authorized by giving him 

a ticket for the object. 

We can also note a crucial mechanical difference between the two kinds 

of implementations: the list-oriented mechanism requires that the guard examine 

his list at the time access is requested, which tends to mean that the examination 

is serial with the access. On the other hand, the ticket-oriented mechanism 

places on the user the burden of choosing which ticket to present, a task he can 
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combine with deciding which information to access. The guard needs only to 

do a single comparison of the presented ticket with his own, perhaps in 

parallel with the physical memory access. Because of their serialization of 

checking and access, list-oriented mechanisms are not often used in applications 

where traffic is high. On the other hand, ticket-oriented mechanisms typically 

require considerable technology to control forgery of tickets and to control 

passing around of tickets from one user to another. As a rule, most real 

systems contain both kinds of sharing implementations: a high-level, list-

oriented system at the user interface; and a high-speed, ticket-oriented 

system in the underlying hardware implementation. This kind of arrangement 

* requires introduction of a specialized list-oriented guard whose only purpose 

is to hand out temporary tickets which the remaining (ticket-oriented) guards 

will honor. Considerable complexity then arises from the need to keep 

authorizations, as represented in the two systems, synchronized with each other. ~ 

Most of the differences among computer protection systems lie in the extent 

to which the underlying ticket-oriented system is architectually visible to 

the user. 

Finally, let us consider the degenerate cases of list- and ticket-oriented 

systems. If in a list-oriented system it happens that each guard's list of 

authorized users contains exactly one entry, we have a "complete isolation" 

kind of protection system, one in which no sharing of information among users 

can take place. Similarly, if we have a ticket-oriented system in which there 

exists only one ticket for each object in the system, we discover that we again 

have the identical "complete isolation" kind of protection system. Thus the 

"complete isolation" protection system turns out to be a particular degenerate 

case of both the list-oriented and the ticket-oriented protection implementations . ..., 
* This specialized mechanism is called an agency by Branstad [AIAA Paper 

73-427 (1973)]. 
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These observations are important in examining real systems, since they usually 

consist of several layers of interacting protection mechanisms, some of which 

are list-oriented, some of which are ticket-oriented, and some of which provide 

complete isolation and therefore may happen to be implemented as degenerate 

examples of either of the other two, depending on local circumstances. 

We should comment on the nature of the user in these trans-

actions. Since we are concerned with protection of information· from programs 

that are executing, the ~ is the person who assumes responsibility for 

the actions of an executing program. Inside the computer system, the appro­

priate abstraction to use is that of a process, since one or more processes 

can be identified with the activities directed by the user. Thus we are 

discussing accesses made by a process. In a list-oriented system the guard is 

concerned with knowing whose process is attempting to make an access. We can 

imagine, for example, that the process has been marked with an unforgeable label 

identifying the user responsible for its actions, and the guard inspects this 

label when making access decisions. In a ticket-oriented system, the guard cares 

only that a process present the appropriate unforgeable ticket when attempting 

an access. The connection to a responsible user is more diffuse, being 

partially the responsibility of the agency which issued the tickets. In either 

case, we conclude that in addition to the information inside the impenetrable 

••all. there are two other things which must be protected: 

1. The guard's authorization information. 

2. The association between a user and the values of the unforgeable label 

or set of tickets associated with his processes. 

Since an association with some user is essential for establishing 

responsibility for the actions of a process, it is useful to introduce an 

abstraction for that responsibility: the principal. A principal is, by definition 
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the entity responsible for the activities of a process.* In the situations ~ 

we have discussed so far, the principal is exactly the user outside the system. 

However, there are situations in which a one-to-one identification of individuals 

with principals is not adequate. For example, a user may be responsible for 

some very valuable information, and authorized to use it. On the other hand, 

he may wish, on some occasion, to use the computer for some purpose unrelated 

to the valuable information. To prevent accidents, he may wish to identify 

himself with a different principal, one which does not have access to the 

valuable information--following the principle of least privilege. In this 

case there is a need for two different principals which correspond to the 

same user. 

For a different example, one can eavision a data base that is to be 

modified only if a committee of individuals all agree. Thus there might be 

a single principal, authorized to make the modification, but that cannot be 

used by any single individual; all of the committee members must agree upon 

its use simultaneously. 

Summarizing, then, a principal is essentially the unforgeable identifier 

to be attached to a process in a list-oriented system. When a user first 

approaches the computer system, that user must identify the principal to be 

used. Some authentication mechanism, such as a request for a secret password, 

and which itself may be either list- or ticket-oriented or of the complete 

isolation type, establishes the user's right to use that principal. Then, a 

computation is begun in ~·•hich all the processes of t:he computation are JabeJeCl 

with the identifier of that principal, and all further actions of these processes 

* The word "principal", suggested by Dennis and Van Horn [CACM 2,, 3 (1966), 
143-155], is used for this abstraction because of its association with the 
legal concepts of authority, liability, and responsibility. 



6-31 

may be considered to be the responsibility of that principal. In a ticket-

.,-.. oriented system, the concept of principal is more diffuse, and responsibility 

for the activity of a process is correspondingly more difficult to pinpoint. 

Some of these ideas will become clearer if we return to our example 

system and extend it to include sharing. Let us consider for a moment the 

problem of sharing a library program--say a mathematical function subroutine. 

We could place a copy of the math routine in the long-term storage area of each 

virtual machine that had a use for it. This scheme works, but has several defects. 

Most obviously, the multiple copies require multiple storage spaces. More subtly, 

the scheme does not respond well to dynamic changes: if a newer, better math 

routine is written, the upgrading of the multiple copies requires effort 

proportional to the number of users. These two. observations suggest that 

one would like to have some scheme to allow different users to have access 

to a single master £2EY of the program. Then, the storage space will be 

smaller and the communication of updated versions will be easier. 

In terms of the virtual machine model of our earlier example, we can 

accomplish sharing of a single copy of the math routine by adding to the 

processor a second descriptor register, as in figure 6-2, placing the math 

routine somewhere in memory by itself, and placing a descriptor for it in 

the second descriptor register. Following the previous strategy, we assume 

that the privileged state bit assures that the supervisor program is the only 

one permitted to load either descriptor register. In addition, some scheme 

must be provided in the architecture of the processor to permit a choice of 

which descriptor register is to be used for each address generated by the pro­

cessor. A simple scheme would be to let the high-order address bits select the 

descriptor register. Thus in figure 6-2, all addresses in the lower half of the 

address range would be interpreted relative to descriptor register 1, and 

addresses in the upper half of the address range would be relative to descrip­

tor register 2. An alternate scheme, suggested by Dennis [JACM 11, 4 (1965), 

589-602], is to add explicitly to the format of instruction words a field which 
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~' selects the descriptor register intended to be used with the address in that 

instruction. The use of descriptors for sharing information is intimately 

related to the addressing architecture of the processor, a relation which can 

be the cause of considerable confusion. The reason why descriptors are of 

interest for sharing becomes apparent by comparing parts ~ and £ of figure 6-2. 

When program A is in control, it can access only itself and the math routine; 

similarly, when program B is in control, it can access only itself and the 

math routine. By use of descriptors, sharing of the math routine has been 

accomplished while maintaining isolation of program A. from program B. 

The effect of sharing is shown even more graphically in figure 6-3, 

which is just figure 6-2 redrawn with two processors, one executing program A 

and the other one executing program B. Whether or not there are actually 

two processors is less important than the existence of the conceptually parallel 

access paths implied by figure 6-3. Conceptually, every process of the system 

may be viewed as having its own private processor, capable of access to the 

memory in parallel with every other process. There may be an underlying processor 

multiplexing facility which distributes a few real processors among the many 

processes, but such a multiplexing facility is essentially unrelated to protection. 

Recall that a processor is not permitted to load its own protection descriptor 
\ 

registers. Instead, it must call or trap to the supervisor program, S, which 

call or trap causes the privileged state bit to go ~ and thereby permits the 

* supervisor program to control the extent of sharing among processors. On the 

other hand, the processor multiplexing facility must be prepared to switch the 

entire state of a processor from one process to another, including the values of 

the protection descriptor registers. 

* The supervisor is thus a primitive example of a protected subsystem, of 
which more will be said later. 
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Although the basic mechanism to permit information sharing is now in 

place, there is a remarkable variety of implications which follow from its 

introduction and which, to come out in a desirable way, require further 

mechanisms. These implications include the following: 1) if process I can 

overwrite the shared math routine, then it could install a trap which could 

disrupt the work of process II. 2) The shared math routine must be careful 

about making modifications to itself and about where in memory it writes 

temporary results, since it is to be used by independent computations, perhaps 

simultaneously. 3) The scheme needs to be expanded and generalized to cover 

the possibility that there is more than one program or data base to be shared. 

4) The supervisor needs to be informed about which principals are ·authorized 

to use the shared math routine (unless it happens to be completely public with 

no restrictions). 

Let us consider these four implications in order. If the shared segment 

is a procedure, then to avoid the possibility of process I's maliciously 

overwriting it we can restrict the methods of access. Process I will need to 

retrieve instructions from the area of the shared procedure, and may need to 

read out the values of constants enbedded in the program, hut it has no need to 

be able to write into any part of the shared procedure. We may accomplish 

this restriction by extending the descriptor registers and the descriptors 

themselves to include accessing permission, an idea introduced for different 

reasons in the original Burroughs BSOOO design [The Descriptor (19611 Burroughs 

Corp.]. For example, we may add three bits, one controlling permission to 

read, the second permission to write, and the third permission to retrieve 

instructions (execute) in the storage area controlled by each descriptor, as 

in figure 6-4. In process I of figure 6-3, descriptor one would have all 

three permissions granted, while descriptor two would permit only reading 



6-36 

of data and execution of instructions.* An alternative, but 

much less satisfactory scheme, would be to attach the per-

mission hits directly to the storage areas containing the shared program or data. 

Such .a scheme is less satisfactory because, unlike the descriptors so far outlined, 

permission hits attached to the data would provide identical access to all pro-

cesses which had a descriptor. Although identical access for all users of the shared 

math routine of figure 6-2 might happen to i.>t:l acceptable, the case oi a shared 

permission bits 

(i£1 Base Bound 

Figure 6-4 -- A protection descriptor containing read, write, and execute 
permission bits. 

data base, with several users having permission to read but a few also having 

permission to write, could not be accomplished. 

The second implication of a shared procedure, mentioned before, is that 

the shared procedure must ~e careful in where it stores temporary results, since 

it may be simultaneously used by several processes. In particular, it should avoid 

:modifying itself. The enforcement of access permission by descriptor bits further 

constrains the situation: to prevent program A from writing into the 

shared math routine we have also prohibited the shared math routine from 

writing into itself, since the descriptors do ?Ot change when, for example, 

program A transfers control to the math routine.** The math routine will find 

* In some systems, four or more bits are used, separately controlling, for 
example, permission to call as a subroutine, to .use indirect addressing, or 
to store certain specialized processor registers. Such an extension of the 
idea of separately controllable permissions is not important to the present 
tiiecnsei..on. 

**Actually, this constraint has been introduced by our assumption that des­
criptors must be maintained by the supervisor. With the addition of pro­
tected subsystems, described later, this constraint is relaxed. 
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that it can read but not write into itself, but that it can both read and 

write into the area of program A. Thus, if program A allocates an area of its 

own address range for the math routine to use as temporary storage, then the 

math routine can read arguments, store temporary values, and write results 

there. Of course, program A cannot allocate any arbitrary set of addresses 

for this purpose: the specifications of the math routine would have to 

include details about what addresses it is programmed to use relative to the 

first descriptor; program A must expect those addresses to be the ones used 

when it calls the math routine. Similarly, program B, if it wishes to use 

the shared math routine, will have to reserve the same addresses in its own 

area. Although these particular address reservation conventions are somewhat 

constraining, it is clear that it is possible to develop a shared, read-only 

procedure.* 

As for the third implication, the need for expansion and generalization, 

the set of addresses which may be accessed for a particular loading of the two 

descriptor registers in our example is called the addressing domain of the 

processor and of the principal that is responsible for the activities of the 

processor. It should be clear that a simple generalization of our example to 

permit several distinct shared items could be accomplished by merely increasing 

the number of descriptor registers, and informing the supervisor which shared 

objects are authorized to be in the addressing domain of .each process. How-

ever, there are two substantially different forms of this generalization, 

named the capability system and the access•control-list system. In terms of 

the earlier discussion, the capability system is ticket-oriented, while the 

accl•ss-control-lisl system is list-oriented. As mentioned earlier, most real 

systems use a combination of these two forms, the capability system in the 

1<' Most systems which permit shared pcoeedures use aJ.J.itional hardware to allow 
more relaxed communication conventions. For example, a third descriptor 
register can be reserved to point to an are~ used exclusively as a stack 
for communication and temporary storage by shared procedures; each distinct 
process would have a distinct stack. See, e.g., Daley and Dennis [CACM 1!, 5 
(1968), 306-312]. 
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hardware base and the access-control-list system in the user interface. 

Before we can pursue these generalizations, and the fourth implication, 

authorization, sante more ground work must be laid, 
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II: General Descriptor-Based Protection Systems 

Separation of addressing and protection* 

As mentioned earlier, descriptors have been introduced here for the pur-

pose of protecting information, while they are also used in some systems to 

organize naming, addressing, and storage alloeation. For the present, it will 

be useful to separate the organizational uses of descriptors from their 

protective use, by requiring that all memory accesses go through two levels 

of descriptors. It should be realized, however, that in many implementations 

the two levels are actually merged into one, and the same descriptors serve 

both organizational and protective purposes. 

Conceptually, we may accomplish this separation by enlarging the function 

of the memory system to provide uniquely identified (and thus distinctly 

addressed) storage areas, commonly known as segments. For each segment there 

must be a distinct addressing descriptor, and we will consider the set of 

addressing descriptors to be part of the memory system, as in figure 6-5. 

Every collection of data items worthy of a distinct name, distinct scope of 

existence, or distinct protection would be placed in a different segment, and the 

memory system itself would be addressed with two-component addresses: a unique 

segment identifier (to be used as a key by the memory system to look up the 

appropriate descriptor) and an offset address which indicates which part of 

* Extension of the discussion of information protection beyond multiple 
descriptors requires an understanding of descriptor-based addressing 
techniques. Although the followlng section contains a brief review, the 
reader not previously familiar with descriptor-based architecture may 
find the treatment too sketchy. The books Time-Sharing Computer Systems, 
by M. V. Wilkes (American Elsevier, 1972) and Timesharing System Design 
Concepts, by R. W. Watson (McGraw-Hill, 1970), provide tutorial treat­
ments of descriptor-based addressing, while the paper by Dennis [JACM ll, 
4 (1965)] provides in-depth technical discussion. Two books by E.I. Organick, 
The Multics System (M.I T. Press, 1971), and Computer System Organization 
(Academic Press, 1973) provide a broad discussion and case studies. 
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the segment is to be read or written. All users of the memory system would 

use the same single set of addressing descriptors, and thes~ descriptors 

would have no permission bits--only a base and a bound value. This scheme 

is functionally similar to that used in the Burroughs B5700/6700 or Honey-

well Multics systems, in that it provides a structured addressing space with 

an opportunity for systematic and automatic storage allocation. 

The unique identifiers used to label segments are an essential corner-

stone of this organization. They will be used by the protection system to 

identify segments, so they must never be reused. One way of implementing 

unique identifiers is to provide a hardware counter register which 

operates as a clock, counting, say, microseconds, and large enough to never 

overflow in the lifetime of the memory system. The value of the clock 

register at the time a segment is created can then be used as that segment's 

unique identifier~ As long as the memory system stores anything, the time 

base of the clock register cannot be changed. 

The processor of figure 6-5 contains, as part of its state, protection des-

criptors similar to those of figures 6-1 and 6-2, and all references by the 

processor are constrained to be to segments described by the protection descrip-

tors. The protection descriptor itself no longer contains a base and bound; 

instead it contains the unique segment identifier which the memory system requires 

as the first part of its two part address for accessing that segment. Thus, 

from the point of view of a program stored in one of the segments of memory, 

this system is indistinguishable from that of figure 6-2. Note in figure 6-5 

that although addressing descriptors exist for the segments containing program 

B and programS (the supervisor), they are not accessible to the processor 

since currently it has are no protection descriptors for those two segments. 

Given this situation, it is appropriate to now distinguish between the 

* Since the unique identifier will be relied upon by the protection system, 
it may be a good idea to guard against the possibility that an accidental hard­
ware error while manipulating a unique identifier resul~s coincidentally in 
accessing the wrong segment. One form of guard is to encode the clock reading 
in some larger number of bits, using a multiple-error detecting code, to use 
the encoded value as the unique identifier, and to have the memory system 
check the coding of each unique identifier presented to it. 
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addressing domain, consisting of all the segments for which addressing des- ~ 

criptors exist, artd the protection domain, which consists of those segments 

for which protection descriptors exist. If the supervisor switches control 

of a processor from one process· to another, it would first reload the protec-

tion descriptors; the protection domain thus is different for different users, 

while the addressing domain remains the same for all users. 

With this architectural separation of the addressing function from the 

protection function, we may now examine the two forms of generalization 

of protection systems: the capability system and the access-control-list 

system. 

The .capability system 

The simplest generalization, conceptually, is the capability system, 

suggested by Dennis and Van Horn [CACM~' 3 (1966), 143-155], and first imple-

mented on an M.I.T. PDP-1 computer [Ackerman and Plummer, f!££. ~1st 

Symposium~ Operating Systems Principles (October, 1967)].* There are many 

different detailed implementations for capability systems; we illustrate with 

a specific example. Recall that we introduced the privileged state bit to 

control who may load values into the protection descriptor registers. An 

alternative method of maintaining the integrity of these registers would be 

as follows: allow any program to load the protection descriptor registers, 

but only from locations in memory which have been previously certified to 

contain acceptable protection descriptor values. Suppose, for example, that 

every location in memory were tagged with an extra bit. If the bit is off, 

* A detailed analysis of the resulting architectural implications was made 
by Fabry.and Yngve in 1968 in a series of progress reports of the Institute ~ 
of Computing Research at the University'of Chicago. The capability system 
is a close relative of the codeword organization of the Rice Research 
Computer [Iliffe and Jodeit, Computer Journal 1 (Oct., 1962), 200-209], 
but Dennis and Van Horn seem to be the first to have noticed the application 
of that organization to inter-user protection. 
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the word in that location is an ordinary data or instruction word. If the bit 

is ~' it is taken to be a value suitable for loading into a protection descrip-

tor register. The instruction which loads the protection descriptor register 

will operate only if its operand address leads it to a location in memory which 

has the tag bit ~· To complete the scheme, we should provide an instruction to 

store the contents of a protection descriptor register in memory, and which turns 

the corresponding tag bit ~; and arrange that all other store instructions set 

the tag bit £!! in any memory location they write into. Thus we have two kinds 

of ob~ects stored in the memory: protection descriptor values and ordinary data 

values. There are also two sets of instruction~, separate registers for manipulating 

the two kinds of objects, and thus effectively a wall that prevents objects 

that are subject to general computational manipulation from ever being used 

as protection descriptor values. This kind of scheme is a particular example 

of what is called a tagged architecture.* A memory word which contains a 

protection descriptor value (in our simple tagged system, one which has its 

tag bit ~) is known as a capability. Systems which permit the user to load 

and store protection descriptor values in memory are called capability systems. 

To see how capabilities can be used to generalize our basic sharing 

strategy, suppose that each processor has several (say four) protection descriptor 

registers, and that program A is in control of a processor, as in figure 6-6. For 

clarity, this and future figures omit the addressing descriptors of the segmented 

memory. The first two protection descriptor registers have already been loaded 

with values pe~itting access to two segments: program A, and a segment we have 

labeled "Catalog for Doe". This latter segment, in our example, contains two 

·k 'L'IIe Burroughs B':')700 and iLs ancestors, and the Rice University Computer 
llliffe and Jodeit, Computer Journal2_ (Oct., 1962), 200-2091 are examples 
of architectures which use multi-bit tags to separately identify instructions, 

~ descriptors, and several different types of data. All examples of tagged 
architecture seem to trace back to suggestions made by J. Iliffe. 
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locations which have tags indicating that they are capabilities, c1 and c2. 

Program A may direct the processor to load the capability at location c
2 

into 

one of the protection descriptor registers, and then the processor may address 

the shared math routine. Similarly, either program A or the shared math 

routine may the direct the loading of the capability at location c1 into a 

protection descriptor register, after which the processor may address the seg-

ment labeled "Private Data Base X". By a similar chain of reasoning, another 

process starting with a capability for the segment labeled "Catalog for Smith" 

can address both the shared math ~outine and the segment "Private Data BaseY. 

By appropriate advance initialization, we can now arrange for any desired 

static pattern of sharing of segments. For example, for each user, we can pro-

vide one segment for use as a catalog, and place in that catalog a capability for 

every segment he is authorized to address. Each capability includes read; write, 

and execute permission bits, so that some users may receive capabilities that per-

mit reading and writing some segment, while others receive capabilities permitting 

only reading from that same segment. The catalog segment might actually contain 

pairs: a character-string name for some segment, and the associated capability that 

permits addressing that segment. A user would create a new segment by calling the super-

visor; the supervisor might by convention return with some protection descriptor 

* set to contain a capability for the new segment. The u~er could then file his 

new segment by storing this new capability in his catalog along with a name for 

the segment. Thus we have an example of a primitive but usable file system to go 

with the basic protection structure. 

* The construction of a capability for a newly-created object requires 
loading a protection descriptor register with the unique identifier of 
the new segment. This loading can be accomplished either by giving the 
supervisor program the privilege of loading protection descriptor regis­
ters from untagged locations, orelse by making segment creation a hard­
ware-supported function which includes loading the protection descriptor 
register. 
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To complete the picture, we should provide a tie to some authentication 

meclwni.sm. Suppose that: the syRtem responds to an authentication request by 

creating a new process and starting it off in a supervlsor program that 

initially has a capability for a user identification table, as in figure 6-7. 

If a user identifies himself as "Doe" and supplies a password, the supervisor 

program can look up his identification in the user identification table. 

It can verify the password, and then load into a protection descriptor register 

the capability for the catalog associated with Doe's entry in the user identification 

table. Next, it would clear the remaining capability registers, thus destroying 

the capability for the user identification table, and then start running some progratn 

in Doe's directory, say program A. Program A then can extend its addressability 

(that is, its protection domain) to any segment for which a capability exists 

in Doe's catalog. 

Note that by providing for authentication we have actually tied together 

two protection systems: 

an authentication system which controls access 

of users to named catalog capabilities. 

the general capability system which controls access of the holder 

of a catalog capability to other objects stored in the system. 

The authentication system associates the newly created process with tne principal 

who is responsible for its future activities. Once the process is started, 

however, the character-string identifier is no longer needed; the associated 

catalog capability is sufficient. The dropping of the principal identifier is 

ppssible because the full range of accessible objects for this user has already 

been opened up to him by virtue of his acquisition of his catalog capability. 
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With this example of a capability system, a catalog is not a special object.~ 

It is merely a segment in which some program chooses to store capabilities which 

are, by virtue of their tags, protected, unforgeable objects. If in figure b-7. 

program A, running under Doe's control, creates a new object, it may choose 

to place the new capability in the segment X, in a position where it can easily 

be found later. In such a case, segment X has become, in effect, another 

catalog. To establish the full range of objects which Doe may address, it 

is necessary to examine not only the initial catalog segment whose capability 

is contained in the user identification table, but also all segments it con­

tains capabilities for, and all segments they contain capabilities for, etc. 

The scheme described so far admits any desired static arrangement of 

accessing authorization. However, we have not yet provided for the possibility 

that Doe, upon creating a new segment, might wish to authorize Smith to have 

access to it. We shall call this operation dynamic authorization. 

The dynamic authorization of sharing is a topic which must be examined quite 

carefully, since it expose~ several subtle issues which are fundamental to 

sharing and of protection. 

The dynamic authorization of sharing 

One might initially propose that dynamic authorization could be handled 

very simply by arranging that Doe have a capability for Smith's catalog, so 

that he can store a copy of the capability for the new segment in Smith's 

catalog. But this approach has a defect: allowing Doe to have a capability 

to write into Smith's catalog would give Doe access to overwrite and destroy 

all of Smith's capabilities. The inverse strategy 6f giving Smith a capability 

to read Doe's catalog would give Smith access to all of Doe's segments. A 

more "secure" approach to the problem is needed. 
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If the possibility of sharing had been acticipated, the form of the 

anticipation could be that both Doe and Smith initially have a capability 

allowing reading and writing a communication segment, whose only use is to pass 

messages and capabilities between Doe and Smith. Doe's program then deposits 

the capability for his newly created object in the communication segment for 

Smith, and Smith's program can pick it up and use it or catalog it, at Smith's 

convenience. But that description oversimplifies one step. Both Doe's and 

Smith's programs somehow had to track down the capability for the common communica­

tion segment; how did they know what to look for? Consider the case of the sender, 

Doe's program, first. Presumably it looked in some catalog for the name "Smith" 

and found the capability for the communication segment that way. But how did 

Doe's program know to look for the name "Smith"? The character-string name may 

have been embedded in the program by Doe or he may have typed it in to his pro­

gram as it was running, but either way one thing is crucial: that there has been 

a secure path from Doe, who is authorizing the passing of the capability, to the 

program, which is carrying it out. Next, we should ask, where did Doe find out 

the character string name "Smith" ·.so that he could type it in or embed it in his 

program? Presumably, via some path outside the computer, he learned Smith's name. 

Perhaps Smith shouted it down the hall to him.* The method of communication is 

not important, but the fact of the communication is: for dynamic authorization 

of sharing within a computer, there must be some previous communication from 

the recipient to the sender, external to the computer system. Further, this 

reverse external communication path must be sufficiently secure that the sender 

is certain of the system-catalogued name of the intended recipient. That name 

might be, for example, the identifier of the recipient's principal within the 

computer system. If so, the sender can be sure that only programs run under 

the responsibility of that principal will have access to his new object. 

* Imagery due to Butler Lampson. 
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An analogous chain of reasoning applies to Smith's program as the ~ 

recipient of the capability for the new object. Smith must learn from Doe some 

piece of information sufficient that he can instruct his program to look in the 

correct communication segment for the capability which Doe is sending. Again~ if 

Doe's principal identifier is the name used in Smith's catalog of communication 

segments, Smith can be certain that only some program run under Doe's responsi­

bility could possibly have sent the capability. In summary, here is the complete 

protocol for dynamically authorizing sharing of a new object: 

1. Sender learns receiver's principal identifier, via a communication path 

outside the system. 

2. Receiver learns sender's principal identifier, via a communication path 

outside the system. 

3. Sender transmits receiver's principal identifier to some program 

running inside the system under the sender's responsibility. 

4. Sender's program uses receiver's principal identifier to insure that 

only processes operating under the receiver's responsibility will be 

able to obtain the capability being transmitted. 

5. Receiver transmits sender's principal identifier to some program 

running inside the system under the receiver's responsibility. 

6. Receiver's program uses .the .sender's principal identifier to insure 

that only a process operating under the sender's responsibility 

could have sent the capability being received. 

Although this analysis may seem somewhat trivial, it is important be­

cause in a capability system the role of the principal identifier and the 

concept of responsibility do not correspond to any obvious observable mechanisms, 

yet they must be present somewhere in order to carry out the intentions of the 

outside users. The protocol described above always applies, even though parts 

of it may be implicit or hidden. As will be seen later, an equivalent protocol 
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also applies in access-control-list systems. 

Our analysis of the dynamics of authorizing sharing has been in terms 

of a private communication segm~nt between every pair of users, a strategy 

which would lead, with N users, to N(N-1)/2 communication segments. To avoid 

this square-law growth, one might prefer to use some scheme which dynamically 

constructs the communication paths also, such as having special hardware or 

a protected subsystem which implements a single "mailbox segment" for each 

user in which he receives messages and capabilities sent by all other users. 

In this case the mechanism which implements the mailbox segments must be a 

protected mechanism, since it must infallably determine the principal 

identifier of the sender of a message, and label the message with that identifier, 

so the receiver can reliably carry out step six of the protocol. Similarly, 

as the sender's agent, it must be able to associate the recipient's principal 

identifier with the recipient's mailbox, so that the sender's responsibility 

in step four of the protocol is correctly carried out. 

More problems of dynamics 

The capability system has as its chief virtues its inherent efficiency and 

simplicity. Efficiency comes from the ease of testing the validity of a 

proposed access: if the accessor can present a capability the request is valid. 

The simplicity comes from the natural correspondence between the mechanical 

properties of capabilities and the semantic properties of addressing variables. 

The semantics for dynamically changing addressability which are part of modern 

languages such as PL/I and ALGOL 68 fit naturally into a capability-based 

framework by using capabilities as address (pointer) variables. Straightforward 

additions to the capability system allow it to gracefully implement languages 

with dynamic type extension [Wulf, et al., CACM 11, 6 (1974), 337-345]. On 

the other hand, there are several potential problems with the capability system 

----~---
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as we have sketched it so far. The first problem is that if Doe has a change 

of heart--he suddenly realizes that there is confidential information in the 

segment for which he permitted access to Smith--;-there is no way that he can 

disable the copy of the capability which Smith now has stored away in some 

unknown location. Unless we provide additional control, his only recourse 

is to destroy the original .segment, an action which may be disruptive to other) 

still trusted, users who also have copies of the capability. Thus, revocation 

of access is a problem. 

A second, related difficulty is that Smith may now make further copies 

of the capability and distribute them to other users, without the permission, 

or even the knowledge, of Doe, the original owner. We have not provided for 

any control of propagation. 

Finally, the only possible way in which Doe eould make a list of all 

users who currently can reach his segments would be by searching every segment ~ 

in the system for copies of the necessary capability~ That search would 

be only the beginning, since there may be many paths by which users 

could reach those capability copies; every such path must be found and docu-

mented, a task requiring both an unreasonable amount of computation and also 

a complete bypassing of the protection mechanisms. Thus, review of access 

is a problem.* 

To help counter these problems, constraints on the use of capabilities 

have been proposed or implemented in some systems. For example, a bit added to 

* A fourth problem, not directly related to protection, is called the 
~-object problem by Neumann et al., [IRIA Workshop on Protection (1974)]. 
If all copies of some capability are overwritten, the object which that 
capability describes would become inaccessible to everyone, but the fact 
of its inaccessibility is hard to discover, and recovery of the space it 
occupies may be hard to achieve. The simplest solution is to insist that 
the creator of an object be systematic in his use of capabilities, and 
remember to destroy the object before discarding the last capability copy. 
Since most computer operating systems provide for systematic resource 
management this simple strategy is usually adequate. 
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a capability (the £2£! bit) may be used to indicate whether or not the 

capability may be stored in a segment. If one user gives another user access 

to a capability with the copy bit ~' then the second user could not make 

copies of the capability he has borrowed; propagation would be prevented, 

at the price of some loss of flexibility. (A version of this scheme was 

implemented in the University of California (Berkeley) CAL time sharing system.) 

Alternatively, some segments (perhaps one per user) may be designated as 

capability-holding segments, and only those segments may be targets of the 

instructions which load and store descriptor registers. This scheme may re­

duce drastically the effort involved in auditing, and make revocation possible, 

since only capability-holding segments need be examined. (The Cambridge 

Capability System is organized approximately this way.) 

A third approach is to associate a depth counter with each descriptor register. 

The depth counter would initially have the value, say, of one, placed there 

by the supervisor. Whenever a user loads a descriptor register from a place in 

memory, that descriptor registpr receives a depth count which is one greater 

than the depth count of the descriptor register which contained the capability 

which permitted the loading. Any attempt to increase a depth count beyond, say, 

three, would constitute an error, and the processor would fault. Thus, the 

depth counters limit the distance that one may follow a chain of capabilities. 

Again, this form of constraint reduces the effort of auditing, since one must 

trace chains back only a fixed number of steps to get a list of all potential 

accessors. (The M.I.T. CTSS used a software version of this scheme, with a 

depth limit of two.) 

To gain more preci.se control of revocation, Redell [Ph. D. thesis, 

Berkeley (1974)] has proposed that the basic capability mechanism be extended 

tn include the possibility of forcing a capability to go through an indirect 



6-54 

address before reaching the actual object of interest. This indirect address 

would be an independently addressable, recognizable object, and anyone with an 

appropriate capability for it could destroy the indirect object, thereby 

revoking access to anyone else who had been given a capability for that in-

direct object. By constructing a separate indirect object for each different 

user he shared an object with, the owner of the object could then maintain 

the ability to independently revoke access for each other user. The indirect 

objects would be implemented within the memory-mapping hardware ~.g., the 

addressing descriptors of figure 6-5) both to allow high speed bypassing tricks 

if frequent multiple indirections occur and also to allow the user of a capability 

to be oblivious to the existence of the indirection.* Redell's indirect objects 

are precursors of the access controllers of the access-control-list system, described 

in the next section. While providing a systematic revocation strategy (if 

their user develops a protocol for systematically using them) the indirect 

objects provide only slight help for the problems of propagation and auditing. 

The basic trouble be~ng encountered is that a binding of a permission 

to a principal is accomplished any time a capability is copied. Unless an 

indirect object is created for the copy, there is no provision for reversing 

this binding, and the ability to make a further copy (and potentially a new 

binding) is coupled to possession of a capability rather than independently 

controllable. Restrictions on the ability to copy, while helping to limit 

the number or kind of bindings, also hamper the simplicity, usefulness, 

flexibility, and uniformity of capabilities as addresses. For this reason, 

the most effective way of preserving the flexibility and efficiency of 

In the. HYDRA system [Wulf et al., ~ Q, 6 (1974), 337-345] 
an equ1valent functional effect is 
provided by allowing capabilities to be used as indirect addresses, and by 
separately controlling permission to use them that way. This strategy, in 
contrast to Redell's, makes the fact of indirection known to the user, and 
is also not as susceptible to speedup tricks. 
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capabilities is to use them only in the bottommost implementation layer of 

a computer system, where the lifetime and scope of the bindings can be 

controlled. The authorizations implemented by the capability system are 

then systematically maintained as an image of some higher level authorization 

description, usually some kind of an access-control~list system, which provides 

for direct and continuous control of all permission bindings. 

The access- control-list system 

The usual strategy to provide for reversibility of bindings is to 

control the time they occur--typically by delaying them until the last 

possible moment. The access-control-list system provides exactly such 

a delay by inserting an extra permission-checking step at the latest possible 

point: as each memory access is made. Where the capability system was 

basically a ticket-oriented strategy, the access-control-list system is a 

list-oriented strategy. Again, there are many possible 'mechanizations, 

and we must choose one for illustration. For ease of discussion, we will 

describe a mechanism implemented completely in hardware (perhaps by micro­

programming) although access-control-list systems have historically been 

implemented partly with interpretive software, driving an underlying hardware 

capability system. 

Return first to the system of figure 6-5, which identified protection 

descriptors as a processor mechanism and addressing descriptors as a memory 

mechanism. Suppose that the memory mechanism is further augmented as 

follows: whenever a user requests a segment to be created, the memory system 

will actually allocate two linked storage areas. One of 

the storage areas will be used to store the data of the segment, as usual, 

while the second will be treated as a special kind of object which we will 

call an access controller. An access controller contains two pieces 

of information: an addressing descriptor for the associated segment and an 
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access-control-list, as in figure 6-8. An addressing descriptor for the 

access controller itself is assigned a unique identifier and placed in the 

map used by the memory system to locate objects. Thus the access 

controller is to be used as a kind of indirect address, as in figure 6-8. 

The processor, in order to access a segment, must thus supply the unique 

identifier of that segment's access controller. However, there is no 

longer any need for these unique identifiers to be protected, so the former 

protection descriptor registers can be replaced with unprotected pointer 

registers, which can be loaded from any addressable location with arbitrary 

bit patterns. Of course, only bit patterns corresponding to the unique 

identifier of some segment's access controller will work. A data 

reference by the processor then proceeds in the following steps, keyed to 

figure 6-9: 

1. The program wishes to generate a write reference to the segment 

described by pointer register three with offset 1· 
2. The unique identifier found in pointer register three is used to address 

access controller Ac
1

• 

3. The access-control-list in Ac1 is searched to see if this user's 

principal identifier is recorded there. 

4. If the principal identifier is found, the permission bits associated 

with that entry of the access-control-list are examined to see if 

writing is permitted. 

5. If writing is permitted, the addressing descriptor of segment X, stored 

in Ac1, and the original offset~' are used to generate a write request 

inside the memory system. 

We need one more mechanism to make this system usable. The set of 

processor registers must be augmented with a new, protected register which 

can contain the identifier of the principal currently responsible for the 
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base bound 

principal permissions 
identifier : read write 

I 

-------------·------j-------
Smith 1 1 

Jones 1 0 

-

addressing descriptor 
for associated segment 

access-control-list 

Figure 6-8 -- Conceptual model of an access controller. 
When a user attempts to refer to the segment 
associated with the access controller, th~ 
processor looks up his principal identifier in 
the access-control-list part. If found, the 
permissions associated with that entry of the 
access-control-list, together with the addressing 
descriptor, are used to complete the access. 
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Figure 6-9 -- A revision of figure 6-5, with the addition of 
an access controller as an indirect address to 
be used on all references by the processor to the 
memory. Since the access controller contains 
permission bits, they no longer need appear in 
the processor registers, which have been renamed 
"pointer registers". Note that the privileged 
state bit of the processor has been replaced 
with a principal identifier register. 
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activity of the process, as shown in figure 6-9. (Without that change, step 

3 would have been unimplementable.) 

For example, we may have an organization like that of figure 6-10, 

which implements essentially the same pattern of sharing as did the capa­

bility system of figure 6-6. The crucial difference between these two fig­

ures is that in figure 6-1~ all references to data are made indirectly via 

access controllers. We may note that the overall effect differs in 

several ways from that of the pure capability system described before, 

1. The decision to allow access to segment X has known, auditable conse­

quences: Doe cannot make a copy of the addressing descriptor of segment 

X since he does not have direct access to it. Thus, propagation of 

access has been eliminated: the pointer to X's access controller 

itself may be freely copied about and passed to anyone, but every use 

of the pointer must be via the access controller, which will prevent 

access by unauthorized principals. 

2. The access-control-list directly implements the fourth step of the dynamic sharing 

protocol: verifying that the user of the capability is authorized by 

T- ~1...,... ...,....,_.,..1...~1.:.._ ...... _,..,._.._ __ .,_t__.._ ----.!J::..1 __ .._~---
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Figure 6-10 -- A protection system 
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contain access-control-lists. 
system, every segment has a single 
corresponding access controller 
with its own unique identifier for 
addressing purposes; pointer registers 
always contain the_unique identifier of 
access controllers. Program A is 
in control of the processor, and it has 
already acquired a pointer to the 
library catalog. Since the access­
control-list in the capability con­
troller for the library catalog contains 
Doe 1 s name, the processor can use the 
catalog to find the pointer for the 
shared math routine. Since his name 
also appears in the access-control-list 
of the math routine, the processor 
will then be able to use the shared 
math routine. 
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5. The tight association between data organization and authorization has 

been broken. For example, although a catalog may be considered to "belong" 

to a particular user, the segments appearing in that catalog can have 

different access-control-lists. It follows that the grouping of segments 

for naming, searching, and archiving purposes can be independent of any 

desired grouping for protection purposes. Thus, in figure 6-10, a 

library catalog has been introduced. 

It is also apparent that implementation, especially direct hardware implementation 
. ' 

of the access-control-list system could be quite a massive undertaking. We will 

later consider some strategies to simplify implementation with minimum compromise 

of functions, but first it will be helpful to introduce one more functional 

property: protection groups. 

Protection groups 

One final concept will round out our discussion of access-control-list 

systems. There are often cases where it would be inconvenient to explicitly 

list by name every individual who is to have access to a particular file, 

either because the list would be impossibly long, or else because the group 

of users which is to have access changes very frequently. To handle this 

situation, most access-control-list systems implement some form of protection 

groups, which are principals which may be used by more than one user. If 

the name of a protection group appears in an access-control-list, the intention 

is that all users who are members of that protection group be permitted access 

to that segment. 

Methods of implementation of protection groups vary over a wide range of 

possibilities. A simple way to add them to the model of figures 6-9 and 6-10 

is to extend the "principal-holding" register of the process so that it can 

hold two (or more) principal identifiers at once; one for a personal principal 
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identifier and one for each protection group that the user is a member of. 

Figure 6-10 shows this extension in dashed lines. In addition, we upgrade the 

access-control-list checker so that it searches for a match between any of the 

principal identifiers on the one hand and any entries of the access-control-list 

on the other.* Finally, there must alsobea systematic way of controlling who 

is allowed to use those principals which represent protection group identifiers. 

We might imagine that for each protection group there is a person responsible 

for determining who shall be members of that protection group. That person 

maintains a segment containing a protection group list, that is, a list of 

the personal principal identifiers of all users authorized to use the protection 

group's principal identifier. This segment can be protected with an access 

controller, just as any other segment. When a user logs in, he can speci­

fy the list of principal identifiers he proposes to use. His right to use 

his personal principal identifier is authenticated, for example, by a 

password. His right to use the remaining principal identifiers can then be 

authenticated by the login procedure by looking up the now-authenticated 

personal identifier on each named protection group list. If everything checks. 

a process can safely be created and started with the specified list of prin-

cipal identifiers. 

Some implementation considerations 

The model of a complete protection system which we. have developed in 

figure 6-10 is one of many possible architectures, most of which have essen-

tially identical functional properties; our choices among alternatives have 

* If there is more than one match, and the multiple access-control-list entries 
specify different access permissions, some resolution strategy is needed. For 
example, the inclusive ~ of the individually specified access permissions 
might be granted. ~ 
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been guided more by pedagogical considerations than by practical implementation 

issues. There are at least four key areas in which a direct implementation of 

figure 6-10 might encounter practical problems: 

1. As proposed, every reference to an object in memory requires several 

steps: reference to a pointer register, indirect reference through an 

access controller including search of an access-control-list and, finally, 

access to the object itself via addressing descriptors. Not only are 

these steps serial, but several memory references are required, so high 

memory bandwidth would be needed. 

2. An access-control-list search with multiple principal identifiers is 

likely to require a complex mechanism, or be slow, or both. 

3. Allocation of space for access-control-lists which can change in length 

can be a formidable implementation problem. 

4. Allocation and loading of pointer registers may become a burden. 

The first of these problems can be minimized by providing, for each pointer 

register, a "shadow" register which is invisible to the process, as in 

figure 6-11. Whenever a pointer register containing the unique identifier 

of an access controller is first used, the shadow register is loaded with a copy 

of the addressing descriptor for the segment protected by the access controller. 

Subsequent references via that pointer register can proceed directly using the 

shadow register rather than indirectly through the access controller. One 

implication is a minor change in the revocability properties of an access-control­

list: changing an access-control-list does not affect already loaded shadow regis­

ters of running processors. (One could restore complete revocability by clearing 

all shadow regLsters of all processors and restarting any current 
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Figure 6-11 -- Use of "shadow" registers to 'speed up an 
access-control-list system. When a pointer 
register is loaded with a unique identifier, 
the shadow register is simultaneously loaded 
from the access controller to which the 
unique identifier refers. Storing of a 
pointer register means storing of the unique 
identifier only; the "shadow" register is 
never stored. 
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access-control-list searches. The next attempted use of a cleared shadow 

register would automatically trigger its reloading and thus a new access-

control list check.)* 

The second and third problems, allocation and search of access-control-lists, 

appear to require more of a compromise of functional properties. One might, for 

example, constrain all access-control-lists to contain, say, exactly five 

entries, to simplify the space allocation problem. One popular implementation 

allows only three entries on each access-control-list: the first is filled in 

with the personal principal identifier of the user who created the object being 

protected, the second with the principal identifier of the (single) protection group 

to which he belongs, and the third with the principal identifier of a universal pro-

tection group of which all users are members. The individual access permissions 

** for these three entries are specified by the program creating the segment. 

Finally, for the access-control-list system to be p~actical, a fairly 

large number of pointer registers are needed, enough to address all or most 

of the objects needed by a single process during its lifetime. If the number 

of pointer registers were too small, they would need to be reloaded frequently, 

and since each reloading implies searching an access-control-list, costs 

would mount. One way to provide a large number of pointer registers is to 

place them not in the processor, but in a segment of memory, and provide only 

a single processor register which points to the segment. A separate pointer 

segment would be used for each process (or at least for each principal 

identifier). 

Note that the revocability problem is actually a familiar one: the shadow 
registers are an underlying hardware capability system which is being used 
to speed up the intrinsically slower access-control-list system. As 
mentioned several times before, all practical protection systems seem to 
include a capability system at the bottom. 

**This strategy is implemented in software in TENEX [Bobrow et al., CACM 15, 3 
(1972), 135-143] and UNIX [Ritchie and Thompson, CACM 12, 7 (1974) 365-375]. 
This idea seems to have originated in the University of California SDS-940 
Time-Sharing System. 
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Authority !2 change access-control-lists ~ 

The access-control-list organization focuses one issue: control of who 

may modify the access-control-lists in access controllers. In the 

capability system, the corresponding consideration is diffuse: any program 

having a capability may make a copy and put that copy in a place where other 

programs, running in other processes, can make use (or further copies) of it. 

The access-control-list system was devised to provide more precise control 

of authority, so some mechanism for exercising that control is needed. The 

goal of any such mechanism is to provide, internal to the computer system, 

an authority structure which models the authority structure of the organization 

which uses the computer. Two different authority-controlling policies, with 

subtly different modelling abilities, have been implemented or proposed in 

existing systems: ~we name these two self control, and hierarchical controt. 

The simplest scheme is the one we shall name self control. With this 

scheme, we extend our earlier concept of access permission bits to include 

not just permission to read, write, and execute, but also permission to modify the 

access-control-list which contains the permission bits. Thus, in figure 6-12, 

we have a slightly more elaborate access controller, which by itself 

controls who may make modification to it. Suppose that the creation of a 

new segment is accompanied by the creation of an access controller which 

contains one initial entry in its access-control-list: an entry giving all 

permissions totheprincipal identifier associated with the creating process. 

The creator receives a pointer for the access controller he has just 

created, and can then adjust its access-control-list to contain any desired 

list of principal identifiers and permissions. Adjustment of the access-con­

trol-list requires a special "store" instruction (or supervisor entry, in a 

software implementation) which interprets its address as direct, rather than 
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Figure 6-12 -- The access controller extended for self-contained 
control over modification of its access-control-list. 
In this example, user Smith has three permissions: to 
read and to write into the associated segment, and to 
make modifications to the access-control-list of this 
access controller. Jones cannot modify the access­
control-list, even though he can read and write the 
segment described by this access controller. 
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indirect, but still performs the access-control-list checks before per­

forming the store. This special instruction must also restrict the range 

of addresses it allows so as to prevent modifying the addressing descrip­

tor stored in the access controller. 

Probably the chief objection to the self-control approach is that it 

is so absolute: there is no provision for graceful changes of authority 

not anticipated by the creator of an access-control-list. For example, if in 

a commercial time-sharing system, a key membet of a company's financial de­

partment is taken ill, there may be no way for his manager to authorize a 

co-worker to temporarily access a stored budget file unless the absent user 

had the foresight to set his access-control-lists just right. (Worse yet 

would be the possibility of accidentally creating an object for which its 

access controller permits access to no one--a kind of black hole.) To 

answer these objections, the hierarchical control scheme is sometimes used. 

To obtain a hierarchical control scheme, we insist that whenever a 

new object is created, the creator specify some previously existing access 

controller which is to regulate future changes to the access-control-list 

in the access controller for the new object. The representation of 

an access controller must also be expanded to contain the addressing des­

criptor of the access controller which regulates it. In addition, the inter­

pretation of the permission bit named "ACL-mod" is changed to apply to those 

access controllers which are hierarchically immediately below the access 

controller containing the permission bit. Thus, as in figure 6-13, 

all of the access controllers of the system will be arranged in a hierarchy, 

or tree structure, branching from the first access controller in the system, 

whose creation must be handled as a special case, since there is no previously 

existing access controller to regulate it. The hierarchical arrangement 

is now the pattern of access control, since a user with permission to modify 



I 
Segment A.-

6-69 

Segmented Memory 

S6 

S5 

I 
Segment Y .1 

Figure 6-13 -- Hierarchical control of authority to modify access­
control-lists. Authority to access segments A, X, and 
Y is con trolled by aecess controllers AC1, Ac2, and 
AC3, respectively. Authority to modify ACl and AC 2 is 
in turn controlled by AC4, while authority to modify 
AC3 is controlled by Ac5 . Authority to modify AC4 and 
AC5 is controlled by AC6, which is the first access 
controller in the system. In this example, the authority 
to modify AC6 is special-cased to be similar to the self­
control scheme. Note that segments S4, S5, and S6 may be 
degenerate; AC4, AC5, and AC6 may exist solely to control 
the authority to modify other access controllers. The 
meaning of the backpointer, say from AC1 to AC4, is that 
if a user attempts to modify the access-control-list of 
AC1, the backpointer is followed, leading to AC4. Only 
if the user's principal identifier is found in AC4 (with 
appropriate permission) is th~ Morii_fication to AC1 per­
mitted. Segments A, X, and Y are arranged in an indepen­
dent hierarchy of their own, with A superior to X and Y, 
by virtue of the pointer values pl and p2 found in segment 
A. Note that pl and p2 refer to their access controllers 
by unique identifiers. 
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access-control-lists may add his own principal identifier, with access-modifying 

permission to lower level access controllers, giving himself ability to 

change access-control-lists still further down the hierarchy. Thus access-

modifying permission at any one node of the hierarchy permits the holder to 

grant himself access to anything in the entire subtree based on that node. 

The contained hierarchical control scheme might be used in a time-sharing 

system as follows: the first access controller created is given an access-

control-list naming one user, a system administrator. The system administrator 

creates several access controllers, for example one for each department 

in his company, and grants access-modifying permission in each to a department 

administrator, The department administrator then can create additional 

access controllers in a tree below the one for his department, perhaps for 

subdepartments or individual computer users in his department. These 

individual users can develop any pattern of sharing they wish, through the 

use of access-control-lists in access controllers, for the segments 

they create. In an emergency, however, the department administrator can 

intervene and modify any access-control-list in his department. Similarly, 

the system administrator can intervene in the case that a department admin­

* istrator makes a mistake, or is not available. 

The contained hierarchical system is subject to the objection in our 

example that the system administrator and department administrators are too 

* A variation which is occasionally encountered is the use of the segments 
controlled by access controllers higher in the hierarchical authority 
structure as catalogs for the segments below. This variation, if carried 
to the extreme, maps together the authority control hierarchy and the 
cataloguing hierarchy; some mechanical simplifications can be made, but 
trying to make dual use of a single hierarchy may lead to cataloguing 
strategies inappropriate for the data bases, or else to pressures to dis­
tort the desired authority structure. The Multics system [Daley and Neumann, 
AFIPS Conf, Proc, 27, Vol 1, (1965), pp. 213-229], for example, uses this 
variation. 

~ 
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powerful; any hierarchical arrangement inevitably leads to concentration of 

authority at the higher levels of the hierarchy. A hierarchical arrangement 

of authority actually corresponds fairly well to the way many organizations 

operate, but the contained control method of modelling the hierarchy has one 

severe drawback: the use and possible abuse of higher-level authority is 

completely unchecked. In most societal organizations, higher-level authority 

exists, but there are also checks on it. Thus, for example, a savings bank 

manager may be able to authorize a withdrawal despite a lost passbook, but 

only after advertising its loss in the newspaper. A creditor may directly 

remove money from a debtor's bank account, but only with a court order. A 

manager may open an employee's locked file cabinet, but (in some organizations) 

only after temporarily obtaining the key from a security office, an action which 

leaves a record in the form of a logbook entry. A policeman may search your house, but 

only after obtaining a warrant. In each case, the authority to perform the operation 

exists, but the use of the authority is inseparably coupled with checks and balances 

which are designed to prevent abuse of the authority. In brief, the hierarchical 

control scheme provides for exercise of authority, but, as sketched so far, has 

no provision for preventing abuse of that authority. 

One abuse-preventing strategy which has been suggested in various forms 

[Rotenberg, M.I.T. Ph.D. Thesis (1973); Daley and Neumann, AFIPS Con£. Proc.lr, 

Vol 1, (1965), 213-229); Hsiao, ********** ; Hoffman, U. of C. (Berkeley) 

Ph.D. Thesis (1970)] is to add a field to an access controller, as in 

figure 6-14, which we may call the prescript field. Whenever an attempt is 

made to modify an access-control-list (either by a special store instruction 

or by a supervisor call, depending on Lhe impleml'lllntion) Llw tH'Cl'HH-modifylng 

permission of the higher-level access controller regulating the access-

~ control-list is checked as always. If the permission exists, the prescript field 

of the access-control-list which is about to be modified is then examined, and 

some action, depending on the value found, is automatically triggered. Figure 6-14 
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associated segment descriptor 

descriptor of higher-level 
access controller 

Identification of prescript to be fol-
lowed before changing access-control-
list in this access controller. 

I permissions principal I 
I I 1 read write execute ACL-mod --------------r---------------------------------I 
I 

Smith I 1 1 0 0 I 
I > I access-control-list 

Doe I 1 0 0 0 I 

~~J I 
I . I . . \ 

-- ) -prescript 
identification action triggered 

0 no action 

1 identifier of principal making change is logged 

2 change is delayed 24 hours ("cooling-off" period) 

3 change is delayed until some other principal 
attempts the same change ("buddy" system) 

4 change is delayed until signal is received from 
some specific (system-designated) principal 
(court order) 

Figure 6-14 -- The access controller, extended to provide 
prescripts which are intended to inhibit abuses 
of authority to modify access-control-lists. 
Some examples of possible prescripts are suggested 
in the table. 
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,-.., suggests some possible actions which might be triggered by the prescript value, 

and some external policies which can be modelled with the prescript scheme. 

The notion of a prescript, while apparently essential to a protection system 

which is intended to model typical real authority structures, has not been 

very well developed in existing or proposed computer systems. The particular 

prescript mechanism we have used for illustration of the concept can easily 

model only a small range of policies. More complex policies may be implemen­

table by use of protected subsystems, a general escape mechanism described 

briefly in a later section. 

Discretionary and ~-discretionary controls 

Our discussion of authorization and authority structures has so far rested 

on an unstated assumption: that the principal which creates a file or other 

object in a computer system has unquestioned authority to authorize access to 

it by other principals. Thus in the description of the self-control scheme, 

for example, it was suggested that a newly created object begins its existence 

with one entry in its access-control-list, giving all permissions to its creator. 

We may characterize this control pattern as discretionary~ implying that the 

individual user may, at his own discretion, completely determine who is authorized 

to access the objects he creates. There are a variety of situations in which 

discretionary control may not be acceptable, and must be limited or prohibited. 

For example~ the manager of a department developing a new product line may want to 

"compartmentalize" his department 1 s use of the company computer system so as to insure 

that, even within the company, only those employees with "need-to-know" have 

access to information about the new product. The Vice President for Marketing 

may wish to compartmentalize all use of the company computer for calculating 

,-, product prices, since pricing policy may be similarly sensitive. Neither manager 

"/( A term suggested by Schell [*'""**'>'(>'<***•'<]. 
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may consider it acceptable that any individual employee within his department 

can abridge the compartmentalization decision merely by changing an access 

control list on an object he creates. Thus, the manager has a need to limit 

the use of discretionary controls by his employees. Any limits he imposes on 

authorization are controls which are out of the hands of his employees, and 

thus are viewed by them as E££-discretionary. Non-discretionary controls may 

need to be imposed either in addition to or instead of discretionary controls. 

For example, the department manager may be prepared to allow his employees to 

adjust their access-control-lists any way they wish within the constraint that 

no one outside the department is ever given access. In that case, both non­

discretionary and discretionary controls apply. Similar constraints are imposed 

in military security applications, in which not only are isolated compartments 

required, but also the concept of nested sensitivity levels (e.g., top secret, ..,., 
secret, andconfidential) must be modeled in the authorization-granting mechanics 

of the computer system. 

The key reason for interest in non-discretionary controls is not so much 

the threat of malicious insubordination as it is a need to safely use as 

tools complex and sophisticated programs created by suppliers who are not under 

the manager's control. Thus individual empl9yees may use an APL interpreter. 

or a fast file sorting program supplied by a contract software house. They 

may run these borrowed programs as though they were their own, under their 

own principal identifier. If so, they are susceptible to a form of subversion 

known as the "Trojan Horse" attack [Branstad, Computer.§., 1 (1973), 43-47], in 

which the borrowed program, in addition to its advertised function, uses the 

authority of the borrower to modify access-control-lists, make illicit copies 

of files, or otherwise change the user's authorization intents. One way to 

prevent this kind of attack would be to forbid the use of borrowed programs~ 

but for most organizations the requirement that 
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all programs be locally written would be an unbearable economic burden. The 

alternative is to provide non-discretionary controls which, since they cannot 

be changed by the user, cannot be changed by the programs he borrow~ either. 

Complete elimination of discretionary controls is actually quite easy to 

accomplish. For example, in the self-control scheme, one could change the 

default initial value of the access-control-list of all newly created objects 

to be something specified by the user's manager. If this default initial 

value did not include permission for the user himself to modify the access­

control-list, the user would have no discretionary control at all, and the 

manager would have complete control. A similar modification to the hierarchical 

control system can also be designed. 

It is a harder task to arrange for the coexistence of discretionary and 

non-discretionary controls. Non-discretionary controls, may, for example, be 

implemented with a second access-control-list system operating in parallel 

with the first discretionary, control system, but using a different authority 

control pattern. Access to an object would be permitted only if both access­

control-list systems agreed. Such an approach, using a full-bore access-control­

list for non-discretionary controls may be more elaborate then necessary. Most 

designs that have so far appeared have taken advantage of a perceived property 

of non-discretionary controls: that they are usually relatively simple, such 

as "divide the activities of this system into six totally isolated compartments". 

It is then practical to provide a simplified access-control-list system to operate 

in parallel with the discretionary control machinery. For example one would add 

to an access controller a field indicating the compartment or compartments from 

which that object contains information (the access-control-list), and would add 

to a process state a second principal identifier indicating the compartments 
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which the responsible principal is authorized to access. The processor 

would then require a match between these two fields (the non-discretionary 

control) inaddition to a match between original principal identifier and the 

regular access-control-list (the discretionary control). Any new object 

created by a process would automatically receive in the compartment field of 

its access controller the compartment designations of the process state. 

An interesting requirement for a non-discretionary control system which imple­

ments isolated compartments arises in the case in which a principal may be authorized 

to access two or more compartments simultaneously, and some data objects 

may be labeled as being simultaneously in two or more compartments (e.g., 

pricing data for a new product may be labeled as requiring access to the 

"pricing policy" compartment as well as the "new product line" compartment.) 

In such a case it would seem reasonable that before permitting reading of 

data from an object the control mechanics should require that the set of 

compartments of the object being referenced be a subset of the compartments 

to which the accessor is authorized. However, a more stringent interpretation 

is required for permissioll; to write, if confinement of "Trojan Horse" programs 

is to be accomplished. Confinement requires that the process be 

constrained to write only into objects that have a compartment set identical 

to that of the process itself. If such a restriction were not enforced, a 

"Trojan Horse" program could, upon reading data labeled for both the "pricing 

policy" and "new product line" compartments, make a copy of part of it in a 

segment labeled only "pricing policy", thereby compromising the "new product 

line" compartment boundary. A similar set of restrictions on writing can be 

expressed for sensitivity levels; a complete and systematic analysis in the 

military security context was developed by Weissman [AFIPS Conf. Proc. 35 

(1969) 119-133]. Weissman suggested that the problem be solved by automatically 

labeling any object written with the compartment labels needed to permit 
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writing, a strategy he named the "high-water-mark". Lipner (**~"'***~bb''*] has 

suggested an alternative strategy of declaring attempts to write into objects 

without the necessary compartment labels to be errors which cause these programs 

to stop. In either case, a system which correctly implements this restriction 

may be said to have the confinement property, a term used in mathematical 

modelling of security systems.* 

Protecting objects other than segments 

So far, it has been useful to frame our discussion of protection in 

terms of protecting segments, which are basically arbitrary-sized units of 

memory with no internal structure. Capabilities and access-control-lists are 

just as well adapted to protecting other kinds of objects, also. In figure 6-9, 

access controllers themselves were treated as system-implemented objects, 

and in figure 6-13 were protected by other access controllers. There 

are many other kinds of objects which are provided by the hardware and 

software of computer systems for which protection is appropriate. To pro-

teet an object other than a segment, one must first establish what are the 

kinds of operations which can be performed on the object, and then work out 

an appropriate set of permissions to perform those operations. For a data 

segment, the separately controllable operations we have used in our examples 

are those of reading, writing, and executing the contents of the segment. 

For an example of a different kind of system-implemented object, suppose 

that the processor is augmented with instructions that manipulate the contents 

of a segment as a first-in, first-out queue. These instructions might interpret 

* It should be noted that complete confinement' of a program in a shared system 
is a very difficult or perhaps impossible task to accomplish, since the pro.-
gram may be able to signal to other users by subtle strategies other than 
writing into shared segments. For example, the program may intentionally vary 
its paging rate in a way observable by users outside the compartment, or it may 
unexpectedly stop, causing its user to go back to the original author for help, 
thereby revealing the fact that it stopped. Lampson [f!Q! .!§., 10 (1973),613-615] 
and Rotenberg [Ph.D. thesis, M.I.T. Project MAC-TR-115 (1973)] have explored 
this problem in some depth. 
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the first few words of the segment as pointers or counters, and the remainder as 

a storage area for items placed in the queue. One might provide two special 

instructions, "enqueue" and "dequeue", which add to and remove from the queue, 

respectively. Typically, both of these operations would need to both read and 

write various parts of the segment being used as a queue. 

As described so far, the enqueue and dequeue instructions would 

indiscriminately treat any segment as a queue, given only that the process 

issuing the instruction had a capability permitting reading and writing the 

segment .. One could not set up a segment such that some users could only 

enqueue messages, but not be able to dequeue--or even directly read--messages 

left by others. Such a distinction between queues and other segments can be 

achieved by introducing the concept of ~ in the protection system. 

Consider, for example, the capability system, as in figure 6-6. 

Suppose we add to a capability an extra field, which we will name the ~ 

field. This field will have the value 1 if the object described by the capa­

bility is an ordinary segment, and the value 2 if the object is to be con­

sidered a queue. The protection descriptor registers are also expanded to 

contain a type field. We also add to the processor the knowledge of which 

types are suitable as operands for each instruction. Thus, the special instruc­

tions for manipulating queues require that theoperand capability have type 

field 2, while all other instructions require an operand capability with type 

field 1. Further, the interpretation of the permission bits can be different 

for the queue type and the segment type. For the queue type, one might use the 

first permission bit to control use of the enqueue instruction and the second 

permission bit for the dequeue instruction. Finally, we should also expand the 

"create" operation to permit specification of the type of object which should be 

created. 

Clearly, one could extend the notion of type beyond segments and 

queues; any hardware interpreted data structure could be similarly distin-

....., 
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guished and protected from misuse. The concept of type-extension is not 

restricted to capability systems; in an access-control-list system one 

could place the type field in the access controller and require that the 

processor present to the memory, along with each operand address, the 

required type and permission bits for the operation being performed. 

Table 6-I lists some typical system-implemented objects and the kinds of 

operations one might selectively permit. This table could be extended to 

include other objects which are basically interpreted data structures, such 

as accounts or catalogues. 

Finally, one may wish to extend dynamically the range of objects protected 

by the protection system. Such a goal might be achieved by making the type 

field large enough to contain an additional unique identifier, and allowing for 

software interpretation of the access to typed objects. This observation brings 

us to the subject of user-specified controls on sharing, and the implementation 

of protected objects and protected subsystems. We shall not attempt to examine 

this topic in depth, but rather only enough to learn what problems are encountered. 

Protected objects and subsystems 

Both the capability system and the access-control-list system allow con­

trolled sharing among users of the objects implemented by the system. Several 

common patterns of use, such as reading, writing, or running as a program, can 

be independently controlled. While a great improvement over "all-or-nothing" 

sharing, this sort of controlled sharing has two important limitations. The first 

limitation is that only those access restrictions provided by the standard 

system facilities can be enforced. It is easy to imagine many cases where 

the standard controls are not sufficient. For example, an instructor who 

maintains the grade records for a subject in a segment on an interactive sys-

tem may wish to allow each student to read his own grades to verify correct 

recording of each assignment, but not the grades of other students, and to 

allow each student to generate the distribution of all grades for each 
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separately permittable operations 

read data 
write data 
load capability 
store capability 

read access-control-list 
modify names appearing on an 

access-control-list 
modify permissions in access-control­

list entries 
destroy object protected by this 

capability controller 

enqueue a message 
dequeue a message 
examine queue contents without 

dequeueing 

read data 
write data 
issue device-control commands 

read data 
over write data 
write data in new area 

Table 6-I -- Typical system-provided objects which may be pro­
tected by a capability system or an access-control­
list system. 
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assignment. Implementing such controls within systems providing controlled 

sharing of the so~t discussed in the last few sections would be awkward, 

requiring at least the creation of a separate segment for each student and for 

the distributions. If, in addition, the instructor wishes his assistant to 

enter new grades, but wants to guarantee that each grade entered cannot be 

changed later without the instructor's specific approval, we have a situa­

tion that is beyond the ability of the mechanisms so far described 

for controlling sharing. 

The second limitation concerns users who borrow programs constructed by 

other users. Execution of a borrowed program in the borrower's process can 

present a real danger to the borrower, for the borrowed program can exercise 

all the capabilities in the protection domain of. the borrower. If the 

borrowed program malfunctions, or is malicious, it can damage or ~elease infor­

mation of the borrower. Thus, a user must have a certain amount of faith in the 

provider of a program, before he executes the program in his own process. 

The key to removing these limitations is the notion of a protected sub­

system. A protected subsystem is a collection of program and data segments that 

are encapsulated so that other executing programs cannot read or write the 

program and data segment~ and cannot disrupt the intended operation of the com­

ponent progra~ but can invoke the programs by calling designated entry points. 

The encapsulated data segments are the protected objects. To remove the first 

limitation, programs in a protected subsystem can act as caretakers for the pro­

tected objects and interpretively enforce arbitrarily complex controls on access 

to them. Programs outside the protected subsystem are allowed to manipulate the 

protected objects only by invoking the caretaker programs. Algorithms in these 

programs may judge the propriety of the requested access based on information pro­

vided by the system describing the circumstances of invocation, and mav even record 

each access request in some way in some protected objects, For example, the 

protected subsystem shown in figure 6-15 implements the grade keeping system 
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Figure 6-15 -- A protected subsystem to implement the grade 
keeping system described in the text. Pl~ which 
can be invoked by all students in the suoject, 
is programmed to return the caller's grade for 
a particular assignment or the distribution of 
all grades for an assignment. P2, which can be 
invoked by the teaching assistants for the sub­
ject, is programmed to allow the addition of new 
grades to the record but to prevent changing a 
grade once it is entered. P3, which can be in­
voked only by the instructor, is programmed to 
read or write on request any data in the grade 
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discussed above. Clearly, any access constraints which can be specified in 

an algorithm can be implemented in this fashion. Giving users the ability co 

construct protected subsystems out of their own program and data segments 

allows users to provide arbitrary controls on sharing. 

If programs inside protected subsystems also can invoke programs out-

side (perhaps in another protected subsystem) without compromising the 

security of the former, then we achieve the ability to plug together multiple 

protected subsystems to perform a computation. We also find a way around 

the second limitation of simple controlled sharing, the borrowed program 

problem. The access environment in which the programs of a user normally 

execute on his behalf could be set up as a protected subsystem. Then the 

user could arrange for programs borrowed from other users to execute 

outside of this home protected subsystem. In this way the borrowed programs 

could be invoked without giving them access to all the programs and data 

of the borrower. If the borrowed program is malicious or malfunctions then the 

damage it can do is thereby limited. The lending user could also encapsulate 

the lent program complex in a protected subsystem of its own and thus 

insulate it from the programs of the borrower.* 

The notion of protected subsystems, then, provides mutual protection 

for multiple program complexes cooperating in the same computation, and 

removes the two limitations of facilities prov.iding simple controlled sharing. 

It is clear from the description of protected subsystems that each must 

operate in its own protection domain. Implementing protected subsystems 

requires providing mechanisms that allow the association of more than one 

protection domain with a computation and providing means for changing from 

one protection domain to another as control passes from one protected sub-

>'< Note 'that encapsulation of a borrowed program in a protected subsystem is 
done with a different goal than confinement of a borrowed program within 
a compartment. Encapsulation may be used to limit the access a borrowed pro­
gram has to the borrower's data. Confinement is intended to allow a borrowed 
program to have access to data, but insure that the program cannot release 
the information. 
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system to another. The design must insure that one protected sub-

system cannot interfere in any way with the correct operation of another in­

volved in the same computation, 

We note in passing that the supervisor in most computer systems is a 

good example of a protected subsystem. If general facilities are provided 

for supporting user-constructed protected subsystems, then these mechanisms 

can be applied to protect the supervisor from user programs as well. The 

resulting uniformity of mechanism is consistent with the design principle of 

simplicity. 

In order to implement protected subsystems, then, there must be a way of 

associating multiple protection domains with a single computation. One 

way would be to use a separate process, each with its own protection domain, 

for each protected subsystem, a notion discussed by Lampson [Proc. 5th Princi­

ton Con£. Info. Science and Systems (1971),437-443]. A computation involving 

multiple protected subsystems thus would require multiple cooperating pro­

cesses. The invocation of one protected subsystem by another, and any res­

ponse in the reverse direction, would be achieved using the interprocess 

communication facilities of the system [Hanson, CACM lJ, 4 (1970), 238-250]. 

A multiprocess implementation, while conceptually straightforward, tends to be 

atv~vard and inefficient in practice. Furthermore, it tends to obscure important 

features of the required mechanisms. Unless there is an inherent need for the 

protected subsystems in a computation to execute in parallel, a single process 

implementation seems more natural. Such an implementation would require the 

association of multiple protection domains with a single process, a strategy 

explored in detail by Schroeder [:Ph.D. thesis, M.I.T. (1972)], Rotenberg [Ph.D. 

thesis, M.I.T. (1974)], Jones [Ph.D. thesis, Carnegie-Mellon University (1974)], ._, 

and Needham [AFIPS Con£. Proc. 41 (1972), 571-578]. In this case, communication among 

protected subsystems could be via interprocedure call and return operations. 
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Theactualmechanics of implementation of protected objects and sub­

systems are beyond the scope of this tutorial,· since there is not yet any 

widespread agreement on which mechanisms are fundamental, but it is useful 

to quickly sketch the considerations which those mechanisms must handle. 

the principle of "separation of privilege" is basic to the idea 

that the internal structure of some data objects is accessible 

to process A, but only when the process is executing in program B. 

If, for example, the protection system requires possession of two 

capabilities before it allows access to the internal contents of some objects, 

then the program responsible for maintenance of the objects can hold one of the 

capabilities while the user of the program can catalog the other. 

Morris [CACM ~,1 (1973), 15-21] has proposed an elegant semantics 

for separation of privilege in which the second capability is known 

as a seal. In terms of the earlier discussion of types, the type field of 

a protected object contains a seal which is unique to the protected sub­

system; access to the internal structure of an object can be achieved only 

by presenting the original seal capability as well as the capability for 

the object itself. 

The switching of protection domains within a single process must be 

intimately entangled with the mechanisms that provide for dynamic 

activation records and static (own) variable storage, since both the 

activation records and static storage of one protection domain must 

be distinct from that of another. 

The passing of argument values between domains must be carefully con­

trolled_. to insure that the called domain will be able to access its 

arguments without violating its own protection intentions. Schroeder 

[M.I.T. Ph.D. Thesis (1972)] explored argument passing in depth from 
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the access-control-list point of view, while .Jones [Carnegie-Mellon 

Ph.D. Thesis (1973)] explored the same topic in the capability frame-

work. 

The reader interested in learning about the mechanics of protected 

objects and subsystems in detail is referred to the literature mentioned 

• 

above and in the suggestions for further reading. The area is in a state of 

"advanced development", in which several ideas have been tried out experimentally, 

but there is not yet much agreement on which mechanisms are fundamental. For 

this reason, the subject is best explored by case study. 
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III: The State of the Art and Current Research Directions === === = === === === ::::.;;;:==::= ========= ::::=::;,:;::==::= 

Until quite recently, the protection of computer-stored information 

has been given relatively low priority both by major computer manufacturers 

and by a majority of their customers. Although research time-sharing 

systems using base-and-bound registers appeared as early as 1960 [ref. 

**********], and Burroughs marketed a descriptor-based system in 1961, those 

early features were directed more toward preventing accidents than toward 

providing foolproof protection. Thus in the design of the IBM System 360, 

~vhich appeared in 1964 [Amdahl, et al., IBM.:[ . .2!B:·! .Q_. lL 2 (1964), 87-101], 

the only protection mechanisms consisted of a privileged state and a 

protection key scheme which prevented writing in those blocks of'memory 

allocated to other users. The early IBM software used these mechanisms only 

to the minimum extent necessary to allow accident-free multiprogramming. 

Not until 1970 did fetch protect (the ability to prevent one user from • 

reading primary memory allocated to another user) become a standard feature 

of the IBM architecture [ref**********]. As of 1974, descriptor-based 

architectures, which open the door to the more sophisticated protection 

mechanisms described in section II) have become common, but not universal, 

in commercially marketed systems and in most manufacturer's plans for forth-

coming product lines. Examples of commercially available systems which are 

descriptor-based are the IBM System 370 models which support virtual memory 

[ref. ****'l'd'*,.'**] the Univac (formerly RCA) system 7 [Oppenheimer and Weizer, 

"''*"'""'******],the Honeywell 6180 [Corbato et al., AFIPS Conf. Proc. 40 (1972), 

571-583], the Control Data Corporation Star-100 (not yet delivered) [Holland, 

et al., IEEE Comp. Conf. (1971), 55-56], the Burroughs B5700/6700 [Hauck, 
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et al., ~ Conf. Proc. 32 (1968), 245-251], the Hitachi 8800 [ref. **** 

****** ]. and the Digital Equipment Corporation PDP-11 model 45 [ref. ***** 

***** j. On the other hand, architectural provision for controlled sharing 

of information, whether by software or hardware, ls sti II the except ion 

rather than the rule. 

In the decade between 1964 and 1974, several protection architectures 

were explored as research and development projects, usually starting with 

a computer that provided only a privileged mode, adding minor hardware 
/ 

features, and interpreting with software the desired protection architecture. 

Among these were the Compatible Time-Sharing System of the Massachusetts 

Institute of Technology, which implemented in 1961 user authentication, 

compartments, and, in 1964, shared files with permission lists [CTSS Programmers' 

Guide, 1st ed. (1963) and 2nd ed. (1965), M.I.T. Press]. The Advanced Development 

Prototype (ADEPT) System of the System Development Corporation, in 1967, imple-

; 

-.,. 

mented in software on an IBM system 360, a model of the U.S. military secUlt.ity system, 

complete with clearance levels, compartments, need-to-know, and centralized 

authority control [Weissman, AFIPS Conf. R!££. 35 (1969) 119-133]. At about 

the same time the IBM Cambridge Scientific Center released an operating system, 

named CP/67 and later marketed under the name VM/370, that used descriptor-

based protection hardware to implement virtual system 360 computers, using a 

single system 360 model 67 [Meyer and Seawright,~~- I· 2 (1970), 199-218]. 

In 1969, the University of California (at Berkeley) CAL system implemented a 

software-interpreted capability system on a Control Data 6400 computer. Also 

in 1969, the Multics system, a joint project of the Massachusetts Institute of 

Technology and Honeywell, implemented in software and hardware a complete 

descriptor-based access-control-list system with hierarchical control of authen­

tication on a Honeywell 645 computer system [Saltzer, CACM 11, 7 (1974), 388-402, 

Graha~, ~11, 5 (1968), 365-369]. 
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Based on the plans for Multics, the Hitachi Central Research Laboratory imple­

mented a simplified descriptor-based system with hardware implemented ordered 

domains (rings of protection) on the HITAC 5020E computer in 1968 [ref ***** 
*"lo'(** ] • In 1973, a hardware version of the rings of protection idea was 

implemented for Multics in the Honeywell 6180 computer system [Schroeder and 

Saltzer, ~ 15, 3 (1972) 157-170]. At about the same time, the Plessey 

Corporation announced a telephone switching computer system, the Plessey 250, 

which is based on a capability architecture. Today, there are several research 

organizations experimenting with more elaborate protection architectures, such 

as capabilities and user-defined protected objects, taking advantage of the 

flexibility available from microprogramming and from rapidly dropping hardware 

costs. Some of these projects were described in· a series of sessions at the 

1974 National Computer Conference [AFIPS Conf. Proc. 43 (1974), 973-999]. 

~' Current research directions 

There are several different areas in which research on protecting infor­

mation remains to be done. In addition to continued experimenting with differ­

ent protection architectures to try to discover simpler, yet effective, imple­

mentations of protection goals, there are at least five major areas receiving 

attention today: 

Certification of the correctness of a protection system design and 

implementation. 

Invulnerability to single faults. 

Constraints on use of information after release. 

Encipherment of information with secret keys. 

Improved authentication mechanisms. 

These five areas are discussed in turn. 

A research problem which is attracting much attention today 

is that of certifying the correctness of the design and implementation of 
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hardware and software protection mechanisms. There are actually several 

subproblems in this area: 

1. One must have a precise model of the protection goals of a system, 

HO that the design and implementation can be measured against that 

model. When the goal is that independent users should be completely 

isolated, the model is straightforward and the mechanisms of the 

virtual machine are relatively easy to match with the model. However, 

when controlled sharing of information is desired, the model is much 

less clear and the attempt to clarify it generates many unsuspected 

questions of policy. Even attempts to model the well-documented 

military security systemhaveled to surprisingly complex formulations 

and have exposed formidable implementation problems [Weissman, AFIPS 

Conf. Proc. 35 (1969) 119-133, Bell and LaPadula, MITRE Corp. MTR-2547, 

Vol .!_, (1973) 1. 

2. Given a precise model of the protection goals of a system, and a work-

ing implementation of that system, the next challenge is to somehow 

verify that the presented implementation actually supplies the claimed 

functions. Since protection functions are usually a kind of negative 

specification, testing by sample cases provides almost no information. 

.. 

One proposed approach is using proofs of correctness to establish formally 

that a system is correctly implemented. Work in this area consists pri­

marily of attempts to extend methods of proving assertions about programs 

to cover the constructs typically encountered in operating systems. 

3. Most current day systems present the user with a rather intricate 

interface for specifying his protection needs. The result is that 

the user has trouble figuring out how to make the specification, and 

in verifying that he has requested the right thing. What is needed 

are user interfaces which more closely match the mental models people 

have of information protection. 
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4. In most operating systems~ there is an unreasonably large quantity of 

"system" software which runs without protection contraints. The reasons 

are many: hoped-for higher efficiency, historical accident~ mis­

understood design~ and inadequate hardware support. The usual result 

is that the essential mechanisms which implement protection are 

thoDoughly tangled with a much larger body of mechanisms, making 

certification an impossibly complex task. In any case, there has 

not yet been established a minimum set of protected supervisor 

functions--a protected kernel--for a full-scale modern operating system, 

These four subproblems taken together are all part of the general research 

area of certifying correctness of protection system design and implementation. 

An area of vulnerability of most modern operating systems is their re­

action in the face of hardware failures. Failures which cause the system to 

misbehave are usually easily detected and, with experience, automatic recovery 

can be provided. Far more serious are failures which result in an undetected 

disabling of the protection mechanism&. Since routine use of the system 

may not include attempts to access things which should not be accessible, 

failures in access-checking circuitry may go unnoticed indefinitely. There 

is a challenging, but probably solvable~ problem involved in guaranteeing 

invulnerability of the protection mechanisms in the face of all single hard­

ware failures, Molho [AFIPS Conf. Proc. 36 (1970), 135-141] explored this 

topic in the IBM System 360 model ·so computer, and made several suggestions for 

improvement. Fabry [~. ~ 1£, 11 (1973), 659-668] has described an experi­

mental system in which all operating system decisions which could affect protection 

are repeated by independent hardware and software. 

Another area of research is on constraining the use to which informa­

tion may be put, even after release to an executing program. In part I, 
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we described such constraints as a fourth level of desired function. For 

example, one might wish to "tag" a file with a notation that any process 

reading that file is to be forever after restricted from printing output on 

remote terminals located outside a headquarters building. For this restric­

tion to be complete, it should propagate with all results created by the 

process, and into other files it writes into. Information use restrictions 

such as these are common in legal agreements (as in the agreement between 

a taxpayer and a tax return preparing service) and the unsolved problem is 

to see if there are corresponding mechanisms for computer systems which 

could help enforce (or detect violations of) such agreements. Rotenberg 

explored this topic in depth in his Ph.D. thesis (M.I.T., 1973) and proposed 

a privacy restriction processor to aid enforcement. 

A potentially powerful technique for protecting information is to 

encipher it, using a key known only to authorized accessors of the information. ~ 

(Thus encipherment is basically a ticket-oriented system.) One problem 

with encipherment strategies is developing techniques for communicating keys 

to authorized users. If this communication is done internal to the computer 

system, then schemes for protecting the keys must be devised. Strategies 

for securing multinode computer communication networks using encipherment 

are a topic of current research; Branstad has summarized the state of the art 

[AIAA paper 73-427, (1973)]. Another research problem is development of 

encipherment techniques (sometimes called privacy transforamtions) for random 

access to data. Most we·ll-understood enciphering techniques operate sequen­

tially on long bit streams (as found in point-to-point communications, for 

example.) Techniques for enciphering and deciphering small, randomly selected 

groups of bits such as a single word or byte of a file have been proposed, but 

the effort required to cryptanalyze such encipherments (that is, the work 
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factor) is not easily determined, and is still a subject for research. A 

block enciphering system based on a scheme suggested by Feistel was developed 

at the IBM T. J. Watson Research Laboratory by Smith, Notz, and Osseck [Proc. 

ACM 25th Nat. Conf., Vol. 1l (1972), 282-297]. 

Research in encipherment encounters a practice of military classification 

of most work. Thus, since World War II only three papers with significant 

contributions have appeared in the open literature [Shannon, BSTJ 28, 4 

(1949), 656-715; Baran, RAND Corp. report RM-3765-PR Vol. 9 (1964); and 

Feistel, IBM Research Report RC-2427 (1970)]; most other papers have only 

updated, reexplained, or rearranged concepts published many years earlier. 

Finally, spurred by need for better credit and check-cashing authenti­

cation, there is considerable research and development effort going into better 

authentication mechanisms. Many of these strategies are based on attempts to 

measure some combination of personal attributes, for example, the dynamics of 

a handwritten signature or the rhythm of keyboard typing. Others are directed 

toward developing difficult-to-duplicate machine-readable identification cards. 

Concluding remarks 

In reviewing the extent to which protection mechanisms are systematically 

understood (which is not a large extent) and the current state of the art, one 

cannot but help draw a parallel between current protection inventions and the 

first mass-produced computers of the 1950's. At that time, by virtueofexperience and 

strongly developed intuition, there was a confidence that the architectures being 

delivered as products were sufficiently complete to be useful, and it turned out 

that they were. Yet, it was rapidly established that matching a problem statement 

to the architecture (e.g., programming) was a major effort and one whose magnitude 

was quite sensitive to the exact architecture chosen. In a parallel way, the 

matching of a set of protection goals to a particular protection architecture by 

setting the bits and locations of access-control-lists or capabilities or by 
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devising protected subsystems is a matter of programming the architecture. 

Following the parallel, i~ is not surprising that users of the current.first 

crop of protection systems have found them relatively clumsy to program and not 

especi.ally well matched to their image of the problem to be solved, even 

though they be logically complete. As in the case of all programming systems 

it will be necessary for protection systems to be used and analyzed, and for 

those users to propose different, possibly orthogonal, views of the necessary 

and sufficient semantics to clearly support information protection. 
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